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Abstract 

    This paper is devoted to the study of the peristaltic transport of viscoelastic non-

Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate 

analytical solutions have been constructed using Adomain decomposition method under 

the assumption of long wave boundary layer type approximation and low Reynolds 

number. The effect of each of relaxation time, fractional parameters, Reynolds number, 

Froude number, inclination of channel and amplitude on the pressure difference, friction 

force and stream function along one wavelength are received and analyzed.  
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 قناة مائمة التموجي لسائل لزج لا نيوتوني لنموذج ماكسويل الكسري في الانتقال
 

 , احمد مولود عبد الهادي*الحسين عمي ابراهيم عبد
 قسم الرياضيات، كمية العموم، جامعة بغداد، بغداد، العراق.

 
 الخلاصة

تم  .قناة مائمة الكسري فينموذج ماكسويل ل ج لا نيوتوني لز الانتقال التموجي لسائل  درسنافي هذا البحث     
( لمتجزئة  تحت فرضية الطبقة الحدودية Adomain) التحميمية التقريبة بأستخدام طريقة الحمول الحصول عمى

، ز، المعممات الكسرية، عدد رينولدالتمدد زمنتأثير كلا من  .الموجية طويمة وفرضية ان يكون عدد رينولد صغير
طول موجي  خلال و دالة التدفق قوة الاحتكاك وكذالك سعتها عمى اختلاف الضغط ، عدد فرويد، زاوية ميل القناة

  تم ايجادها و تحميمها واحد قد
 

1. Introduction 

    Peristalsis is an important mechanism for mixing and transporting fluids, which is generated by a 

progressive wave of contraction or expansion moving on the wall of the tube. Physiological fluids in 

animal and human bodies are, in general, pumped by the continuous periodic muscular oscillations of the 

ducts. These oscillations are presumed to be caused by the progressive transverse contraction waves that 

propagate along the walls of the ducts. Peristalsis is the mechanism of the fluid transport that occurs 

generally from a region of lower pressure to higher pressure when a progressive wave of area contraction 

and expansion travels along the flexible wall of the tube. Peristaltic flows occurs widely in the functioning 
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of the ureter, food mixing and chime movement in the intestine, movement of eggs in the fallopian tube, 

the transport of the spermatozoa in cervical canal, transport of bile in the bile duct, transport of cilia, and 

circulation of blood in small blood vessels[1]. 

    The study of peristaltic motion in both mechanical and physiological situations has been studied in  

Refs. [2–5]. Shapiro et al. [5] have investigated the peristaltic pumping under assumptions of long 

wavelength and low Reynolds number. They have considered two-dimensional and axisymmetric flows of 

Newtonian fluids and they discussed the mechanical efficiency and some important phenomena of 

peristaltic pump such as reflux and trapping. Their investigation is focused only about Newtonian fluids 

and does not over the peristaltic flow of other fluids such as non-Newtonian fluids. 

    The non-Newtonian fluids are being considered more important and appropriate in view of engineering 

and biological applications as compared with the Newtonian fluids. Viscoelastic fluid is a non-Newtonian 

fluid, which contains both viscous and elastic properties. Most of the biological fluids such as blood, 

chyme, and food bolus are found to be viscoelastic in nature. Bohme and Friedrich [6] studied peristaltic 

flow of viscoelastic liquids. Some other workers [7–11] have investigated peristaltic transport of 

viscoelastic fluid with Maxwell model and they have discussed the effect of relaxation time on the 

peristaltic transport. Hayat et al. [12–15] have investigated the peristaltic transport of viscoelastic fluids 

with Jeffrey model and they have also discussed the effect of relaxation and retardation time on the 

peristaltic transport.  

    The constitutive equations with ordinary and fractional time derivatives have been introduced to 

describe the viscoelastic properties of materials in various fields. Rheological models with fractional time 

derivatives have played an important role in the study of the valuable tool of viscoelastic properties. In 

general, fractional Maxwell model is derived from the well known Maxwell model by replacing ordinary 

derivatives of shear stress-strain relationship by derivatives of fractional order. 

Recently, Tripathi et al. [16] have incorporated the application of fractional element models of viscoelastic 

materials in the study of bio-fluids flow. They discussed the effects of fractional parameters and relaxation 

time on peristaltic flow. This result has been again extended for generalized fractional Maxwell model, 

fractional second grade model and fractional Oldroyd-B model [17–19]. 

