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Abstract 

     Let M be an R-module. In this paper we introduce the concept of quasi-fully 
cancellation modules as a generalization of fully cancellation modules. We give the 

basic properties, several characterizations about this concept. Also, the direct sum 

and the localization of quasi-fully cancellation modules are studied. 
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الخلاصة  

. في هذا البحث قدمنا المقاسات شبه الحذف التامة كتعميم لمقاسات الحذف التامة.Rمقاسا عمى Mليكن       
كذلك الجمع المباشر والتموضع لمقاسات .ساسية والعديد من التشخيصات لهذا المفهوم لقد اعطينا الخواص الا

. شبه الحذف التامة قد درست
 

Introduction 
    Let M be an R-module, where R is a commutative ring with unity. Gilmer in [1] introduce the 

concept of cancellation ideal, also D.D. Anderson and D.F. Anderson in [2] studied cancellation 

ideals, where an ideal I of a ring R is said to be cancellation if for each ideals J,K of R ,IJ = IK implies 

J = K. In [3], A.S. Mijbass give generalizations of this concept namely cancellation modules (weakly 
cancellation module , where an R-module M is called cancellation (weakly cancellation) if whenever I 

and J are ideals of R , IM = JM implies I = J (I+annRM = J+ annRM). 

    In[ 4] ,the concept of naturally cancellation modules and fully cancellation module were 
given,where an R-module M is called naturally cancellation if whenever ,N≤M, W≤M,K≤M, N.W = 

N.K W = K, where N.K is define by (N:M)(K:M)M. And M is called fully cancellation if for each 
ideal I of R and for each submodules N,W of M, IN = IW implies N = W. 

     In this paper we introduce the concept of quasi-fully cancellation modules, where an R-module M 

is called quasi-fully cancellation module if for each ideal I of R and for each submodules N, W of M 
such that IN = IW implies N+ annMI = W+ annMI. 

    In $2 of this paper we give the basic properties of these classes of modules, such as every module 

over a principle ideal ring is a quasi-fully cancellation (See Th.2.5). 
    In $3, we give many characterizations for quasi-fully cancellation modules. 
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    $4 is devoted to study the direct sum of quasi-fully cancellation modules. Also we study the 

behavior of quasi-fully cancellation modules under localization. 

Quasi-fully cancellation 

    In this section, we will introduce a new concept namely quasi-fully cancellation modules .We give 
some basic results and properties of this concept. Also, relationships between this class and other types 

of modules are established.  

Definition 2.1: Let M be an R-module, M is called quasi-fully cancellation module if to every ideal I 
of R and for every two submodules A,B of M such that IA = IB implies A+ annMI = B+ annMI (where 

annMI={mM,Im=0}). 
     Recall that an R-module M is called fully cancellation if for every non zero ideal I of R and for 

every submodules N and W of M such that IN = IW then N = W [ 4,Def. 2.1]. 

Remarks and Examples 2.2  
(1) Every fully cancellation module is quasi-fully cancellation module 

    Proof: It is clear. 

(2) Z as Z-module is quasi-fully cancellation module 

Proof:  

    By [4] Z as Z-module is fully cancellation and by (1) Z is quasi-fully cancellation.  
 (3) Z4 as Z-module is quasi-fully cancellation. 

Proof:  

Take I=<4> and A=< 2 >,B= Z4 ,then IA = IB implies <4>.< 2 >=<4> Z 4=<0 >. Now A+ annMI = 

< 2 > + ann
4

Z <4> = < 2 > + Z 4 = Z 4 , also ,B+annMI = Z 4 + ann
4

Z <4> = Z 4+ Z 4 = Z 4 . Similarly all 

other cases.However Z 4 as Z-module is not fully cancellation [4] since <4> < 2 >= <4> Z 4 but < 2 > 

≠ Z 4.  
(4) Every submodule of quasi-fully cancellation is quasi-fully cancellation. 

    Proof:  
Let H, K are two submodules of N and I be an ideal of R such that IH = IK. Then H, K are submodules 
of M .Since M is quasi-fully cancellation, 

H + annMI =K + annMI  

But annNI = annMIN hence 

H + annNI =H + (annMIN) 

                 = (H + annMI)N by modular law 

                 = (K + annMI)N  

                 = K +( annMIN) by modular law 

                 = K +annNI.  

(5) Let M1, M2 are two modules. If M1  M2 ,then M1 is quasi-fully cancellation module if and only if 
M2 is quasi-fully cancellation module . 

