

Reverse Derivations With Invertible Values

Shahed .A. Hamil*, A. H. Majeed
Department of Mathematics, College of science, University of Baghdad, Baghdad, Iraq.

Abstract

In this paper, we will prove the following theorem, Let R be a ring with 1 having a reverse derivation $d \neq 0$ such that, for each $x \in R$, either $d(x)=0$ or $d(x)$ is invertible in R, then R must be one of the following: (i) a division ring D, (ii) D_{2}, the ring of 2×2 matrices over D, (iii) $D[x] /\left(x^{2}\right)$ where char $D=2, d(D)=0$ and $d(x)=1+a x$ for some a in the center Z of D. Furthermore, if $2 R \neq 0$ then $R=D_{2}$ is possible if and only if D does not contain all quadratic extensions of Z, the center of D.

Keywords: derivation, reverse derivation.

$$
\begin{aligned}
& \text { الاشتقاقات العكسية مـع القيم العكسية } \\
& \text { شهج علي هامل*، عبد الرحمن حميد مجيد }
\end{aligned}
$$

الخلاصة

$$
\text { R=D2 اذا وفقط اذا D لا تحتوي على كافة توسعات الدرجة الثانية من المركز Z } \quad \text { ل . }
$$

Introduction

Throughout, R will represent a ring with 1 . Recall that a ring R is called prime if $a R b=0$ implies a $=0$ or $b=0$; and it is called semiprime if $a R a=0$ implies $a=0$ [1]. A ring R is said to be 2 -torion free, if whenever $2 a=0$, with $a \in R$, then $a=0$ [2]. An additive mapping d from R into itself is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$ [3]. Bresar and Vukman [4] have introduced the notion of a reverse derivation as an additive mapping d from R into itself satisfying $d(x y)=d(y) x+$ $y d(x)$ holds for all $x, y \in R$. Obviously, if R is commutative, then both derivation and reverse derivation are the same. The reverse derivations on semiprime rings have been studied by Samman and Alyamani [5]. A derivation d is called inner in case there exists $a \in R$ such that $d(x)=[a, x]$ holds for all $x \in R$. In a recent paper [6] the authors proved that in case R is a prime ring with a non-zero right reverse derivation d and U be the left ideal of R then R is commutative. Some results concerning derivations in prime and semiprime rings can be found in [7-11].
*Email: ashahed10@yahoo.com

Recently Bergen, Herstein and Lanski [12] studied the structure of a ring R with a derivation $d \neq 0$ such
that, for each $x \in R, d(x)=0$ or $d(x)$ is invertible. They proved that, except for a special case which occurs when $2 R=0$, such a ring must be either a division ring D or the ring D_{2} of 2×2 matrices over a division
ring. In this paper we address ourselves to a similar problem of rings but with reverse derivations, namely:
suppose that R is a ring. If $d \neq 0$ is a reverse derivation of R such that for every $x \in R, d(x)=0$ or $d(x)$ is invertible in R, what can we conclude about R ? We shall prove that R must be rather special. More precisely we shall prove the following:
THEOREM. Let R be a ring with 1 and $d \neq 0$ a reverse derivation of R such that, for each $x \in R, d(x)=0$ or $d(x)$ is invertible in R. Then R is either

1. a division ring D, or
2. D_{2}, or
3. $D[x] /\left(x^{2}\right)$ where char $D=2, d(D)=0$ and $d(x)=1+a x$ for some a in the center Z of D.

Furthermore, if $2 R \neq 0$ then $R=D_{2}$ is possible if and only if D does not contain all quadratic extensions of Z, the center of D.
We shall also show that if $R=D_{2}$ then d must be inner, provided $2 R \neq 0$; however, d may fail to be inner when $2 R=0$. In addition, we shall show that if $R=D[x] /\left(x^{2}\right)$, then d cannot be inner.
Finally, we consider a similar situation, one in which $d(x)=0$ or is invertible not for all $x \in R$, but for all x in a suitable subset. In that context we also get results that says that $R=D, R=D_{2}$, or $R=$ $D[x] /\left(x^{2}\right)$.
In what follows, R will be a ring with 1 and $d \neq 0$ will be a reverse derivation of R such that $d(x)=0$ or is invertible, for all $x \in R$.