In this paper we consider the peristaltic transport of viscoelastic non-Newtonian fluids with fractional 

Maxwell model in an inclined channel under the assumption of long wavelength and low Reynolds 

number. We have discussed the effects of relaxation time, fractional parameters, Reynolds number, 

Froude number, inclination of channel and amplitude on the pressure difference and friction force along 

one wavelength. Adomain decomposition method used to obtain the analytical approximate solutions of 

the fractional differential equation. 

2. Mathematical model 

    When the wall of the channel is brought under the influence of a periodic radial contraction wave, a part 

of the wall begins to contract initially at the inlet, which then relaxes and the portion lying ahead of this 

begins to contract showing that the contraction wave progresses towards the outlet. Relaxation culminates 

at the natural boundary without expanding further beyond it. This process continues until complete 

transportation takes place. Such a motion figure-1 may be mathematically modeled as [20] 
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The constitutive equation of shear stress-strain relationship of viscoelastic fluid with fractional Maxwell 

model is given by 
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where,  ,~,
~

1
 are the relaxation time, shear stress, shear strain, 

1

~


G  is the shear modulus,   is the 

viscosity and  ,  are the fractional parameters such that .10    This model reduces to ordinary 

Maxwell model if 1   and Classical Navier Stokes model, when .0,0     

The governing equations of motion for incompressible fluids in two-dimensional case for inclined channel 

flow are given by 
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Figure 1- Geometry of wall surface with inclination of angle A. 

 

where, ,,,~,~,~,~, Agpvu  are the fluid density, velocity, transverse velocity, transverse coordinate, 

pressure, acceleration due to the gravity and inclination angle of channel, respectively. 

The physical parameters are non-dimensionalized as follows: 
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where Re, Fr and  stand for the Reynolds number, Froude number and wave number respectively.  

We introduce the non-dimensional parameters, Eq.(1) reduces to 
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and under the assumptions of long wavelength and low Reynolds number, Eq. (3) reduce to 
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Boundary conditions are given by 
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Integrating Eq. (6) with respect to  , and using (7) we get 
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Further integrating Eq. (10) from h to , yields 
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The volume flow rate is defined as 
h

du
0

, Q   which, by virtue of Eq.(11), reduces to 
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The transformations between the wave and the laboratory frames, in the dimensionless form, are given by 
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where, the left side parameters are in the wave frame and the right side parameters are in the laboratory 

frame. 

The averaged flow rate Q  is given by 
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Eq.(12), in view of Eqs.(13) and (14) gives 
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In the last equation, if we set A= 0, we obtain the corresponding equation for viscoelastic   non-Newtonian 

fluid (horizontal channel) as obtained by Tripathi [16,Eq.(12)]. 

From Eq. (11), and using Eqs. (12) and (14), the stream function )( in wave frame )(
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It is clear from Eq. (16) that the stream function is independent of fractional parameters, material 

constants, Reynolds number, Froude number and inclination angle of channel. 

3. Solution of the problem  

Eq.(15) can be rewritten as 
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with the initial condition 
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We consider the Eq. (17) as 
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where ttL 
  symbolizes the linear differential operation. 

Applying the integration inverse operator  
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The ADM assumes infinite series solutions for unknown function ),( txf  and it is given by 
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Proceeding in similar manner, the components 0,),( ntxfn  are obtained and finally the series 

solutions are thus entirely determined. Again, if we set A= 0, we obtain the corresponding equation for 

viscoelastic non-Newtonian fluid (horizontal channel) as obtained by Tripathi [16,Eq.(19)]. Finally, we 

approximate the solution ),( txf , by the truncating the series 
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Frx
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N

n nN txftx From Eq. (23), the pressure gradient is given as 
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The pressure difference  p  and friction force )(F  across one wavelength are given by 
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4. Numerical results and discussion 

    In this section numerical results are displayed through figure-2 to figure–16 to show the effects of 

various parameters such as fractional parameters ),(  , relaxation time )( 1 , time (t) , amplitude )( , 

Reynolds number (Re), Froude number (Fr), the inclination angle (A) on the pressure difference and 

friction force across one wavelength. In order to estimate the quantitative effects of the various parameters 

involved in the results of the present analysis, we used the MATHEMATICA software. It is noted that 

only ten terms of the series are used in evaluating the approximate solutions. It is evident that the solution 

can be improved by further computing more terms. 
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Figure 2-Pressure vs. time at Q =0.1,
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Figure 3- Pressure vs. time at Q =0.1, ,5.0

