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Abstract
In this paper, we will prove the following theorem, Let R be a ring with 1 having
a reverse derivation d # 0 such that, for each x €R, either d(x) = 0 or d(x) is

invertible in R, then R must be one of the following: (i) a division ring D, (ii) D, ,
the ring of 2x2 matrices over D, (iii) D[x]/(xz) where char D = 2, d (D) = 0 and

d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R #0 thenR =D, is

possible if and only if D does not contain all quadratic extensions of Z, the center of
D.
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Introduction

Throughout, R will represent a ring with 1. Recall that a ring R is called prime if aRb = 0 implies a
=0orb=0;and it is called semiprime if aRa = 0 implies a = 0 [1]. A ring R is said to be 2-torion free,
if whenever 2a =0, with a € R, then a = 0 [2]. An additive mapping d from R into itself is called a
derivation if d(xy) = d(x)y + xd(y) holds for all x,y €R [3]. Bresar and Vukman [4] have introduced
the notion of a reverse derivation as an additive mapping d from R into itself satisfying d(xy) = d(y)x +
yd(x) holds for all x,y €R. Obviously, if R is commutative, then both derivation and reverse derivation
are the same. The reverse derivations on semiprime rings have been studied by Samman and Alyamani
[5]. A derivation d is called inner in case there exists a € R such that d(x) = [a, x] holds for all x eR.
In a recent paper [6] the authors proved that in case R is a prime ring with a non-zero right reverse
derivation d and U be the left ideal of R then R is commutative. Some results concerning derivations in
prime and semiprime rings can be found in [7-11].
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Recently Bergen, Herstein and Lanski [12] studied the structure of a ring R with a derivation d # 0
such

that, for each x eR, d(x) = 0 or d(x) is invertible. They proved that, except for a special case which
occurs when 2R = 0, such a ring must be either a division ring D or the ring D, of 2 x 2 matrices over
a division

ring. In this paper we address ourselves to a similar problem of rings but with reverse derivations,
namely:

suppose that R is a ring. If d # 0 is a reverse derivation of R such that for every x eR, d(x) = 0 or d(x)
is invertible in R, what can we conclude about R? We shall prove that R must be rather special. More
precisely we shall prove the following:

THEOREM. Let R be a ring with 1 and d # 0 a reverse derivation of R such that, for each x R, d(x) =0
or d(x) is invertible in R. Then R is either

1. a division ring D, or
2. D,,or
3. DIxJ/( x2) where char D = 2, d(D) = 0 and d(x) = 1 + ax for some a in the center Z of D.

Furthermore, if 2R # 0 then R = D, is possible if and only if D does not contain all quadratic
extensions of Z, the center of D.
We shall also show that if R = D, then d must be inner, provided 2R # 0; however, d may fail to be

inner when 2R = 0. In addition, we shall show that if R = D[x]/( XZ) , then d cannot be inner.
Finally, we consider a similar situation, one in which d(x) = 0 or is invertible not for all x €R, but
for all x in a suitable subset. In that context we also get results that says that R=D,R=D,,0orR =

DIX)/(X?).

In what follows, R will be a ring with 1 and d # 0 will be a reverse derivation of R such that d(x) = 0 or
is invertible, for all x eR.

Preliminaries
We begin with the following

LEMMA 2.1. If d(x) = 0, then either x = 0 or x is invertible.

PROOF. Suppose that x # 0; since d # 0 there is y € R such that d(y) # 0. Hence d(y) is invertible. Now
d(yx) = xd(y) # 0 since x # 0 and d(y) is invertible; therefore d(yx) is invertible, that is, xd(y) is
invertible. Thus x is invertible.

LEMMA 2.2. If L # R is a left ideal of R, thenL [ d(R) = 0.

PROOF. We may assume that L #0; let 0 #x € L (] d(R), then x = d(y) for some y e R; therefore
d(y) is invertible, then L contains invertible element, implying that L = R, in contradiction to L # R.
As an easy consequence of Lemma 2.1 we have

LEMMA 2.3. If L # 0 is a one-sided ideal of R, thend(L)#0.

PROOF. Since d#0 the lemma is certainly true if L = R. Suppose that L # R, L cannot contain invertible
elements. If 0 #a L, then by Lemma 2.1, d(a) # 0 since a is not invertible. Thus d( L) # 0; in fact we
saw that d is not zero on the non-zero elements of L.
Another immediate consequence of Lemma 2.1 is

LEMMA 2.4. If 2x = 0 for some x #0 in R, then 2R = 0.