Preliminaries

We begin with the following
LEMMA 2.1. If $d(x)=0$, then either $x=0$ or x is invertible.
Proof. Suppose that $x \neq 0$; since $d \neq 0$ there is $y \in R$ such that $d(y) \neq 0$. Hence $d(y)$ is invertible. Now $d(y x)=x d(y) \neq 0$ since $x \neq 0$ and $d(y)$ is invertible; therefore $d(y x)$ is invertible, that is, $x d(y)$ is invertible. Thus x is invertible.
LEMMA 2.2. If $L \neq R$ is a left ideal of R, then $L \bigcap d(R)=0$.
Proof. We may assume that $L \neq 0$; let $0 \neq x \in L \bigcap d(R)$, then $x=d(y)$ for some $y \in R$; therefore $d(y)$ is invertible, then L contains invertible element, implying that $L=R$, in contradiction to $L \neq R$.
As an easy consequence of Lemma 2.1 we have
LEMMA 2.3. If $L \neq 0$ is a one-sided ideal of R, then $d(L) \neq 0$.
PROOF. Since $d \neq 0$ the lemma is certainly true if $L=R$. Suppose that $L \neq R, L$ cannot contain invertible elements. If $0 \neq a \in L$, then by Lemma 2.1, $d(a) \neq 0$ since a is not invertible. Thus $d(L) \neq 0$; in fact we saw that d is not zero on the non-zero elements of L.
Another immediate consequence of Lemma 2.1 is
LEMMA 2.4. If $2 x=0$ for some $x \neq 0$ in R, then $2 R=0$.
Proof. Since $2 x=0, d(2 x)=2 d(x)=0$. If $d(x)=0$ then, by Lemma 2.1, x is invertible and since
$2 x=0$ we get $0=(2 x) x^{-1}=2$ and so $2 R=0$. On the other hand, if $d(x) \neq 0$ then $d(x)$ is invertible and since $2 d(x)=0$ we get, once again, that $2 R=0$.
LEMMA 2.5. If L is an ideal of R, then $L+d(L)$ is also an ideal of R.
Proof. It is clear.
LEMMA 2.6. If L is a proper ideal of R, then L is both minimal and maximal.
PROOF. It certainly suffices to show that every proper ideals of R is maximal. Let $L \subset T$ be proper ideals of R, by Lemma 2.5, $L+d(L)$ is also an ideal of R. Since, by Lemma 2.3, $d(L) \neq 0$, and so $L+$ $d(L)$ contains invertible elements, we must have $L+d(L)=R$. Therefore if $t \in T$ there exist $a, b \in L$ such that $t=a+d(b)$. Consequently, $d(b)=t-a \in T \bigcap d(L)=0$ therefore $t=a \in L$. Thus $L=T$ and L is maximal.

We can now narrow in on the structure of R :
LEMMA 2.7. (a) If I is a proper ideal of R, then $I^{2}=0$.
(b) If $2 R \neq 0$, then R is simple.

