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Abstract:

In this paper, we present an approximate method for solving integro-differential
equations of multi-fractional order by using the variational iteration method.

First, we derive the variational iteration formula related to the considered
problem, then prove its convergence to the exact solution. Also we give some
illustrative examples of linear and nonlinear equations.
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1. Introduction:

The fractional integro-differential equations is a special kind of equations collecting integral
equations and fractional calculus and in recent years, there has been a growing interest in the integro-
differential equations, since many mathematical formulations of physical phenomena, such as
nonlinear functional analysis and their applications in the Theory of Engineering, Mechanics, Physics,
Chemical Kinetics, Astronomy, Biology, Economics, Potential Theory and Electrostatistics contain
integro-differential equations, [1-3].

The variational iteration method (VIM) was proposed originally by Ji-Huan He [4]. An elementary
introduction to the variational iteration method and some new developments, as well as, to new
interpretations, can be found in [5,6]. This method has been advantageously employed for solving
various kinds of nonlinear problems. It has been successfully applied to parabolic partial differential
equations [7], to nonlinear systems of second-order boundary value problems [8], to multi-pantograph
delay equations [9], to heat-like and wave-like equations with variable coefficients [10], to neutral
functional-differential equation with proportional delaysand to other problems [11], recently, Wade&
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in 2012 used variational iteration method for solving fractional order integro-differential equations
[12].
In this paper, we present an approximate method for solving integro-differential equations of

fractional order of the form:

“D" y(x) = f(x) + 1" ka[y()] + 1" Ko[y(X)] 1)
where k; , k; are given continuous functions, 0 < o <1, B,y >0, x € [a, b], y(a) = AcR and “D*
refers to the Caputo fractional derivative of order o, while I and I” refers to the fractional integrals of
order B and y respectively.

The fractional integro-differential equation could be considered as an important type of integro-
differential equations, where the differentiation and the integration appears in the equation is of non-
integer order.

2. Basic Concepts:

In this section, some basic fundamental concepts and definitions concerning with fractional
calculus and calculus of variation will be introduced for completeness purpose.
2.1 Fractional derivative:

There are various types of definitions for the fractional order derivatives of order q > 0, the most
commonly used definitions among various definitions of fractional order derivatives of order g>0 are
the Riemann-Liouville and Caputo formula, n this paper we used Caputo fractional derivative, which
is defined to be [13]:

T(x -8)™ ! u™ (s)ds )

0
where m-1<a<m, me N, x>0andT refers to the gamma function.
2.2 Fractional Integral:

As in fractional derivatives, there are many literatures introduces different definitions of
fractional integration, in this paper we used the definition of Riemann-Liouville fractional integral,
which is defined for the right hand side integral by [14]:

DL =

1 X
Iu(x) = —— | (x-s)*'u(s)ds, o >0,a R 3.a
S0 = S [ex9) uds > 0.a ¢ (32)
and the left hand side fractional integral:
1D 1
1ux) = —— [ (s-x)* "u(s)ds, a >0, b eR* (3.b)
X'b F(a)x

3. Variational Iteration Method, [4]:
To illustrate the basic idea of the VIM, we consider the following general non-linear equation
given in operator form:

L(u(x)) + N(u(x)) = g(x), X € [a, b] (4)
where L is a linear operator, N is a nonlinear operator and g(x) is any given function which is called
the non-homogeneous term.

Now, rewrite eq.(4) in the form:

L(u(x)) + N(u(x)) —g(x) =0 ()
and let u, be the n™ approximate solution of eq. (5), then it follows that:
L(un(x)) + N(un(X)) — g(x) # 0 (6)
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and therefore the correction functional for (4), is given by:
Up, (X) =U, (X) + f Ms){L(u, (s) + N(U, (s)) — g(s)}ds (7)

where A is the general Lagrange multiplier which can be identified optimally via the variational
theory, the subscript n denotes the n™ approximation of the solution u and @ is considered as a

restricted variation, i.e., 80, =0, [1].

