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Abstract

Let M be an R-module. In this paper we introduce the concept of quasi-fully
cancellation modules as a generalization of fully cancellation modules. We give the
basic properties, several characterizations about this concept. Also, the direct sum
and the localization of quasi-fully cancellation modules are studied.
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Introduction

Let M be an R-module, where R is a commutative ring with unity. Gilmer in [1] introduce the
concept of cancellation ideal, also D.D. Anderson and D.F. Anderson in [2] studied cancellation
ideals, where an ideal | of a ring R is said to be cancellation if for each ideals J,K of R ,1J = IK implies
J =K. In[3], A.S. Mijbass give generalizations of this concept namely cancellation modules (weakly
cancellation module , where an R-module M is called cancellation (weakly cancellation) if whenever |
and J are ideals of R, IM = JM implies | = J (I+anngkM = J+ anngM).

In[ 4] ,the concept of naturally cancellation modules and fully cancellation module were
given,where an R-module M is called naturally cancellation if whenever ,N<M, W<M,K<M, N.W =
N.K =W = K, where N.K is define by (N:M)(K:M)M. And M is called fully cancellation if for each
ideal | of R and for each submodules N,W of M, IN = IW implies N = W.

In this paper we introduce the concept of quasi-fully cancellation modules, where an R-module M
is called quasi-fully cancellation module if for each ideal | of R and for each submodules N, W of M
such that IN = IW implies N+ annyl = W+ annyl.

In $2 of this paper we give the basic properties of these classes of modules, such as every module
over a principle ideal ring is a quasi-fully cancellation (See Th.2.5).

In $3, we give many characterizations for quasi-fully cancellation modules.
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$4 is devoted to study the direct sum of quasi-fully cancellation modules. Also we study the
behavior of quasi-fully cancellation modules under localization.
Quasi-fully cancellation

In this section, we will introduce a new concept namely quasi-fully cancellation modules .We give
some basic results and properties of this concept. Also, relationships between this class and other types
of modules are established.
Definition 2.1: Let M be an R-module, M is called quasi-fully cancellation module if to every ideal |
of R and for every two submodules A,B of M such that IA = IB implies A+ annyl = B+ annyl (where
annyl={meM,>Im=0}).

Recall that an R-module M is called fully cancellation if for every non zero ideal | of R and for
every submodules N and W of M such that IN = IW then N = W [ 4,Def. 2.1].
Remarks and Examples 2.2
(1) Every fully cancellation module is quasi-fully cancellation module

Proof: It is clear.
(2) Z as Z-module is quasi-fully cancellation module
Proof:

By [4] Z as Z-module is fully cancellation and by (1) Z is quasi-fully cancellation. [
(3) Z4 as Z-module is quasi-fully cancellation.
Proof:

Take I=<4> and A=< 2 > B= Z, ,then IA = IB implies <4><2 >=<4> 7 4=<(_) >, Now A+ annyl =

<2 >+annz4 <U4>=<2>+7Z,=Z,,als0 B+annyl =Z,+ annz4 <4>=Z 4+ Z4-Z,. Similarly all

other cases.However Z , as Z-module is not fully cancellation [4] since <4> <2 >=<4>Z,but<2 >
£74. [
(4) Every submodule of quasi-fully cancellation is quasi-fully cancellation.
Proof:
Let H, K are two submodules of N and | be an ideal of R such that IH = IK. Then H, K are submodules
of M .Since M is quasi-fully cancellation,
H + annyl =K + annyl
But annyl = annylUN hence
H + annyl =H + (annyIUN)
= (H + annyl)UN by modular law
= (K +annyl)UN
= K +( annylUN) by modular law
= K +annyl. [J
(5) Let My, M, are two modules. If My ~ M, ,then M, is quasi-fully cancellation module if and only if
M, is quasi-fully cancellation module .
Proof:
(=) Let f: M; — M, be an isomorphism and suppose that IN = IW, where | is an ideal of R and N, W
are two submodules of M, .
Now, since f is onto then there exists two submodules K; , K, of My such that f(K; ) = N and f(K,) =
W, so If(Ky ) = If(Ky), but if f a homorphism then f(IK; ) =f(1Ky),also since f is one to one then IK; =

IK,. But My is quasi-fully cancellation module, hence K;+ ann |V|1| = Ky+ ann |V|1|' Now f(K+
anny, 1)=f(Ky+ ann M, 1) and then f(K;)+f(ann Mll )=f(Ky)+f(ann M, I). One can easily show that
f(annyy 1) =anny, I, hence N+anny, I=W+anny, 1.