Proof.(a) If I is a proper ideal of R, then
$d\left(I^{2}\right) \subset d(I) I+I d(I) \subset I$,
hence by Lemma 2.3, $I^{2}=0$ as I cannot contain any invertible elements.
(b) Suppose $2 R \neq 0$ and let $I \neq 0$ be a proper ideal of R, then by Lemma 2.3, there is a
$b \in I$ such that $d(b) \neq 0$, so $d(b)$ is invertible. Now, since $b^{2}=0$ by (a)
$0=d^{2}\left(b^{2}\right)=b d^{2}(b)+2 d(b)^{2}+d^{2}(b) b$,
in consequence of which, $2 d(b)^{2} \in I$, hence
$0=\left(2 d(b)^{2}\right)^{2}=4 d(b)^{4}$.
Since $d(b)$ is invertible we have $2^{2}=4=0$, so, by Lemma $2.4,2 R=0$, in contradiction to $2 R \neq 0$. Therefore if $2 R \neq 0, R$ is simple.
By combining Lemmas 2.6 and 2.7 we see that if $2 R \neq 0$, then $R=D$ or $R=D_{2}$.
for any division ring D and every non-zero reverse derivation, d, of D we certainly have that $d(x)=0$ or $d(x)$ is invertible for every $x \in R$. For D_{2}, under what conditions on D, is there a non-zero reverse derivation d with this property ? to answer this question we need to analyze the reverse derivation of the 2×2 matrices over an arbitrary ring. In the two lemmas we assume that S is any ring with $1, \mathrm{R}=$ S_{2}, the ring of 2×2 matrices over S and d is any reverse derivation of R.
Lemma 2.8. Let S be any ring with 1 and let $R=S_{2}$. If d is a reverse derivation of R, then there exists $\alpha, \beta, \gamma \in S$ such that:
$d\left(\mathrm{e}_{11}\right)=\left(\begin{array}{cc}0 & \alpha \\ \beta & 0\end{array}\right), d\left(\mathrm{e}_{12}\right)=\left(\begin{array}{cc}-\beta & \gamma \\ 0 & \beta\end{array}\right), d\left(\mathrm{e}_{21}\right)=\left(\begin{array}{ll}-1 & 0 \\ -\gamma & 1\end{array}\right), d\left(e_{22}\right)=\left(\begin{array}{cc}0 & -\alpha \\ -\beta & 0\end{array}\right)$
and, for $a \in S$,
$d\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)=\left(\begin{array}{cc}f(a) & 0 \\ -(a \beta-\beta a) & f(a)-a \gamma+\gamma a\end{array}\right)$.
Since its proof is obtained by a straight-forward computation, we omit the proof.
We use the formulas in Lemma 2.8 to prove the following fact inter-relating d and f :
Lemma 2.9. Let R, S, d, and f be as in Lemma 2.8. Then d is inner on R if and only if f is inner on S.
Proof. If d is the inner derivation on R induced by $\left(\begin{array}{ll}s & t \\ u & v\end{array}\right)$, where $s, t, u, v \in S$, then it is immediate that $f(x)=x s-s x$ for all $x \in S$, hence f is inner on S.
Conversely, if f is the inner derivation on S defined by $f(x)=x r-r x$, where $r \in S$, then
$d(T)=T\left(\begin{array}{cc}r & 0 \\ -\beta & r-\gamma\end{array}\right)-\left(\begin{array}{cc}r & 0 \\ -\beta & r-\gamma\end{array}\right) T$
for all $T \in R$, where β, γ are as in Lemma 2.8. This is verified by noting that d is the inner derivation induced by $\left(\begin{array}{cc}r & 0 \\ -\beta & r-\gamma\end{array}\right)$ agree on all matrix units and on the elements of S, hence on all of R.
Now we return to our original situation, assuming that R is a ring with 1 and a reverse derivation $d \neq 0$ such that for each $x \in R$ either $d(x)=0$ or $d(x)$ is invertible. We shall characterize those D for which $R=D_{2}$ has such a reverse derivation, at least when the characteristic of D is not 2 . To do so we need LEMMA 2.10.If $R=D_{2}$ and $2 R \neq 0$, then d is inner.
PROOF. Given $d, f, \alpha, \beta, \gamma$ be as in Lemma 2.8. Then, by Lemma 2.9, it is enough to prove f is inner on D. If $a, b, c, e \in D$, then by Lemma 2.8 and by the multiplicative law for reverse derivation we have

$$
d\left(\begin{array}{ll}
a & b \tag{1}\\
c & e
\end{array}\right)=\left(\begin{array}{cc}
f(a)-b \beta-c & f(b)+a \alpha+b \gamma-e \alpha \\
f(c)+\beta a-e \beta-\gamma c & f(e)-e \gamma+\gamma e+\beta b+c
\end{array}\right)
$$

By (1) we have for $a \in D$ that

$$
d\left(\begin{array}{cc}
a & 0 \\
f(a) & a
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
u & v
\end{array}\right)
$$