PROOF. Since 2x = 0, d(2x) = 2d(x) = 0. If d(x) = 0 then, by Lemma 2.1, x is invertible and since
2x=0we get 0= (2x) x " =2 and so 2R = 0. On the other hand, if d(x) # 0 then d(x) is invertible and
since 2d(x) = 0 we get, once again, that 2R = 0.

LEMMA 2.5. If Lisan ideal of R, then L + d(L) is also an ideal of R.

PROOF. It is clear.

LEMMA 2.6. If L is a proper ideal of R, then L is both minimal and maximal.

PROOF. It certainly suffices to show that every proper ideals of R is maximal. Let L — T be proper
ideals of R, by Lemma 2.5, L + d(L) is also an ideal of R. Since, by Lemma 2.3, d(L) #0, and so L +
d(L) contains invertible elements, we must have L + d(L) = R. Therefore if t € T there exista ,b € L
such thatt = a + d(b). Consequently, d(b) =t-a e T () d(L) =0thereforet=a e L. ThusL=T

and L is maximal.
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We can now narrow in on the structure of R:

LEMMA 2.7. (a) If | is a proper ideal of R, then | = 0.
(b) If 2R # 0, then R is simple.
PROOF.(a) If | is a proper ideal of R, then

d(1?) cd()1 +1d() <1,

hence by Lemma 2.3, 12 =0 as | cannot contain any invertible elements.

(b) Suppose 2R # 0 and let | # 0 be a proper ideal of R, then by Lemma 2.3, there is a
b e I such that d(b) # 0, so d(b) is invertible. Now, since b?=0 by (a)

0=d?(b*) =bd?*(b) +2d(b)* +d?*(b)b,
in consequence of which, 2d(b)? e | , hence
0=(2d(b)?)* =4d(b)*.

Since d(b) is invertible we have 2 2=4=0, so, by Lemma 2.4, 2R =0, in contradiction to
2R+0. Therefore if 2R#0, R is simple.

By combining Lemmas 2.6 and 2.7we see that if 2R #0, thenR=DorR=D, .
for any division ring D and every non-zero reverse derivation, d, of D we certainly have that d(x) = 0
or d(x) is invertible for every x € R. For D, , under what conditions on D, is there a non-zero reverse

derivation d with this property ? to answer this question we need to analyze the reverse derivation of
the 2 x 2 matrices over an arbitrary ring. In the two lemmas we assume that S is any ring with 1, R =

S, , the ring of 2 x 2 matrices over S and d is any reverse derivation of R.
LEMMA 2.8. Let S be any ring with 1 and let R =S, . If d is a reverse derivation of R, then there exists
a, B,y € Ssuch that:

d_Oad_—ﬂyd _—10d (0 -«
(ey)= B 0 ,d(eg,) = 0 ,d(e,) = 1 , d(ey,) = “B 0

and, fora € S,

g a 0) f(a) 0
(O aj_(—(aﬁ—ﬂa) f(a)-ay+ya)

Since its proof is obtained by a straight-forward computation, we omit the proof.
We use the formulas in Lemma 2.8 to prove the following fact inter-relating d and f:
LEMMA 2.9. Let R, S, d, and f be as in Lemma 2.8. Then d is inner on R if and only if f is inner on S.

s t
PROOF. If d is the inner derivation on R induced by [ j where s, t, u, v € S, then it is immediate
u v

that f (x) =xs-sx forall xe S, hence fis inner on S.
Conversely, if fis the inner derivation on S defined by f (x) = xr -rx, where r € S, then

d(T)=T(r 0 j_(r 0 JT
-p r—y -p r—y
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forall T e R, where S,y are as in Lemma 2.8. This is verified by noting that d is the inner

o r 0
derivation induced by [

5 J agree on all matrix units and on the elements of S, hence on all

of R.
Now we return to our original situation, assuming that R is a ring with 1 and a reverse derivation d # 0
such that for each x €R either d(x) = 0 or d(x) is invertible. We shall characterize those D for which

R =D, has such areverse derivation, at least when the characteristic of D is not 2. To do so we need
LEMMA 2.10.IfR=D, and 2R # 0, then d is inner.
PROOF. Given d, f, «, 8,7 be as in Lemma 2.8. Then, by Lemma 2.9, it is enough to prove f is inner

onD. Ifa b,c,e e D, then by Lemma 2.8 and by the multiplicative law for reverse derivation we
have

. OIa b) f(a)—bpg-c f(b) + aa + by —ea
W) c e/ |(f(c)+pBa—-ef—yc f(e)—ey +ye+fb+c)’
By (1) we have fora €D that

[ 2 0y (0 0
(f(a) aj_ [u vj
Where

u=f(f(a)+pa—ap—yf(a) and
v=f(a) —ay+ya+f(a).

u v
thus v = 0 gives us

0 0
Since ( j is not invertible we must have u =v = 0.