(<) Clear .[7

An R-module M is called naturally cancellation if whenever N, W, and W, are submodules of M
such that N.W; = N, W, then W; = W,, where N.W = (N:M)(W:M)M for every submodule W of
M.[4].
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Also, an R-module M is called multiplication if for each N<M, there exists an ideal I of R such that
N = IM. Equivalently, M is a multiplication R-module if for each submodule N of M, N = (N:r M)M,
where (N: gM)= {reR: rM cN}[5,6].

Now, we need the following theorem to prove the next proposition.

Theorem 2.3

If M is a multiplication R-module. Then M is naturally cancellation module if and only if M is fully
cancellation module.
Proposition 2.4

Let M is a multiplication and naturally cancellation module then M is quasi-fully cancellation
module.
Proof:

Since M is multiplication and naturally cancellation module, so by (Rem. and Ex. (2.2) (1)) M is
fully cancellation and by (Rem. and Ex.(2.2) (1)) M is quasi-fully cancellation.[’

An R-module M is called torsion free if T(M) = 0 where T(M)={xeM: nx = 0,for some neN},[6].
We proved in (Rem. and Ex. (1)) that every fully cancellation module is quasi-fully cancellation
module, now in the following proposition, the converse of this statement is true under the class of
torsion free modules.

Proposition 2.5

Let M be a torsion free module over integral domain R. If M is quasi-fully cancellation module
then M is fully cancellation.
Proof:

Suppose IN = IW, where N, W are two submodules of M and 0l is an ideal of R. But M is quasi-
fully cancellation thus N + annyl = W + annyl. Now, let xe annyl, then Ix = Oand hence rx = 0 for
every rel. But I#0, hence x =0, since M is torsion free, thus annyl = 0.therefore N = W and hence M
is fully cancellation.’

Now, we have the following theorem.

Theorem 2.6

Every module on a principle ideal ring is quasi-fully cancellation module.
Proof:

Let M be a module on a P.I.LR. R and let N,W are two submodules of M. Now, suppose that IN =
IW, where IcR, since R is PIR, thus | = <a>, where aeR. Hence <a>N = <a>W, then an = aw, where
neN and weW. Therefore an-aw = 0,then a(n-w) = 0. Thus n-w € annyl. Now,n = w+n-weW+
annyl. Then NcW+ annyl. Hence N+ annylc W+ annyl. Similarly W + annylcN + annyl . Thus N
+ annyl = W + annyl, and hence M is quasi-fully cancellation module. [

By this theorem we have every Z-module is quasi-fully cancellation. In particular the Z-module Zp.,
is quasi-fully cancellation. However Zp., as Z-module is not fully cancellation [4].

Mijbass [3] proved that if M is an R-module and R= then M is a cancellation R -module if

annM
and only if M is weak-cancellation R-module.
Now, we have the following theorem.

Theorem 2.7
M is quasi-fully cancellation R-module if and only if M is quasi—fullyﬁz M -module.
ann
Proof:
=)
o o /
Let | be an ideal of R= .and N,W are two R -submodules. Then | = for some

annM annM
I/ CJannM and N,W are R-submodules.
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Now, suppose IN = IW and we have for any xe \/ X + annMel, then (x + annM) = xne |/ n,for

K _

every neN. But (x + annM)NeIN = IW, where x + annM el, thus xneIW, then xn= Zaiwi , Where
i=1

ajel, wi eW. But for every i, I<i< k , aj=a + annM and hence xn =

K Kk
> (aj +annM)w; =D a;w; e I’ W. Therefore I'N < I/ w. Similarly 1'wel/N, thus I' N
i=1 i=1