Where
$u=f(f(a))+\beta a-a \beta-\gamma f(a)$ and
$v=f(a)-a \gamma+\gamma a+f(a)$.
Since $\left(\begin{array}{cc}0 & 0 \\ u & v\end{array}\right)$ is not invertible we must have $u=v=0$.
thus $v=0$ gives us
(2) $0=v=f(a)-a \gamma+\gamma a+f(a)$.
which gives us
$2 f(a)=a \gamma-\gamma a$
Since char $D \neq 0$, dividing by 2 we see that f is the inner derivation on D induced by $1 / 2(\gamma)$. The condition: " D does not contain all quadratic extensions of Z "
will come up. By this we mean that there are elements δ and σ in Z such that the polynomial t ${ }^{2}+\delta t+\sigma$ has no root in

LEMMA 2.11. If D is a division ring then $R=D_{2}$ has reverse inner derivation $d \neq 0$ such that for all x $\in R$ either $d(x)=0$ or $d(x)$ is invertible if and only if D does not contain all quadratic extensions of Z. Proof. Suppose that R has such a reverse inner derivation induced by the matrix $M \in R$. We claim that M cannot be a diagonal matrix; for if
$M=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, where $a, b \in D$, computing
$e_{12} M-M e_{12}=\left(\begin{array}{cc}0 & b-a \\ 0 & 0\end{array}\right)$
we have, by our basic hypothesis, that $b=a$ Computing
$\left(\begin{array}{ll}c & 0 \\ 0 & 0\end{array}\right) M-M\left(\begin{array}{ll}c & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}c a-a c & 0 \\ 0 & 0\end{array}\right)$,
For all $c \in D$, we get that $a \in Z$. Hence $M \in Z$, whence $d=0$, contrary to hypothesis. Since M is not diagonal there exists an invertible matrix $T \in D_{2}$ such that
$T M T^{-1}=\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right) \quad$ where $\alpha, \beta \in D$.

The reverse inner derivation induced by $T M T^{-1}$ also has the property that all its values are 0 or invertible. we may assume that d is induced by $\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right), \alpha, \beta \in D$.
If $\gamma \in D$ then
$d\left(\begin{array}{ll}\gamma & 0 \\ 0 & \gamma\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ \gamma \alpha-\alpha \gamma & \gamma \beta-\beta \gamma\end{array}\right)$
which is not invertible, therefore $\alpha \gamma=\gamma \alpha, \beta \gamma=\gamma \beta$. In short, α and β are both in Z.
Since
$d\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right)=0$, by [Lemma 1, [12]] , we have that $\left(\begin{array}{cc}0 & 1 \\ \alpha & \beta\end{array}\right)$ is invertible, hence $\alpha \neq 0$.
For $\gamma \in D$,
$d\left(\begin{array}{ll}0 & 1 \\ 0 & \gamma\end{array}\right)=\left(\begin{array}{cc}\alpha & \beta-\gamma \\ \gamma \alpha & -\alpha\end{array}\right)$
cannot be 0 by [Lemma 1, [12]], so is invertible. This gives us that
$\left(\gamma^{2}-\beta \gamma-\alpha\right) \alpha \neq 0$ for all $\gamma \in D$.
In other words the quadratic polynomial $t^{2}-\beta t-\alpha$ over Z has no root in D, and so D does not contain all quadratic extensions of Z .

Conversely, if D does not contain all quadratic extensions of Z there exist $\alpha, \beta \in Z$, with $\alpha \neq 0$, such that $\alpha x^{2}-\beta x-1$ has no solution in D.
Let d be a reverse inner derivation of D_{2} induced by $\left(\begin{array}{ll}0 & 1 \\ \alpha & \beta\end{array}\right)$. We claim that every non-zero value of d is invertible. Let a, b, c, and e be in D; then

