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Abstract: 

      In this paper, we present an approximate method for solving integro-differential 

equations of multi-fractional order by using the variational iteration method. 

      First, we derive the variational iteration formula related to the considered 
problem, then prove its convergence to the exact solution. Also we give some 

illustrative examples of linear and nonlinear equations. 
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 ورية المتعددةالتكاممية ذات الرتب الكس-المعادلات التفاضميةالطريقة التغايرية التكرارية لحل 
 

 *عمر اسماعيل خميل
 قسم الرياضيات وتطبيقات الحاسوب، كمية العموم، جامعة النهرين، بغداد، العراق

 
 :الخلاصة

المتعددة في هذا البحث، تم تقديم طريقة تقريبية لحل المعادلات التفاضمية التكاممية ذات الرتب الكسورية      
. بأستخدام الطريقة التغايرية التكرارية

حمول الى الحل الومن ثم برهان تقارب متتابعة  المسألة المقترحةلقد تم اشتقاق الصيغة التكرارية لحل      
 .المضبوط مع إعطاء بعض الامثمة التوضيحية الخطية وغير الخطية لحل هكذا نوع من المعادلات

 

1. Introduction: 

      The fractional integro-differential equations is a special kind of equations collecting integral 
equations and fractional calculus and in recent years, there has been a growing interest in the integro-

differential equations, since many mathematical formulations of physical phenomena, such as 

nonlinear functional analysis and their applications in the Theory of Engineering, Mechanics, Physics, 
Chemical Kinetics, Astronomy, Biology, Economics, Potential Theory and Electrostatistics contain 

integro-differential equations, [1-3]. 

      The variational iteration method (VIM) was proposed originally by Ji-Huan He [4]. An elementary 
introduction to the variational iteration method and some new developments, as well as, to new 

interpretations, can be found in [5,6]. This method has been advantageously employed for solving 

various kinds of nonlinear problems. It has been successfully applied to parabolic partial differential 

equations [7], to nonlinear systems of second-order boundary value problems [8], to multi-pantograph 
delay equations [9], to heat-like and wave-like equations with variable coefficients [10], to neutral 

functional-differential equation with proportional delaysand to other problems [11], recently, Wadeá 
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in 2012  used variational iteration method for solving fractional order integro-differential equations 

[12]. 

      In this paper, we present an approximate method for solving integro-differential equations of 

fractional order of the form: 
                                                                C 

D
α
 y(x) = f(x) + I

β 
k1[y(x)] + I

γ
 k2[y(x)]                                                      (1) 

where k1 , k2 are given continuous functions, 0    1,  , γ > 0, x  [a, b], y(a)  AR and 
C
D


 

refers to the Caputo fractional derivative of order , while I
β
 and I

γ
 refers to the fractional integrals of 

order  and γ respectively. 

      The fractional integro-differential equation could be considered as an important type of integro-

differential equations, where the differentiation and the integration appears in the equation is of non-

integer order. 

2. Basic Concepts:  

       In this section, some basic fundamental concepts and definitions concerning with fractional 

calculus and calculus of variation will be introduced for completeness purpose. 

2.1 Fractional derivative:  

          There are various types of definitions for the fractional order derivatives of order q > 0, the most 

commonly used definitions among various definitions of fractional order derivatives of order q>0 are 

the Riemann-Liouville and Caputo formula, n this paper we used Caputo fractional derivative, which 

is defined to be [13]: 

                                             

x

C α m-α-1 (m)

a x

0

1
D u(x) = (x - s) u (s)ds

Γ(m -α) 
                                               (2) 

where  m 1 <   m, m  N, x > 0 and Γ refers to the gamma function. 