Proof: 

() Let f: M1  M2 be an isomorphism and suppose that IN = IW, where I is an ideal of R and N, W 
are two submodules of M2 . 

   Now, since f is onto then there exists two submodules K1 , K2 of M1 such that f(K1 ) = N and f(K2) = 

W, so If(K1 ) = If(K2), but if f a homorphism then f(IK1 ) =f(IK2),also since f is one to one then IK1 = 

IK2. But M1 is quasi-fully cancellation module, hence K1+ Iann
1M = K2+ Iann

1M . Now f(K1+ 

Iann
1M )=f(K2+ Iann

1M ) and then f(K1)+f( Iann
1M )=f(K2)+f( Iann

1M ). One can easily show that 

f( Iann
1M ) = Iann

2M , hence N+ Iann
2M =W+ Iann

2M . 

() Clear . 

     An R-module M is called naturally cancellation if whenever N, W1 and W2 are submodules of M 
such that N.W1 = N, W2 then W1 = W2, where N.W = (N:M)(W:M)M for every submodule W of 

M.[4]. 
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    Also, an R-module M is called multiplication if for each N≤M, there exists an ideal I of R such that 

N = IM. Equivalently, M is a multiplication R-module if for each submodule N of M, N = (N:R M)M, 

where (N: RM)= {rR: rM N}[5,6]. 
   Now, we need the following theorem to prove the next proposition. 

Theorem 2.3 
    If M is a multiplication R-module. Then M is naturally cancellation module if and only if M is fully 

cancellation module. 

Proposition 2.4  
    Let M is a multiplication and naturally cancellation module then M is quasi-fully cancellation 

module. 

Proof: 

     Since M is multiplication and naturally cancellation module, so by (Rem. and Ex. (2.2) (1)) M is 

fully cancellation and by (Rem. and Ex.(2.2) (1)) M is quasi-fully cancellation. 

     An R-module M is called torsion free if T(M) = 0 where T(M)={xM: nx = 0,for some nN},[6]. 

We proved in (Rem. and Ex. (1)) that every fully cancellation module is quasi-fully cancellation 
module, now in the following proposition, the converse of this statement is true under the class of 

torsion free modules. 

Proposition 2.5  
     Let M be a torsion free module over integral domain R. If M is quasi-fully cancellation module 

then M is fully cancellation. 

Proof: 

     Suppose IN = IW, where N, W are two submodules of M and 0≠I is an ideal of R. But M is quasi-

fully cancellation thus N + annMI  = W + annMI. Now, let x annMI, then Ix = 0and hence rx = 0 for 

every rI. But I≠0, hence x =0, since M is torsion free, thus annMI = 0.therefore N = W and hence M 

is fully cancellation. 
     Now, we have the following theorem. 

Theorem 2.6 

    Every module on a principle ideal ring is quasi-fully cancellation module. 

Proof: 

    Let M be a module on a P.I.R. R and let N,W are two submodules of M. Now, suppose that IN = 

IW, where IR, since R is PIR, thus I = <a>, where aR. Hence <a>N = <a>W, then an = aw, where 

nN and wW. Therefore an-aw = 0,then a(n-w) = 0. Thus n-w  annMI. Now,n = w+n-wW+ 

annMI. Then NW+ annMI. Hence N+ annMI W+  annMI. Similarly W + annMIN + annMI . Thus N 

+ annMI = W + annMI, and hence M is quasi-fully cancellation module.   

     By this theorem we have every Z-module is quasi-fully cancellation. In particular the Z-module ZP 

is quasi-fully cancellation. However ZP as Z-module is not fully cancellation [4].  

   Mijbass [3] proved that if M is an R-module and 
annM

R
R then M is a cancellation R -module if 

and only if M is weak-cancellation R-module. 

 Now, we have the following theorem. 

Theorem 2.7 

    M is quasi-fully cancellation R-module if and only if M is quasi-fully
annM

R
R -module. 

Proof: 

() 

    Let I be an ideal of 
annM

R
R ,and N,W are two R -submodules. Then 

annM

I
I

/

 ,for some 

/I annM and N,W are R-submodules. 
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    Now, suppose IN = IW and we have for any x
/I ,x + annMI, then (x + annM) = xn

/I n,for 

every nN. But (x + annM)NIN = IW, where x + annMI, thus xnIW, then xn= i

k

1i

iwa


  , where 

ia I, wi W. But for every i, 1≤i≤ k , ia =ai + annM and hence xn = 

 
 


k

1i

k

1i

iiii waannM)w(a 
/I W. Therefore 

/I N  
/I W. Similarly 

/I W
/I N, thus 

/I N = 

/I W and since M is quasi-fully cancellation, then N + annM
/I =W + annM

/I .  