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
\alpha b-c & a-e+\beta b \\
\alpha(e-a)-\beta c & c-\alpha b
\end{array}\right)
$$

if we let $m=\alpha b-c$ and $n=a-e+\beta b$ then

$$
\begin{aligned}
& \alpha(e-a)-\beta c=-\alpha n+\beta m, \text { and } \\
& d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
m & n \\
-\alpha n+\beta m & -m
\end{array}\right) .
\end{aligned}
$$

Suppose, for the moment, that $m=0$; in that case

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{cc}
0 & n \\
-\alpha n & 0
\end{array}\right)
$$

which is either 0 or invertible, since $\alpha \neq 0$.
If, on the other hand, $m \neq 0$ then
$d\left(\begin{array}{ll}a & b \\ c & e\end{array}\right)=\left(\begin{array}{cc}m & n \\ -\alpha n+\beta m & -m\end{array}\right)=\left(\begin{array}{cc}m & 0 \\ 0 & m\end{array}\right)\left(\begin{array}{cc}1 & w \\ -\alpha w+\beta & -1\end{array}\right)$
where $w=m^{-1} e$. Since $m \neq 0, d\left(\begin{array}{ll}a & b \\ c & e\end{array}\right)$ is invertible if and only if $\left(\begin{array}{cc}1 & w \\ -\alpha w+\beta & -1\end{array}\right)$ is invertible, that is, if and only if
$-1-w(-\alpha w+\beta) \neq 0$.
However, by our choice of α and $\beta, \alpha w^{2}-\beta w-1=0$ for all $w \in D$. Thus d is a reverse inner derivation of D_{2} all of whose non-zero values are invertible.
The only piece that remains in order to prove our main theorem is the case where $2 R=0$ and R is neither D nor D_{2}. We handle this case with

LEMMA 2.12. If R is not simple then $R=D[x] /\left(x^{2}\right)$, where char $D=2, d(D)=0, d(x)=1+a x$ for some a in Z, the center of D; moreover, d is not inner.
PROOF. By Lemmas 2.6 and 2.7, $2 R=0$, all proper ideals of R have square zero, and all proper
ideals of R are both minimal and maximal. As a result, we easily obtain that R contains a unique (left, right, two-sided) ideal M and $M^{2}=0$. Therefore, as in the proof of Lemma 2.6, $R=M+d(M)$, hence if $r \in R$ there exist $m, n \in M$ such that $d(r)=m+d(n)$. Consequently, $d(\mathrm{r}-n)=m$ $\in M \cap d(R)=0$ and so, if $D=$ ker d then, by Lemma 2.1, D is a division ring and $R=D+M$. By the uniqueness of M, if $0 \neq x \in M$ then $R=D+D x$ and thus $s d(x) s^{-1}=s+t x$ where $s, t \in D$ and s $\neq 0$. Since $d(D)=0$, if we replace x by $s x$, we may assume $d(x)=1+a x$ for some $a \in D$.
If $s \in D$, we can use the facts $M=R x, M^{2}=0, d(s)=0$, and $d(x)=1+a x$ to obtain
$0=d\left((s x)^{2}\right)=d(s x) s x+s x d(s x)=(1+a x) s^{2} x+s x(1+a x) s=s^{2} x+s x s=s(s x+x s)$.
If $s \neq 0, s$ is invertible, hence $x s=s x$ and x is in the center of R. Therefore $R=D[x] /\left(x^{2}\right)$.
Now, if $s \in D$ then $s x+x s=0$, thus
$0=d(s x+x s)=(1+a x) s+s(1+a x)=a x s+s a x=(a s+s a) x$.
Since all non-zero elements of D are invertible in $R, a s+s a=0$, hence a is in the center of D. Finally, since $x \in M$ and $d(x) \notin \mathrm{M}$, it is clear that d is not inner.

Results

We can now prove our main result, which is the theorem stated at the outset, and which we record as
THEOREM 3.1. Let R be a ring with 1 and $d \neq 0$ a reverse derivation of R such that, for each x $\in R, d(x)=0$ or $d(x)$ is invertible in R. Then R is either

1. a division ring D, or
2. D_{2}, or
3. $D[x] /\left(x^{2}\right)$. where char $D=2, d(D)=0$ and $d(x)=1+a x$ for some a in the center Z of D.