2.2 Fractional Integral: 

         As in fractional derivatives, there are many literatures introduces different definitions of 

fractional integration, in this paper we used the definition of Riemann-Liouville fractional integral, 

which is defined for the right hand side integral by [14]: 

                                         

x

α α-1

a x

1
I u(x) = (x - s) u(s)ds

Γ(α) 
a

,  > 0, a R                                            (3.a) 

and the left hand side fractional integral: 

                                      
b1α α -1I u(x) = (s - x) u(s)ds

x b Γ(α)
x
 ,  > 0, b R

+ 
                                        (3.b) 

3. Variational Iteration Method, [4]: 

        To illustrate the basic idea of the VIM, we consider the following general non-linear equation 

given in operator form:  

                                                          L(u(x)) + N(u(x))  g(x), x  [a, b]                                             (4) 

where L is a linear operator, N is a nonlinear operator and g(x) is any given function which is called 

the non-homogeneous term.  

Now, rewrite eq.(4) in the form: 

                                                         L(u(x)) + N(u(x))  g(x)  0                                                         (5) 

and let un be the n
th

 approximate solution of eq. (5), then it follows that:  

                                                    L(un(x)) + N(un(x))  g(x)  0                                                            (6) 
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and therefore the correction functional for (4), is given by: 

                                   
0

x

n 1 n n n

x

u (x) u (x) λ(s){L(u (s) N(u (s)) g(s)}ds                                            (7) 

where  is the general Lagrange multiplier which can be identified optimally via the variational 

theory, the subscript n denotes the n
th

 approximation of the solution u and 
nu  is considered as a 

restricted variation, i.e., 
nu

 
 0, [1]. 

      To solve eq. (7) by the VIM, we must first evaluate the Lagrange multiplier  that will be 

identified optimally via integration by parts. Then the successive approximation un(x), n  0, 1, …; of 

the solution u(x) will be readily obtained upon using the obtained Lagrange multiplier and by using 

any selective function u0(x). The zero
th

 approximation u0 may be selected by any function that just 

satisfies at least the initial and boundary conditions with  determined, then several approximations 

un(x), n  0, 1, …; follows immediately, and consequently the exact solution may be arrived since: 

                                                                  
n

n
u(x) limu (x)


                                                                   (8)  

4. Variational Iteration Method for Solving Multi-Fractional Order Integro-Differential 

Equations: 

      Consider the fractional integro-differential equation (1), which may be rewritten as: 
                                                                       C

D

y(x) - f(x) - I


k1(y(x)) - I

γ
k2(y(x)) 0                                                  (9) 

Multiply eq.(9) by a general Lagrange multiplier , yields to: 

                                            (s){
C
D


y(x)-f(x)-I


k1(y(x))-I

γ
k2(y(x))}0                                              (10) 

Now, take I

 to the both sides of eq.(10), which give: 

                                       I

[(s){

 C
D


y(x) - f(x) - I


k1(y(x)) -I

γ
k2(y(x))}]  0                                      (11) 

Then, the correction functional for eq.(1) will be read as follows: 

                            yn+1(x)  yn(x) + I

(s){

C
D


yn(x)  f(x)  I


k1(yn(x)) I

γ
k2(yn(x) }                         (12) 

In this case the value of  may not be evaluated easily from eq.(12), which will give a functional with 

fractional integrals. Therefore, the approximation of the correctional functional can be expressed as 

follows: 

                             
x m

β γn
n 1 n 1 n 2 nm

0

d y (s)
y x y x  λ(s){ f (s) I k (y (s)) I k (y (s))}ds

ds
                         (13) 

Thus, by taking the first variation with respect to the independent variable yn and noticing that yn(0)  

0, yields to: 

   
x s sm

1 1n
n 1 n 1 n 2 nm

0 a a

d y (s) 1 1
y x y x  (s){ f (s) (s t) k (y (t))dt (s t) k (y (t))dt}ds

ds ( ) ( )

 

         
       

… (14) 

where ny  is considered as a restricted variation, which means that  ny 0, and consequently eq.(14) 

with m  1 will be reduced to: 