    We claim that annM
/I  = annMI, let m annM

/I , then 
/I m =0. But (

/I  + annM)m = 
/I m = 0, thus 

m annMI and then annM
/I  annMI  . Now , let m annMI, then Im = 0. Since 

annM

I
I

/

 , then for 

every y
/I , y + annMI, so (y + annM)m = 0. Therefore xy = 0 and hence m annM

/I . Thus annMI 

annM
/I and then annMI= annM

/I . So that N + annMI = W + annMI. 

() The proof is similarly.  

Characterizations for quasi-fully cancellation modules 

     In this section we will give two characterizations for quasi-fully cancellation modules. 

     Compare the following theorem with (4,Th.2.6) 

Theorem 3.1 

      Let M be an R-module. Let A, B and C are submodules of M, and I be an ideal of R. Then the 

following statements are equivalent:- 
1- M is a quasi-fully cancellation module. 

2- If IAIB, then A B + annMI. 

3- I(a)IC, then aC + annMI ,where aM. 

4- (IA:MI) = A + annMI. 

Proof: 

(1)(2) 

    Let M be a quasi-fully cancellation module and suppose that IAIB .Then IB = IA + IB = I(A+B). 

But M is quasi-fully cancellation, thus B + annMI = (A+B)+ annMI. Therefore AB + annMI. 

(2)(3) 

    Let I(a)IC , by (2) we have (a) C + annMI. Thus aC + annMI. 

(3)(4) 

    We want to prove that (IA:MI) = A + annMI. Let x(IA:MI), hence IxIA and hence by (3) x = A + 

annMI. Therefore (IA:MI)  A + annMI .Now, let y A + annMI, then y = a + t, where aA and t 

annMI, i.e It = 0 and hence Iy = Ia + It. Thus Iy = Ia IA, then y (IA:MI) . Therefore A + annMI 
(IA:MI) , and hence (IA:MI) = A + annMI. 

(4)(1) 

      Suppose IA =IB, then B(IA:MI). By (4), (IA:MI) = A + annMI. Hence B A + annMI, therefore B 

+ annMI A + annMI. Similarly A(IB:MI). By(4) (IB:MI) = B + annMI , hence A B + annMI. Then A 

+ annMI = B + annMI, thus M is quasi-fully cancellation module.  

     The following theorem is another characterization for quasi-fully cancellation module.  

Theorem 3.2 
    Let M be an R-module. Then M is quasi-fully cancellation if and only if ((N + annMI):RW) = 

(IN:RIW), where I is an ideal of R and N,W are two submodules of M. 

Proof: 

 () Let x ((N + annMI):RW) ,then xWN + annMI and hence xw N + annMI, for any wW, thus 

xIWIN, then x(IN:RIW). Therefore ((N + annMI):RW)  (IN:RIW). 

    Now, let t (IN:RIW), then tIWIN and by Th.3.1 we get tWN + annMI and hence t ((N + 

annMI):RW) . Thus ((N + annMI):RW) = (IN:RIW). 
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() Now, suppose IWIN, where I is an ideal of R and N,W are two submodules of M. Then 

(IN:RIW)=R. But by assumption ((N + annMI):RW) = (IN:RIW) and hence ((N + annMI):RW) = R. It 

follows that W N + annMI and then M is quasi-fully cancellation module.   

 

Direct sum and the localization of quasi-fully cancellation modules  

    In this section we study the direct sum of quasi-fully cancellation modules; also we study the 

localization of quasi-fully cancellation modules.  

Lemma 4.1 

     Let M =M1   M2 be an R-module, M1, M2  are two submodules of M. If IR then  

annMI= I
2

MannI
1

Mann    

Proof: 

     Let m annMI. Hence mM and Im =0. But mM implies m = m1+ m2 , for some m1  M1, m2  
M2 . Hence Im = I(m1+ m2) = Im1+ Im2 =0. It follows that Im1= Im2 =0 (since + on M is a direct sum). 

Thus m1  I
1

M
ann and m2  I

2
M

ann and then m = m1+ m2  I
2

M
annI

1
M

ann  . 