Furthermore, if $2 R \neq 0$ then $R=D_{2}$ is possible if and only if D does not contain all quadratic extensions of Z, the center of D.
Proof. If R is simple, then by Lemma 2.6 either $R=D$ or $R=D_{2}$.
Furthermore if $2 R \neq 0$, by Lemma $2.10 D_{2}$ has such a reverse derivation if and only
if it has a reverse inner derivation with the special property. However Lemma 2.11 tells us that D_{2} has such a reverse inner derivation if and only if D does not contain all quadratic extensions of Z.
If R is not simple, then by applying Lemma 2.12 we obtain our result.
One question concerning Theorem 3.1 remains. Namely, in the case $R=D_{2}$ is it necessary to assume $2 R \neq 0$ in order to prove that T is inner?
We now present an example that shows if $2 R=0$ then $R=D_{2}$ can have a reverse outer derivation d such that $d(x)=0$ or $d(x)$ is invertible, for all $x \in R$.
Example 3.2. Take $R=M_{2}(F)$ for $F=G F(2)(x)\langle\langle y\rangle\rangle$, the field of (finite) Laurent series with coefficients in the rational function field in one variable over $G F(2)$. Define a reverse derivation δ on F by extending the action $\delta(f(x))=0$ and $\delta(y)=x y$. If $a \in F$ is written $a=a_{E}+a_{o}$, where a_{E} is the series of even powers of y appearing in a, and $a_{o}=a-a_{E}$, then $\delta(a)=a x_{o}$. Let $A=$ $\left(\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right) \in M_{2}(F)$ and set $d=d_{A}+\bar{\delta}$ where d_{A} is a reverse inner derivation of $M_{2}(F)$ induced by A and $\bar{\delta}$ is the reverse derivation of $M_{2}(F)$
defined by

$$
\bar{\delta}\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{ll}
x a-a x+\delta(a) & \delta(b) \\
x c-c x+\delta(c) & \delta(e)
\end{array}\right)
$$

Not that d is not inner since

$$
d\left(\begin{array}{cc}
y & 0 \\
0 & y
\end{array}\right)=\left(\begin{array}{cc}
x y & 0 \\
0 & x y
\end{array}\right)
$$

An easy computation shows

$$
d\left(\begin{array}{ll}
a & b \\
c & e
\end{array}\right)=\left(\begin{array}{ll}
b+c+x a_{o} & a+e+x b_{E} \\
a+e+x c_{E} & b+c+x e_{o}
\end{array}\right)
$$

It can now be shown by a direct, if somewhat tedious computation that d has invertible values; and we omit the details.
We shall now consider a situation closely related to the one we have been discussing.

THEOREM 3.3. Let R be a ring with 1 and suppose that $d \neq 0$ is a reverse derivation of R such that $d(L)$ $\neq 0$ for some an ideal L of R and $d(x)=0$ or $d(x)$ is invertible for every $x \in L$. Then $R=D$, or $R=D$ 2_{2}, or $R=D[x] /\left(x^{2}\right)$ where $2 R=0$ for some division ring D.
Proof. Suppose that $L \neq 0$ is an ideal of R such that $d(L) \neq 0$, and such that for every $x \in L$ either $d(x)$ $=0$ or $d(x)$ is invertible. Since we already know the answer when $L=R$, we suppose that $L \neq R$. We wish to determine the structure of R. Since the arguments will be similar to the ones we have given earlier we give then more sketchily here.
Let $0 \neq x \in R$ be such that $d(x)=0$ then, since $x L \subset L$ and $d(x L)=d(L) x$ we easily get the result of Lemma 2.1, namely, that x is invertible in R. This immediately implies the results of Lemmas 2.3 and 2.4, that is, that if $d(W)=0$ for some left ideal W of R then $W=0$, and if R have 2-torsion then $2 R=$ 0.