5
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3
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In figure-2, the variation of p  vs. time t, is shown for different values of  =1/5, 2/5, 3/5, 4/5 by fixing 

other parameters Q =0.1, ,,5.0  4/5  /3,01.0,01.0Re,11   AFr . As expected, there is a 

nonlinear relation between pressure and time. It is worth mentioning that increase in time raises pressure, 

but after certain value of time, pressure reduces with time. It is also revealed that increase in   decreases 

with the pressure while behavior is reverse after certain value of time. Figure-3 depicts p  vs. time t, for 

various values of  =1/5, 2/5, 3/5, 4/5 at Q =0.1, ,5.0  1/5,3/,01.0,01.0Re,11   AFr . 

It is similar to figure-1, but the effect of   on pressure is opposite to that of . The influences of 

relaxation time 1 =0.4, 0.6, 0.8, 1.0 and amplitude  =0.4, 0.5, 0.6, 0.7 on the pressure–time curve are 

shown in figure-4 and figure-5 keeping other parameters fixed i.e.  =1/5,  =4/5, Q =0.1,

/3,01.0,01.0Re  AFr  

It is found that, the effect of 1  is similar to , but the pressure increases with increase in . 

 

    
 

 

 

 

 

   
 
 

 

 

 

 

Figure-6 and figure-7 describe the results obtained for the friction force F vs. the time t at various values 

of fractional parameters  , . While figure-8 and figure-9 depict the variation of friction force F vs. the 
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Figure 4- Pressure vs. time at Q =0.1,
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Figure 5- Pressure vs. time at Q =0.1, 

,5/4 5/1,3/,01.0,01.0Re,11   AFr  

 

Figure 6- Friction force vs. time at Q =0.01,

,5/4,5.0  
 

3/,01.0,01.0Re,1
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  AFr  

 

 

 

Figure 7- Friction force vs. time at Q =0.01, 

5/1,3/,01.0,01.0Re,11   AFr

5.0 . 
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time t at various values  ,1  Furthermore, the effects of important parameters such as 1,,   and   

on the friction force have been investigated. It is observed from figure-6 to figure-9 that, friction force has 

opposite behavior compared with pressure. 

   
 

 

 

 
 

 

 

   
 

 

 

 

 

 

Figure-10 and figure-11 depict the variation of p with averaged flow rate Q  for different values of 

 , and other parameters 5.0 , 3/,01.0,01.0Re,1
1

  AFr . It is observed that there is a 

linear relation between pressure and averaged flow rate, also an increase in the flow rate reduces the 

pressure. From the figures, it is also evident that the pressure decreases with increase in   while it 

increases with  . The variation of p with the averaged flow rate Q  for different values of 1 at t = 0.1,

5/4 ,     = 1/5,  =4/5, Re=0.01, Fr=0.01 and A= 3/ is shown in figure-12. It is shown that the 

pressure diminishes as the relaxation time 1 increases. Figure-13 depicts the variation of p with the 

averaged flow rate Q  for different values of   at 1  =1.0, t =0.1,  = 1/5,  =4/5, =0.01, Fr=0.01 and 

A= 3/ . It reveals that the pressure increases with increase in . The effect of Reynolds number (Re), 
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Figure 8- Friction force vs. time at 
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Figure 9- Friction force vs. time at Q =0.01, 

,5/4 5/1,3/,01.0,01.0Re,11   AFr . 

 

Figure 10- Pressure vs. averaged flow rate at t = 0.1,  
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  AFr , 5/4 , 
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Figure 11- Pressure vs. averaged flow rate at t= 

0.1, 5/1,3/,01.0,01.0Re,11   AFr  
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Froude number (Fr) on the pressure-averaged flow rate curve keeping other parameters fixed 

3/,1,5/4,5.0,1.0 1   At  are depicted from figure-14 and figure-15. It is evident that 

the pressure increases with increasing the magnitude of Reynolds number while it decreases with 

increasing 
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Figure 12- Pressure vs. averaged flow rate at t = 0.1,  

3/,01.0,01.0Re,5/1   AFr  
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Figure 13- Pressure vs. averaged flow rate at t =0.1,