To solve eq. (7) by the VIM, we must first evaluate the Lagrange multiplier A that will be
identified optimally via integration by parts. Then the successive approximation u,(x), n=0, 1, ...; of
the solution u(x) will be readily obtained upon using the obtained Lagrange multiplier and by using
any selective function uo(x). The zero™ approximation u, may be selected by any function that just
satisfies at least the initial and boundary conditions with A determined, then several approximations
un(x), n=0, 1, ...; follows immediately, and consequently the exact solution may be arrived since:

u(x)=limu, (x) (8)

4. Variational Iteration Method for Solving Multi-Fractional Order Integro-Differential

Equations:
Consider the fractional integro-differential equation (1), which may be rewritten as:
DY(x) - f(x) - IPka(Y(X)) - "kx(y(x)) =0 9)
Multiply eq.(9) by a general Lagrange multiplier A, yields to:
)LDy ()-F(X)-1Pka(y(x))-1"ka(y(x))}=0 (10)
Now, take 1* to the both sides of eq.(10), which give:
I“IA(s) ‘DY (X) - F(X) - IPka(y(X)) -Ikx(y(x))}] = O (11)
Then, the correction functional for eq.(1) will be read as follows:
yn+l(x) = yn(x) + Ia}"(s){cDayn(X) - f(X) - IBkl(yn(X)) _kaZ(yn(X) } (12)

In this case the value of A may not be evaluated easily from eq.(12), which will give a functional with
fractional integrals. Therefore, the approximation of the correctional functional can be expressed as
follows:

dmyn ()

Yo (X) =Y, (X) + f OM —£(8)- Tk, (§,(5) ~ 'k, (7, (5))}ds (13)

Thus, by taking the first variation with respect to the independent variable y, and noticing that 8y,(0) =
0, yields to:

d” yn )

81 (%) =8y, (x) + j M=~ F(5) - j (s— )"k, (¥, ®) dt— (1y) [ (="K, (7, (1) dt}ds

r');
.. (14)

where ¥, is considered as a restricted variation, which means that 5y, =0, and consequently eq.(14)

with m = 1 will be reduced to:
8ynni(X) = 8Yn(X) + 3 [A(s)y; (5)ds (15)
0

Hence, using the method of integration by parts on eq.(15) will give the following formula:
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BYra(X) = 8ya(x) + 1(5) Sn(s) | _, — [2'(9)3y, (s)ds
and then:
8Yn+1(X) = (1 + A(8))8Yn(X) — P»’(S)?Byn (s)ds =0

As a result, the following stationary conditions are obtained:
A(s) =0, 1+ A(s) |S =0

and solving the last ODE will give the general Lagrange multiplier can be defined in the following
form:
A(s)=-1
Hence, substituting A(S) = —1 into the correction functional (12), will give the following variational
iteration formula:
Ynea(X) = Ya(X) = 1{D°yn(X) = F(X) = I°k(yn(X)) = I"ka(yn(X)} (16)
5. Convergence Anaysis:

In this section, we study the convergence of the variational iteration method, according to the
alternative approach of VIM presented in the previous section. The main results are proposed in the
following theorem:

Theorem (1)

Let ye (CY[0, T1, || . |l) be the exact solution of the integro-differential equation of fractional order
(1) and y,e C?[0, T] be the obtained solution of the sequence defined by eq.(16). If
En(X) = yn(X) — y(X) and let
K(y()= T(o +7) (x=5)" ka(Y(s)) +T'(cx + B) (x=5)" ka(¥(s))
satisfies Lipschitz condition with constant L, such that L < T'(a. + B)I'(a + ), then the sequence of
approximate solutions {y,}, n=0, 1, ...; converges to the exact solution y.