                                                      yn+1(x)  yn(x) + 

x

n

0

(s)y (s)ds                                                 (15) 

Hence, using the method of integration by parts on eq.(15) will give the following formula: 
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                                        yn+1(x)  yn(x) + (s) yn(s)
s x



x

n

0

(s) y (s)ds   

and then: 

                                          yn+1(x)  (1 + (s))yn(x)  

x

n

0

(s) y (s)ds    0 

As a result, the following stationary conditions are obtained: 

                                                            (s)  0, 1 + (s)
s x

  0 

and solving the last ODE will give the general Lagrange multiplier can be defined in the following 

form: 

                                                                          (s)  1 

Hence, substituting (s)  1 into the correction functional (12), will give the following variational 

iteration formula: 

                                      yn+1(x)  yn(x)  I

{D


yn(x)  f(x)  I


k(yn(x))  I

γ
k2(yn(x)}                         (16) 

5. Convergence Anaysis: 

       In this section, we study the convergence of the variational iteration method, according to the 

alternative approach of VIM presented in the previous section. The main results are proposed in the 

following theorem: 

Theorem (1) 

      Let y (C
2
[0, T], || . ||) be the exact solution of the integro-differential equation of fractional order 

(1) and yn C
2
[0, T] be the obtained solution of the sequence defined by eq.(16). If  

En(x)  yn(x)  y(x) and let  

k(y(x))= ( + γ) (xs)
β
 k1(y(s)) +( + ) (xs)

γ
 k2(y(s)) 

 satisfies Lipschitz condition with constant L, such that L < ( + )( + γ), then the sequence of 

approximate solutions {yn}, n  0, 1, ...;  converges to the exact solution y. 

Proof: 

Consider the integro-differential equation of fractional order: 
C
D


y(x)  f(x) + I


k1(y(x)) + I


k2(y(x)),u(0)  u0 

where the approximate solution using the VIM is given by: 

                                     yn+1(x)  yn(x)  I

{

C
D


yn(x)  f(x)  I


k(yn(x))  I


k2(y(x))}                        (17) 

 

Since y is the exact solution of the integro-differential equation of fractional order, hence: 

                                         y(x)  y(x)  I

{

C
D


y(x)  f(x)  I


k1(y(x)) I


k2(y(x))}                            (18) 

 

Hence, subtracting eq.(18) from eq.(17) yields to:  

          En+1(x)  En(x)  I

{

C
D


En(x)  f(x) + f(x)  I


[k1(yn(x))  k1(y(x))]  I


[k2(yn(x)) k2(y(x)]} 

                       En(x)  I

{

C
D


En(x)  I


[k1(yn(x))  k1(y(x))]  I


[k2(yn(x))  k2(y(x)]}  

Using the properties of fractional calculus since, 

                                                        I
 

D

En(x)  En(x)C0 En(0) 

where C0 is a constant and  

En(0)  un(0)  u(0) , hence 
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               En+1(x)En(x) En(x)  C0 En(0) + I

I

[k1(yn(x))  k1(y(x))] + I


I

[k2(yn(x))  k2(y(x)] 

with yn(0)  y(0), then  En(0)  0. Therefore: 

               En+1(x)  I

I

[k1(yn(x))  k1(y(x))] + I


I

[k2(yn(x))  k2(y(x)] 

                            I
+

[k1(yn(x))  k1(y(x))] + I
+

[k2(yn(x))  k2(y(x)] 

                            1I
 [k1(yn(x))  k1(y(x))] + 2I

 [k2(yn(x))  k2(y(x)] 

where α1  α + β and α2  α + γ , then 

  1 2

x x

1 1

n 1 1 n 1 2 n 2

1 20 0

1 1
E x (x s) [k (y (s)) k (y(s))]ds (x s) [k (y (s)) k (y(s))]ds

( ) ( )

   

       
      

             

x

1

2 1 n 2 1

1 2 0

1 2 n 1 2

1
(x s) { ( )(x s) k (y (s)) ( )(x s) k (y(s))