5/1,3/,01.0,01.0Re,5/4   AFr
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Figure 14- Pressure vs. averaged flow rate at t = 0.1, 

3/,01.0,5/1   AFr
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Figure 15- Pressure vs. averaged flow rate at t =0.1
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Figure 17- Friction force vs. averaged flow rate at t=0.1,

01.0,3/,1
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,01.0Re,5/4  FrA  , ,5.0  

 

 

Figure 16- Pressure vs. averaged flow rate at t = 0.1, 

01.0Re,01.0,5/1  Fr , ,5.0 5/4 , 11   
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    The magnitude of Froude number in all regions. Figure-16, depicts p  vs.  Q  for various values of 

inclination angle A= 0,8/,4/,2/   at ,1,5/4,5.0,1.0 1  t  Re=0.01, and Fr = 0.01, it 

is found that the pressure increases in interval 2/0  A . 

 

   
 

Figure-17 to figure–23 show the variations of friction force F with the averaged flow rate Q under the 

influence of all parameters FrRe,,,,, 1  and A. It is observed from figures that the friction forces 

have opposite behavior in comparison with pressure. 

 

   
 

 

 

 

 

 

    The streamlines on the center line in the wave frame of reference are found to split in order to enclose a 

bolus of fluid particles circulating along closed streamlines under certain conditions. This phenomenon is 

referred to as trapping, which is a characteristic of pumping motion. Since this bolus appear to be trapped 

by the wave, the bolus moves with the same speed as that of the wave. Figure-24(a-c) are drawn for 

streamlines for different values of the amplitude ratio ( = 0.4 – 0.8) at 0.8Q  . Figures reveals that the 

size of trapped bolus increases when the magnitude of   increases. Also figure-25(a-c) are drawn for 

streamlines for different values of the averaged flow rate ( Q = 0.3 – 0.7) at 0.8 , it shows that the size 

of trapped bolus increases when the magnitude of Q  increases.  It is observed from Eq.(16) that the 

stream function is independent of ( 1,,  , Re, Fr and A). This indicates the size of trapped bolus is 

unaltered with these parameters. 
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Figure 18- Friction force  vs. averaged flow rate at,  
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Figure 19- Friction force  vs. averaged flow rate at 

t =0.1, 01.0,3/,5/1,01.0Re,5/4  FeA  . 
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Figure 20- Friction force  vs. averaged flow rate 

at 01.0Re,01.0,5/1  Fr  ,5/4

A= 3/ , 11  , t = 0.1  

 

Figure 21- Friction force vs. averaged flow rate at 

t =0.1, 01.0,3/,5/1,1
1

,5/4  FeA  ,
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 (a)  (b)  (c     
Figure 24- Streamlines in the wave frame at 0.5Q   for (a)   = 0.4, (b)  = 0.6, and (c)   = 0.8. 

 

(a)  (b)  (c)  

Figure 25- Streamlines in the wave frame at   = 0.8 for (a) 0.3Q  , (b) 0.5Q  , and (c) 0.7Q   

 

5. Conclusions  

    The effects of fractional parameters and viscoelastic behaviors on peristaltic transport under the 

assumption of long wave boundary layer type approximation and low Reynolds number are discussed. 

ADM is used to find the approximate analytical solution. Main conclusions of the presented study are 

summarized as follows: 
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Figure 22- Friction force  vs. averaged flow rate 

at 01.0Re,5.0,5/1    ,5/4 A=

3/ , 11  , t = 0.1  

 

Figure 23- Friction force  vs. averaged flow rate at 

t =0.1, 01.0,3/,5/1,1
1

,5/4  FeA  ,

5.0  
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 Pressure increases with the increase in time; after a certain value of time, patterns become opposite. 
 Averaged flow rate diminishes with increase in pressure. 
 Pressure decreases with increase in , but increases with increase in . 
 The behavior of relaxation time 1  on the pressure is similar to that of . 
 An increase in   increases the pressure and the maximum averaged flow rate also increases with 
increase in . 
 Pressure increases with increasing the magnitude of Reynolds number while it decreases with 
increasing the magnitude of Froude number, also increases with increasing of inclination angle. 
 The variations of friction force with time and averaged flow rate show opposite behavior to that 
of pressure. 
 The trapping increases with increasing the amplitude ratio or the average flow rate, while, it is 
unaltered with other parameters. 
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