Proof:
Consider the integro-differential equation of fractional order:
DY(x) = f(x) + 1Pka(y(X)) + Ika(y(x)),u(0) = Uo
where the approximate solution using the VIM is given by:
Yt (X) = Ya(X) = 1{°DYa(X) — F(X) — 1Pk(¥a(x)) — kaly(x))} (17)

Since y is the exact solution of the integro-differential equation of fractional order, hence:
y(¥) = y(x) - I"{°Dy(x) - f(x) - IPka(y(x))- I"ka(y(x))} (18)

Hence, subtracting eq.(18) from eq.(17) yields to:
Ena(X) = En(X) = I{"D*En(X) — f(X) + f(x) — I"[ka(yn(X)) — ka(Y())] — I'[ka(yn(X)) —Ka(y(x)]}
= Eq(X) — I"{"D"Eq(X) — IP[ka(Yn(X)) — Ka(y(x))] — I"[Ka(yn(x)) — kaoly()I}
Using the properties of fractional calculus since,
1 D*En(X) — En(X)—Co En(0)
where Cy is a constant and
En(0) = u,(0) — u(0) , hence
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Env1(X)=Eq(X)— Eq(X) — Co En(0) + I“I’[Ka(yn(X)) — ki(y ()] + I"I"[Kx(¥n(X)) — Ka(y(X)]
with y,(0) = y(0), then E,(0) = 0. Therefore:
Ena(X) = 1“I°[Ka(¥a(¥)) — Ka(yOO)] + 1T [Kx(n(X)) — ka(y(X)]
= 1"P[Ka(yn(X)) — Ka(Y())] + 1" TKo(Yn(X)) — ka(y(X)]
= 1" [ka(yn(x)) — ka(yG)] + 1% [ka(yn(X)) — ka(y(X)]

where oy = a + B and 0, = o + 7, then

1 ()= l)j<x 90 6 KON + 10 [ 069" k3,00 -k (YIS
mf(x $)* I (a1,) (X =) K, (¥, (5)) = T'(a, ) (X =) k, (y(S))
+ (0 )(X=8)" K, (Y, (5))— (0, ) (X —5) 'K, (Y(S)) }ds
_ a-1 B k%
—F(al)r( 3 I (X=8)""[{T (o) (X =) Ky (¥, (5)) + T (e )(X —8)" K, (Y, (8)}
—{I () (x —5)" ky (Y(5)) + T () (x —5)" K, (y(5)) }Ids
Then
1 T a-1
20 = T j (x=8)"* [K(y, () —k(y(s))]ds
Now, taking the maximum norm of the two sides of E,.;, will give
1 T ot
Epa ()], = ety 59" TR, O) - Ky(e) ds w
mjll S|l 11 k(y,(8)) —k(y(s)) Il.. ds
1 [ a—1
<mfs[o X[X=s["* L1y, (9) -yl ds
1 oot
=m£x LIE,©)L. ds
. L a—lx _
Hence: E”+1(X)”w£mx .([ll E.(s)]l, ds, Vvn=0,1,..

Now, if n =0, then:

En-;.l(x)”OO r(al)r( 2) Xot 1‘([ ” EO (S) ”OO ds
F(ocl)rmz) Teoray | masIEs)ds

L

oy REO] &

<———x“max | E,(s)|
I (a,)  selox

Also, for n=1, we have:
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\Emmx)n;r(am sl
= (o) () r(al)r(az) . '!.. |:F((11)F(0L2) SE[O x] 515 |:|
ax | E,(5)| j s*ds

|Eo ()]

a+1 ser]

(r(al)r((xz)j s€ [0 x]

(F(%)r(az)

Similarly, for n =2, then:

Ena (X)) x**[IIE, @), ds
0

_ L
IYCHINCH

T ; XHI [( = j S max |Ey(9) I}
(al)r(az) 0 F(ocl)l"(ocz) a+1 s 0 x]

L 3
| Fere) SE[OXJE@II[ o
= r; X max [Ey(8)] ——
(o)l (ax,) st63) (o +1)(20 +1)
<= X max|E,(9)|
F(ocl)l“(az) (G +1)(20L +]_) sel O x]

\ E

L n Xna
(¥ s[r J ax | Eo9)|
(o) (o) ) (a+1)(2a+1)---((n— Da+Dsmﬂ
and since L < [I"(a. + B) I'(cr + 7)], S0 @s ——>o0, we have |[E,(X)|l.—> 0, i.e., ya»——>y. &

6. lllustrative Examples:
In this section, we shall present two integro-differential equations of fractional order, linear and

nonlinear, which will be solved using the above method of solution.