( ) ( )

( )(x s) k (y (s)) ( )(x s) k (y(s))}ds

  

 

       
   

     


      

            

x

1

2 1 n 1 2 n

1 2 0

2 1 1 2

1
(x s) [{ ( )(x s) k (y (s)) ( )(x s) k (y (s))}

( ) ( )

{ ( )(x s) k (y(s)) ( )(x s) k (y(s))}]ds

  

 

        
   

       


 

Then  

                                       
x

1

n 1 n

1 2 0

1
E (x) (x s) k(y (s)) k(y(s)) ds

( ) ( )



   
      

Now, taking the maximum norm of the two sides of En+1, will give 

 
x

1

n 1 n

1 2 0

1
E x (x s) [k(y (s)) k(y(s))] ds

( ) ( )








  
                                

                     

x

1

n

1 2 0

1
|| x s || || k(y (s)) k(y(s)) || ds

( ) ( )



   
      

                     

x

1

n
s [0,x]

1 2 0

1
max | x s | L || y (s) y(s) || ds

( ) ( )






  
      

                     

x

1

n

1 2 0

1
x L || E (s) || ds

( ) ( )




      

Hence:  
x

1

n 1 n

1 2 0

L
E x x || E (s) || ds,

( ) ( )



 


       n  0, 1, ... 

Now, if n  0, then: 

 
x

1

n 1 0

1 2 0

L
E x x || E (s) || ds

( ) ( )



 


               

                  

x

1

0
s [0,x]

1 2 0

L
x max | E (s) | ds

( ) ( )





      

                   

x

1

0
s [0,x]

1 2 0

L
x max | E (s) | ds

( ) ( )





       

                    0
s [0,x]

1 2

L
x max | E (s) |

( ) ( ) 

 



 
 

Also, for n  1, we have: 
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x

1

n 1 1

1 2 0

L
E x x || E (s) || ds

( ) ( )



 


         

                  
x

1

0
s [0,x]

1 2 1 20

L L
x s max | E (s) | ds

( ) ( ) ( ) ( )

 



 
  
        

  

                  

2 x

1

0
s [0,x]

1 2 0

L
x max | E (s) | s ds

( ) ( )

 



 
  

    
  

                  

2
2

0
s [0,x]

1 2

L x
max | E (s) |

( ) ( ) 1





 
  

      
 

Similarly, for n  2, then: 

 
x

1

n 1 2

1 2 0

L
E x x || E (s) || ds

( ) ( )



 


       

                  

2x 2
1

0
s [0,x]

1 2 1 20

L L s
x max | E (s) | ds

( ) ( ) ( ) ( ) 1






  
   

            
  

                  

3 x 2
1

0
s [0,x]

1 2 0

L s
x max | E (s) | ds

( ) ( ) 1






   
    

       
  

                  

3
2 1

1

0
s [0,x]

1 2

L x
x max | E (s) |

( ) ( ) ( 1)(2 1)






 
  

        
 

                  

3
3

0
s [0,x]

1 2

L x
max | E (s) |

( ) ( ) ( 1)(2 1)





 
  

        
 

 

 
n

n

n 1 0
s [0,x]

1 2

L x
E x max | E (s) |

( ) ( ) ( 1)(2 1) ((n 1) 1)






 
  

           
 

 

and since L < [( + ) ( + )], so as n, we have ||En(x)||  0, i.e., yn  y.     

 

6. Illustrative Examples: 

      In this section, we shall present two integro-differential equations of fractional order, linear and 

nonlinear, which will be solved using the above method of solution. 

 

Example (1): 

Consider the following linear integro-differential equations of fractional order: 

                                        
0.5 2.5 3.5 3.75 0.5 0.756 6 6

D y(x) x x x I y(x) I y(x)
(3.5) (4.5) (4.75)

    
  

     (19) 

where u(0)  0, x[0,1]. 