   Conversely, let m   I
2

MannI
1

Mann   , then m = m1+ m2 where m1  I
1

M
ann , m2  I

2
M

ann  . 

So that Im1=0 and Im2 =0, thus Im1+ Im2= I(m1+ m2) = Im =0; that is m annMI. Therefore 

I
2

MannI
1

Mann   annMI.  

    Now, we have the following theorem 

Theorem 4.2 

     Let M =M1   M2 be an R-module, M1, M2 are two submodules of M and every submodule of M is 

fully invariant. Then M1 and M2 are quasi-fully cancellation if and only if M is quasi-fully 

cancellation. 

Proof: 

 () Let A, B are two submodules of M and suppose IA = IB, where I is an ideal of R. Then A = (A 

M1)  (A M2) and B =(B M1)  (B M2)[1,Prop 4.5]. Thus A = A1   A2 and B = B1   B2, 

where Ai =A Mi and Bi =B Mi, i , I = 1,2. Then I(A1   A2) = I(B1   B2) , hence IA1  IA2 = 

IB1  IB2 . Therefore IA1 = IB1 and IA2 = IB2 . But M1 and M2 are quasi-fully cancellation, thus A1 + 

I
1Mann = B1 + I

1Mann  and A2 + I
2Mann = B2 + I

2Mann . It follows that A1 + A2 + 

I
1Mann + I

2Mann = B1 + B2 + I
1Mann + I

2Mann , then we have A+ annMI= B+ annMI. Therefore 

M is quasi-fully cancellation. 

() It follows directly by (Rem.& Ex.(2.2)(3)).  

Theorem 4.3 

    Let M =M1   M2 be an R-module, M1, M2 are two submodules of M and every submodule of M 

such that ann(M1)+ann(M2) = R. Then M is quasi-fully cancellation if and only if, M1, M2 are quasi-

fully cancellation. 

Proof: 

 () Let A and B are two submodules of M and I an ideal of R. Since ann(M1)+ ann(M2)=R, then by 

[1,Prop 4.2], N = N1   N2 and W = W1   W2 , and then by the similar procedure as in the Th.4.2 the 

required result can be obtained.  

() Clear by Rem.&Ex. 2.2(4)).  

      Next we shall study the behavior of quasi-fully cancellation modules under localization. 
      First compare the following result with [4,Prop 4.4] 

Theorem 4.4 

    Let M be a module over a Noetherian ring . If MP is quasi-fully cancellation (for every maximal 
ideal P of R)RP-module, then M is quasi-fully cancellation R-module. 

 Proof: 

   Let I be an ideal of R and let N and W be submodules of M such that IN = IW. Hence (IN)P = (IW)P 

.Then by [7 Exc9.11(i),P172] IP .NP = IP .WP and since  MP is a quasi-fully cancellation RP-module  NP 
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+ PM Iann
P

  = WP + PM Iann
P

. But I is a finitely generated ideal, since R is Noetherian, so by [7,Exc 

9.13] PM Iann
P

= PMI)(ann . It follows that NP + PMI)(ann   = WP + PMI)(ann  and then by [7, 

Exc9.11 (iii)]   (NP + PMI)ann   = (WP + PMI)ann . Thus by [4, Lemma 4.1] N + IannM   =W 

+ IannM , and so M is quasi-fully cancellation module.   

 

 

Theorem 4.5 

     Let M be a module over a Noetherian ring R. If M is quasi-fully cancellation RP-module, for each 

maximal ideal P of R, provided that for each submodule L of MP  , L = KP for some KM. 

Proof: 

     Let J be an ideal of RP .Then there exists an ideal I of R such that J = IP. Let L,
/L be two 

submodules of MP such that JL = J
/L  ,By hypothesis , L = NP , 

/L = WP for some N≤M,W≤M. Thus 

IP.NP = IP.WP. Hence (IN)P = (IW)P (See[7 Exc.9.11]) and then [4,Lemma 4.1],IN = IW. But M is 

quasi-fully cancellation, so N + IannM   =W + IannM . Hence (N + PMI)ann   = (W + PMI)ann  . By 

[7,Exc.9.11] NP + ( PMI)ann   = WP +( PMI)ann . But I is a finitely generated ideal, so ( PMI)ann   = 

( PMI)ann (by [7,Exc.9.13]). Thus NP + PM Iann
P

  =WP + PM Iann
P

; that is L + Jann
PM =

/L + 

Jann
PM . Thus MP is a quasi-fully cancellation RP-module.   
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