Example (1):
Consider the following linear integro-differential equations of fractional order:
DO.Sy(X) — 6 X2.5 6 X3.5 6 |05y(X) + |0.75y(X) (19)

(35 TI(45) _r(4.75)

where u(0) =0, xe[0,1].
Then by eg. (16), we have the following variational iteration formula related to eg. (30):
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6 6 6
X) = X _|0.5 D0.5 X)— X2.5+ X3.5+

and consider the initial approximation

Yo(X) = y(0) = 0, then:

yl(X) =Yo (X) - IO'S{C DO'Syo (X) -

375 _ |0.5k(yn (X))— 173K, (y, (X)}

6 x5+ 6 x5+ 6
r@s  I@5 (475

=—|O'5CDO‘5y0(X)+|O'5[ 6 Xz.sj_los( 6 Xas]_los( 6 X3A75)
I'(3.5) I'(4.5) '(4.75)

+ |0.5|0.5y0 (X) + |0.5|0.75y0 (X)
and upon using the properties of fractional differentiation and integration, we get:
X 6 r(2.5+1 6 '(3.75+1
Y, (x) =y (0) %+ 25+ 875+])
0! T35 TI(25+1+0.5) I'(4.5) 1 (3.5+1+0.5)
6 I'(3.75+1)
I'(4.75) I'(3.75+1+0.5)

3.75
X

— 1%y (x) = 1°®y(x)}

25+05 _ 3.5+0.5

X3.75+0.5 +J.y0 (O)dt + |1.25y0 (0)
0

6 , 6 , 6
= x® — x* —
r4)" TG 1525

3 1 4 6 4.25

X% 4 j y,(0)dt + Iy, (0)
0

X)=Xx"——X"— X
V(%) =X =X~ o)
Similarly:
Y, (X) —x3 _ixs _ 12 x5 _ 6 x5
200 T(6.25) I'(6.5)

y (X) —x3 _ixe _ 18 X625 _ 18 X685 _ 6 X675

3 120 T1(7.25) I'(7.5) '(7.75)
y (X) =3 —iX7 _ 24 X725 _ 36 x5 _ 24 X775 _ 6 X8

! 840"  I'(8.25) I'(8.5) '(8.75) r'(9)
and so on.

Therefore, using the mathematical induction, one may conclude that the approximate solution

converges to the exact solution y(x) = x> as n — .
The comparisons between the exact and approximate results are given in table (1).

Table 1- The absolute error between the exact and approximate solutions of example (1).

X ly(x) — y1(X)| ly(x) — ya(X)| ly(x) — ya(X)| ly(x) — ya(X)| ly(X) — ys(X)|
0 0 0 0 0 0

0.1 3.46x10™° 9.31x10~" 2.084x10°® 3.81x107° 1.49x10°°
0.2 5.82x107 3.29x10°° 1.513x10°° 3.022x10°® 2.808x10°®
0.3 3.05x10°° 2.66x107* 1.89x107° 9.714x10°”" 1.147x10™"
0.4 9.87x10°° 1.18x107 1.138x10™* 9.046x10°° 3.788x10°”"
0.5 2.46x1072 3.73x10°° 4.594x107* 4.733x10° 4.00x10°°
0.6 5.18x1072 9.59x10°° 1.439x10°° 1.81x107 1.95x10°°
0.7 9.74x1072 2.13x107° 3.78x10°° 5.628x107* 7.183x10™
0.8 0.168 4.26x107 8.737x10°° 1.503x107° 2.221x10™
0.9 0.27 7.9x1072 1.8x1072 3.58x10°° 6.013x10™*
1 0.42 0.136 3.03x1072 7.78x10°° 1.476x107°
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Example (2):
Consider the following nonlinear integro-differential equations of fractional order:
1 1 2
¢y (x) = X0 _ N %22 L 1°BTv ()T + 1°5v(x 20
ye) r@.25) I'(2.5) I'(3.25) Ly()] y(x) (20)

where u(0) =0, x<[0,1].
Then by eg. (16), we have the following variational iteration formula related to eq. (31):