As before, from our assumptions on $L, \mathrm{~L}+d(L)=R$, hence if W is a proper ideal of R containing L and $w \in W$ then $w=a+d(b)$, for some $a, b \in L$. Once again,
$w-a=d(b) \in W \bigcap T(L)=0$
and so, $W=L$. By this argument and our analog to Lemma 2.3, L and every non-zero ideal of R contained in L are maximal, hence L is both minimal and maximal.
We now examine $l(L)=\{x \in R \mid x L=0\}$. Since $1=a+d(b)$, for some $a, b \in L$,
if $x \in l(L)$ then
$x=(a+d(b)) x=a x-b d(x)+d(x b)=a x-b d(x) \in L$
and so, by the minimality of $L, l(L)=0$ or $l(L)=L$.
Suppose $l(L)=0$, then R is semiprime for if $I^{2}=0$ and $I \neq 0$ we obtain the contradiction $0=I$ ${ }^{2} L=I(I L)=I L=L$. It easily follows that R is simple, for if $I \neq 0$ then
$0 \neq d\left(\mathrm{I}^{2} L\right) \subset d(L) \cap I$,
hence $I=R$. By Wedderburn's theorem, $R=D$ or $R=D_{2}$.
On the other hand, suppose $l(L)=L$, that is $L^{2}=0$. By repeated use of the maximality and minimality of L we obtain that L is the unique ideal of R, for if $I \neq L$ is an ideal of R then
$R=I+L$ and so,
$L=L R=L I+L^{2}=L I \subset I$,
a contradiction. It is now clear that L is the unique (left, right, two-sided) ideal of R. Now, as in Lemma 2.7, if $b \in L$ such that $d(b) \neq 0$ then
$0=d^{2}\left(b^{2}\right)=b d^{2}(b)+2 d(b)^{2}+d^{2}(b) b$,
hence $2 d(b)^{2} \in L$ and so $4 d(b)^{4}=0$. Once again, $2 R=0$. Let $x \in R$ and $y \in L$ such that $d(x) \in L$ and $d(y) \neq 0$; in this case
$d(x y)=d(y) x+y d(x)=d(y) x$
and so, x is 0 or invertible. Therefore $D=\{x \in R \mid d(x) \in L\}$ is a division ring and by the identical argument used in the proof of Lemma 2.12 we obtain that $R=D[x] /\left(x^{2}\right)$ where
$d(x)=1+a x$ for some a in the center of D.

References:

1. Jacobson,N.1964. Structure of rings. Amer. Math. Soc. Coll. Publ.
2. Vukman J.1997. Centralizers on prime and semiprime rings. Comment. Math. Univ. Carolin,38(2), pp: 231-240.
3. Argac, N. and Inceboz, H.G.2009. Derivations of prime and semiprime rings. J. Korean Math. Soc.,46(5), pp: 997-1005.
4. Bresar, M. and Vukman, J.1989. On some additive mappings in rings with involution. Aequations math, 38, pp: 178-185.
5. Samman, M., Alyamani, N. 2007. Derivations and reverse derivations in semiprime rings. International Mathematical Forum, 2(39), pp: 1895-1902.
6. Jaya, Subba Reddy, C. and Hemavathi, K. 2014. Right reverse derivations on prime rings. International Journal of Research in Engineering \& Technolog, 2(3), pp: 141-144.
7. Posner, E. 1957. Derivations in prime rings. Proc. Amer. Math. Soc, 8, pp: 1093-1100.
8. Samman, M.S. and Thaheem, A.B. 2003. Derivations on semiprime rings. Int. J. of Pure and Applied Mathematics, 5(4), pp: 469-477.
9. Hongan, M.1997. A note on semiprime rings with derivations. Intrnat. J. Math. Sci., 20(2), pp: 413-415.
10. Daif, M.N. and Bell, H. E. 1992. Remark on derivations on semiprime rings. Intrnat. J. Math. Sci., 15(1),pp: 205-206.
11. Hamdi, A.D. 2007. (σ, τ) derivations on semiprime rings. Msc. Thesis, Department of Mathematics, College of Science, University of Baghdad.
12. Bergen J., Herstein,I.N. and Lanski,C.1983. Derivations with invertible values. Can. J. Math., XXXV(2), pp: 300-310.