Then by eq. (16), we have the following variational iteration formula related to eq. (30):  
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          0.5 0.5 2.5 3.5 3.75 0.5 0.75

n 1 n n n 2 n

6 6 6
y x y x I {D y x x x x I k y x I k (y x }

(3.5) (4.5) (4.75)
       

  

and consider the initial approximation  

y0(x)  y(0)  0, then:  

               0.5 C 0.5 2.5 3.5 3.75 0.5 0.75

1 0 0

6 6 6
y (x) y (x) I { D y (x) x x x I y(x) I y(x)}

(3.5) (4.5) (4.75)
      

  
     

                        

0.5C 0.5 0.5 2.5 0.5 3.5 0.5 3.75

0

0.5 0.5 0.5 0.75

0 0

6 6 6
I D y (x) I x I x I x

(3.5) (4.5) (4.75)

I I y (x) I I y (x)

     
         

       

 

 

and upon using the properties of fractional differentiation and integration, we get: 

              

 
0

(0) 2.5 0.5 3.5 0.5

1 0

x

3.75 0.5 1.25

0 0

0

x 6 (2.5 1) 6 (3.75 1)
y x y (0 ) x x

0! (3.5) (2.5 1 0.5) (4.5) (3.5 1 0.5)

6 (3.75 1)
x y (0)dt I y (0)

(4.75) (3.75 1 0.5)

  



   
  

       

 
  
    

 

                        

x

3 4 4.25 1.25

0 0

0

6 6 6
x x x y (0)dt I y (0)

(4) (5) (5.25)
    
      

                3 4 4.25

1

1 6
y x x x x

4 (5.25)
  


 

Similarly:  

  3 5 5.25 5.5

2

1 12 6
y x x x x x

20 (6.25) (6.5)
   

 
 

  3 6 6.25 6.5 6.75

3

1 18 18 6
y x x x x x x

120 (7.25) (7.5) (7.75)
    

  
 

  3 7 7.25 7.5 7.75 8

4

1 24 36 24 6
y x x x x x x x

840 (8.25) (8.5) (8.75) (9)
     

   
 

 and so on. 

Therefore, using the mathematical induction, one may conclude that the approximate solution 

converges to the exact solution y(x)  x
3
 as n  . 

      The comparisons between the exact and approximate results are given in table (1). 

 

Table 1- The absolute error between the exact and approximate solutions of example (1). 

x |y(x)  y1(x)| |y(x)  y2(x)| |y(x)  y3(x)| |y(x)  y4(x)| |y(x)  y5(x)| 

0 0 0 0 0 0 

0.1 3.4610
5

 9.3110
7

 2.08410
8

 3.8110
9

 1.4910
9

 

0.2 5.8210
4

 3.2910
5

 1.51310
6

 3.02210
8

 2.80810
8

 

0.3 3.0510
3

 2.6610
4

 1.8910
5

 9.71410
7

 1.14710
7

 

0.4 9.8710
3

 1.1810
3

 1.13810
4

 9.04610
6

 3.78810
7

 

0.5 2.4610
2

 3.7310
3

 4.59410
4

 4.73310
5

 4.0010
6

 

0.6 5.1810
2

 9.5910
3

 1.43910
3

 1.8110
4

 1.9510
5

 

0.7 9.7410
2

 2.1310
2

 3.7810
3

 5.62810
4

 7.18310
5

 

0.8 0.168 4.2610
2

 8.73710
3

 1.50310
3

 2.22110
4

 

0.9 0.27 7.910
2

 1.810
2

 3.5810
3

 6.01310
4

 

1 0.42 0.136 3.0310
2

 7.7810
3

 1.47610
3
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Example (2): 

Consider the following nonlinear integro-differential equations of fractional order: 

               c 0.75 0.25 1.5 2.25 0.25 2 0.51 1 2
D y(x) x x x I [y(x)] I y(x)