I W and since M is quasi-fully cancellation, then N + anny, 1 =w + anny, 1

We claim that anny = annyl, let me anny |/ , then I"'m =0. But(I/ +annM)m = 1'm= 0, thus
/

me annyl and then anny I/g annul . Now , let me annyl, then Im = 0. Since | = , then for

annM
every ye |/ , Yy +annMel, so (y + annM)m = 0. Therefore xy = 0 and hence me anny 1. Thus annulc

anny I/ and then annyl= anny I/ . So that N + annyl = W + annyl.
(<) The proof is similarly. [
Characterizations for quasi-fully cancellation modules
In this section we will give two characterizations for quasi-fully cancellation modules.
Compare the following theorem with (4,Th.2.6)
Theorem 3.1
Let M be an R-module. Let A, B and C are submodules of M, and | be an ideal of R. Then the
following statements are equivalent:-

1- M is a quasi-fully cancellation module.
2- If IAcIB, then Ac B + annyl.

3- 1(2)cIC, then aeC + annyl ,where acM.
4- (1A:mD) = A + annyl.

Proof:

D=(2)

Let M be a quasi-fully cancellation module and suppose that IAcIB .Then IB = IA + IB = I(A+B).
But M is quasi-fully cancellation, thus B + annyl = (A+B)+ annyl. Therefore AcB + annyl.

(2)=>@Q)

Let I1(a)cIC , by (2) we have (a)c C + annyl. Thus acC + annyl.

(3)=>14)

We want to prove that (IA:ul) = A + annyl. Let xe(1A:ul), hence IXxclA and hence by (3) xe = A+
annyl. Therefore (1IA:ul) < A + annyl .Now, let ye A + annyl, then y = a + t, where acA and te
annyl, i.e It = 0 and hence ly = la + It. Thus ly = la €lA, then ye (1A:ul) . Therefore A + annylc
(1A:ml) , and hence (1A:ml) = A + annyl.

@)=(1)

Suppose 1A =IB, then Bc(IA:ul). By (4), (1A:ml) = A + annyl. Hence Bc A + annyl, therefore B
+ annyl <A + annyl. Similarly Ac(IB:ul). By(4) (IB:uyl) = B + annyl , hence Ac B + annyl. Then A
+ annyl = B + annyl, thus M is quasi-fully cancellation module. [

The following theorem is another characterization for quasi-fully cancellation module.
Theorem 3.2

Let M be an R-module. Then M is quasi-fully cancellation if and only if (N + annyl):rW) =

(IN:rIW), where | is an ideal of R and N,W are two submodules of M.

Proof:

(=) Let xe ((N + annyl):rW) ,then XWcN + annyl and hence xwe N + annyl, for any weW, thus
XIWcIN, then xe (IN:gIW). Therefore ((N + annyl):rW) < (IN:gIW).

Now, let te (IN:zIW), then tIWcIN and by Th.3.1 we get tWcN + annyl and hence te ((N +
annul):rW) . Thus ((N + annyl):rW) = (IN:grIW).
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(<) Now, suppose IWCIN, where | is an ideal of R and N,W are two submodules of M. Then
(IN:rIW)=R. But by assumption ((N + annyl):rW) = (IN:rIW) and hence ((N + annul):rW) = R. It
follows that W< N + annyl and then M is quasi-fully cancellation module. [

Direct sum and the localization of quasi-fully cancellation modules

In this section we study the direct sum of quasi-fully cancellation modules; also we study the
localization of quasi-fully cancellation modules.
Lemma 4.1

Let M =M; @ M, be an R-module, My, M, are two submodules of M. If ICR then

annyl=ann Mll @ann le

Proof:

Let me annyl. Hence meM and Im =0. But meM implies m = m;+ m, , for some m; € My, m, €
M, . Hence Im = I(m;+ my) = Im;+ Im; =0. It follows that Im;= Im, =0 (since + on M is a direct sum).
Thus m; € ann Mll andm, e annlv|2 I and then m = m;+ my, € ann Ml|®annM2 l.

Conversely, let m € ann Mll @ann MZI , then m = my+ m, where m; € ann Ml" m eannM2| .