1 1 2 2
x) = x)— [°75£DO7® x)— %025 x15 %225 _|025 X —1°7 X
Yo (X) =Y, (X) {0, (x) ['(1.25) +r(2.5) +r(3.25) [y”( )] Yo (<
and consider the initial approximation
Yo(X) = y(0) = 0, then:
1 1 2
X) = X _IO.75 D0.75 X) — X0.25 Xl.5 X2.25_|0.25 X 2_|0.5 X
Y1 (X) = Yo (X) = 1°*{ D"y, (x) .25 +r(2.5) +r(3.25) [yo(¥)] Yo(X)}

— _|0.75CD0.75y0 (X) + |0.75 1 X 025 I 0.75) 1 X 15| I 0.7 2 X 2.25
'(1.25) I(2.5) '(3.25)

+ IO.75| 0.25[yO (X)] 2 + I O.75I O.Eyo (X)
and upon using the properties of fractional differentiation and integration, we get:

X0 1 0.25+1 . 1 r@as5+1 ‘0
yl(x) — yE)O) (0 )_+ ( ) 0.25+0.75 __ ( ) ¥ 15+0.75
0! T(1.25) I'(0.25+1+0.75) '(2.5) I'(1.5+1+0.75)
2 I'(2.25+1)

— X2.25+0.75+ O dt " |1.25 0
I'(3.25) I'(2.25+1+0.75) !yo( ) ¥o(0)

1 2.25 1 3 f 1.25
X———— X" ==X+ |u,(0)dt + I"*u, (0
I'(3.25) 3 ! () ()

1
X225

'(3.25)

3

1
yi(X) =x- —3%
Similarly:

yz(X):X_

L o5 _0.2a2x4 AN 0.028X° + 0.042)% 4= 7
I'(4.5) 15 63
and so on.
Therefore, using the mathematical induction, one may conclude that the approximate solution
converges to the exact solution y(x) = x as n —» oo.
The comparisons between the exact and approximate results are given in table (2).

Table 2- The absolute error between the exact and approximate solutions of example (2).

X ly(x) = ys(X)| ly(X) = Ya(X)| ly(X) = ys(X)| ly(X) = Ya(X)| ly(X) = Ys(X)|
0 0 0 0 0 0

0.1 2.5392x10°° 4.201x107° 4.46x107" 2.385%x10°® 2.781x10°®
0.2 1.31598x10% | 6.032x10™* 1.891x107° 3.179x10”7 1.249x10™"
0.3 3.51282x1072 | 2.9827x10°° 1.771x10™* 7.785x10°° 1.314x10™"
0.4 7.12472x107% | 9.4279x10°° 8.96x10™* 6.325x107° 3.321x10°®
0.5 0.1241315 2.31896x1072 | 3.1546x10°° 3.264x107* 2.675x10™°
0.6 0.1962873 4.84998x107% | 8.9228x10 1.259x10°° 1.418x107*
0.7 0.2901488 0.04642x1072 | 2.14904x107% | 3.958x10°° 5.84x107*
0.8 0.4080985 0.1548582 4.58322x107° 1.06588x1072 1.9948x107°
0.9 0.5524796 0.2478203 8.87521x10% | 2.5381x10 2 5.8779x10
1 0.7256045 0.3754321 0.1587195 5.45793x107° | 1.53363x107
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7. Conclusions:

1. The VIM, as it is known, is a very accurate method, which gives the exact solution in a few steps,
but in some cases it requires more calculations which will add some difficulties to the problem under
consideration.

2. The VIM derived for fractional integro-differential equations which was derived in section four
may be considered as the generalization to the VIM obtained by other researchers for solving other
type of equations, with certain values of a, 3, and .
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