(1.25) (2.5) (3.25)
    
  

                   (20) 

 where u(0)  0, x[0,1]. 
Then by eq. (16), we have the following variational iteration formula related to eq. (31):  

 

         
20.75 0.75 0.25 1.5 2.25 0.25 0.75

n 1 n n n n

1 1 2
y x y x I {D y x x x x   I y x I y x }

(1.25) (2.5) (3.25)


          

and consider the initial approximation  

y0(x)  y(0)  0, then:  

0.75 C 0.75 0.25 1.5 2.25 0.25 2 0.5

1 0 0 0 0

1 1 2
y (x) y (x) I { D y (x) x x x I [y (x)] I y (x)}

(1.25) (2.5) (3.25)
      

  
  

          

0.75C 0.75 0.75 0.25 0.75 1.5 0.75 2.25

0

0.75 0.25 2 0.75 0.5

0 0

1 1 2
I D y (x) I x I x I x

(1.25) (2.5) (3.25)

I I [y (x)] I I y (x)

     
         

       

 

            

and upon using the properties of fractional differentiation and integration, we get: 

 
0

(0) 0.25 0.75 1.5 0.75

1 0

x

2.25 0.75 1.25

0 0

0

x 1 (0.25 1) 1 (1.5 1)
y x y (0 ) x x

0! (1.25) (0.25 1 0.75) (2.5) (1.5 1 0.75)

2 (2.25 1)
x y (0)dt I y (0)

(3.25) (2.25 1 0.75)

  



   
  

       

 
  
    

  

                 

          

x

2.25 3 1.25

0 0

0

1 1
x x x u (0)dt I u (0)

(3.25) 3
    

    

  2.25 3

1

1 1
y (x) x x x

(3.25) 3
  


 

Similarly:  

    3.5 4.25 5 5.5 6.25 7

2

1 2 1
y x x x 0.242x x 0.028x 0.042x x

(4.5) 15 63
      


 

and so on. 

Therefore, using the mathematical induction, one may conclude that the approximate solution 

converges to the exact solution y(x)  x as n  . 
      The comparisons between the exact and approximate results are given in table (2). 

 

Table 2- The absolute error between the exact and approximate solutions of example (2). 

X |y(x)  y1(x)| |y(x)  y2(x)| |y(x)  y3(x)| |y(x)  y4(x)| |y(x)  y5(x)| 

0 0 0 0 0 0 

0.1 2.539210
3

 4.20110
5

 4.4610
7

 2.38510
8

 2.78110
8

 

0.2 1.3159810
2

 6.03210
4

 1.89110
5

 3.17910
7

 1.24910
7

 

0.3 3.5128210
2

 2.982710
3

 1.77110
4

 7.78510
6

 1.31410
7

 

0.4 7.1247210
2

 9.427910
3

 8.9610
4

 6.32510
5

 3.32110
6

 

0.5 0.1241315 2.3189610
2

 3.154610
3

 3.26410
4

 2.67510
5

 

0.6 0.1962873 4.8499810
2

 8.922810
3

 1.25910
3

 1.41810
4

 

0.7 0.2901488 9.0464210
2

 2.1490410
2

 3.95810
3

 5.8410
4

 

0.8 0.4080985 0.1548582 4.5832210
2

 1.0658810
2

 1.994810
3

 

0.9 0.5524796 0.2478203 8.8752110
2

 2.538110
2

 5.877910
3

 

1 0.7256045 0.3754321 0.1587195 5.4579310
2

 1.5336310
2
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7. Conclusions: 

1. The VIM, as it is known, is a very accurate method, which gives the exact solution in a few steps, 

but in some cases it requires more calculations which will add some difficulties to the problem under 

consideration. 
2. The VIM derived for fractional integro-differential equations which was derived in section four 

may be considered as the generalization to the VIM obtained by other researchers for solving other 

type of equations, with certain values of α, β, and .  
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