So that Im;=0 and Im, =0, thus Imy+ Im,= I(my+ my) = Im =0; that is me annyl. Therefore
ananl@ananlganan. \

Now, we have the following theorem
Theorem 4.2

Let M =M; @ M; be an R-module, My, M, are two submodules of M and every submodule of M is
fully invariant. Then M; and M, are quasi-fully cancellation if and only if M is quasi-fully
cancellation.
Proof:
(=) Let A, B are two submodules of M and suppose IA = IB, where | is an ideal of R. Then A = (Au
M;) @ (AU M,) and B =(Bu M;) @ (Bu My)[1,Prop 4.5]. Thus A=A; @ A,and B =B; @ B,,
where A; =AU M; and B; =Bu M;, Vi, | =1,2. Then I(A; @ A,) = I(B; @ B,), hence I1A; @ IA,; =
IB; @ IB, . Therefore IA; = IB; and |A; = IB, . But M; and M; are quasi-fully cancellation, thus A; +
ananl = B; +annM1I and A, + ann M, I= B, +ann M, I. It follows that A; + A, +

ann Mll +ann M2 =B, + B, +ann Mll +ann M2 I, then we have A+ annyl= B+ annyl. Therefore

M is quasi-fully cancellation.
(<) It follows directly by (Rem.& Ex.(2.2)(3)). []
Theorem 4.3
Let M =M; @ M, be an R-module, My, M, are two submodules of M and every submodule of M
such that ann(Mj)+ann(M,) = R. Then M is quasi-fully cancellation if and only if, M, M, are quasi-
fully cancellation.
Proof:
(=) Let A and B are two submodules of M and | an ideal of R. Since ann(M;)+ ann(M_)=R, then by
[1,Prop 4.2], N=N; @ Nyand W=W; @ W, , and then by the similar procedure as in the Th.4.2 the
required result can be obtained.
(<) Clear by Rem.&EXx. 2.2(4)). [
Next we shall study the behavior of quasi-fully cancellation modules under localization.
First compare the following result with [4,Prop 4.4]
Theorem 4.4
Let M be a module over a Noetherian ring . If Mp is quasi-fully cancellation (for every maximal
ideal P of R)Rp-module, then M is quasi-fully cancellation R-module.
Proof:
Let I be an ideal of R and let N and W be submodules of M such that IN = IW. Hence (IN)p = (IW)p
.Then by [7 Exc9.11(i),P172] Ip .Np = Ip .Wp and since Mp is a quasi-fully cancellation Re-module Np
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+anny Ip =W, +ann M, Ip. But I is a finitely generated ideal, since R is Noetherian, so by [7,Exc
9.13] annpp, Ip= (annl)p. It follows that Ne +(annpl)p = We +(anny,l)p and then by [7,

Exc9.11 (iii)] (Ne +annpl)p = (We +annpl)p. Thus by [4, Lemma 4.1] N +annp | =W
+anny, 1, and so M is quasi-fully cancellation module. [

Theorem 4.5

Let M be a module over a Noetherian ring R. If M is quasi-fully cancellation Re-module, for each
maximal ideal P of R, provided that for each submodule L of Mp , L = Kp for some KcM.
Proof:

Let J be an ideal of Rp .Then there exists an ideal | of R such that J = Ip. Let L, L/ be two

submodules of Mp such that JL =J L/ ,By hypothesis , L = Np , L= W5 for some N<M,W<M. Thus
Io.Np = 1p.Wp. Hence (IN)s = (IW), (See[7 Exc.9.11]) and then [4,Lemma 4.1],IN = IW. But M is

quasi-fully cancellation, so N +anny,l =W +annpl. Hence (N +annp 1)p = (W +anny1)p . By
[7,Exc.9.11] Np + (annpql)p = We +(annpl)p . But | is a finitely generated ideal, so (annp1)p =

— : ; iy
(annpq1)p (by [7,Exc.9.13]). Thus Np +annpy Ip =We +anny lp; that is L +anny J=L +
annpy., J. Thus M is a quasi-fully cancellation Re-module. [
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