(2) 0=v=f(a)—ay+ya+f(a).
which gives us

2f(@)=ay —ya

Since char D # 0, dividing by 2 we see that f is the inner derivation on D induced by %(y). The
condition:"D does not contain all quadratic extensions of Z"

will come up. By this we mean that there are elements 6 and o in Z such that the polynomial t
?+5t+0 hasno root in

LEMMA 2.11. If D is a division ring then R = D, has reverse inner derivation d # 0 such that for all x

€ R either d(x) = 0 or d(x) is invertible if and only if D does not contain all quadratic extensions of Z.
PROOF.Suppose that R has such a reverse inner derivation induced by the matrix M €R. We claim

that M cannot be a diagonal matrix; for if

a o0
M :(O bj’ where a, be D, computing

0 b-a
ele—Melzzo 0
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we have, by our basic hypothesis, that b = a Computing

c O c O ca—ac O
M-M = :
0 0 0 0 0 0
Forallc € D, we getthata € Z. Hence M € Z, whence d = 0, contrary to hypothesis. Since M is not
diagonal there exists an invertible matrix T € D, such that

TMT & —[O 1} where
= a, peD.
a p

1

The reverse inner derivation induced by T M T ™ also has the property that all its values are 0 or

1} BeD
a, BeD.
p

invertible. we may assume that d is induced by [
a

If y €D then

o ) bale 1)
0 » ya—ay yp - Py

which is not invertible, therefore ay=ya, fy=yf. Inshort, o and £ are both in Z.
Since

0 1 0
d [ j = 0,by[Lemmal, [12]], we have that (
a f a

1
j is invertible, hence @ #0.

For y €D,

’ 01 (a p-vy
0 y - ra -a
cannot be 0 by [ Lemma 1, [12] ], so is invertible. This gives us that

(y* = Br—a)a #0 forall y €D.

In other words the quadratic polynomial t2 —ft — a over Z has no root in D, and so D does not

contain all quadratic extensions of Z.
Conversely, if D does not contain all quadratic extensions of Z there exist «, f € Z, with a #0,

such that a Xx” =X —1 has no solution in D.

0 1
Let d be a reverse inner derivation of D, induced by ( J .We claim that every non-zero
a

value of d is invertible. Leta, b, ¢, and e be in D; then

da b} ab —c¢ a—e+/
c e) l\lae-a)-pBc c-ab |
ifweletm = eab—candn = a—e+ £Db then
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a(e—a) — fc=—on+ pm, and

)L )

Suppose, for the moment, that m = 0; in that case

g a b B 0O n

c e)] |-an O
which is either 0 or invertible, sincea #0.
If, on the other hand, m # 0 then

’ a b B m ny (m 0 1 w
c e) \—an+pm -m) (0 m/l-aw+p8 -1
4 : a by . w)
where w = m™—™e. Sincem # 0, d is invertible if and only if is
cC e -aw+ -1
invertible, that is, if and only if
-1- wi-ow + f) £ 0.

However, by our choice of a and S, aw? — PwW—1 =0 forall w € D. Thus d is a reverse inner

derivation of D, all of whose non-zero values are invertible.
The only piece that remains in order to prove our main theorem is the case where 2R = 0 and
Ris neither D nor D, . We handle this case with

LEMMA 2.12. If R is not simple then R = D[x]/( x?), where char D = 2, d( D)= 0, d(x) = 1 + ax for
some a in Z, the center of D; moreover, d is not inner.

PROOF. By Lemmas 2.6 and 2.7, 2R = 0, all proper ideals of R have square zero, and all proper

ideals of R are both minimal and maximal. As a result,we easily obtain that R contains a unique (left,

right, two-sided) ideal M and M ? = 0. Therefore, as in the proof of Lemma 2.6, R = M + d(M), hence
if r € R there exist m, n € M such that d(r) = m + d(n). Consequently, d(r — n) = m

e M N d(R) =0 and so, if D = ker d then, by Lemma 2.1, D is a division ringand R =D + M. By

the uniqueness of M, if 0 #x € M then R = D + Dx and thus sd(x)s * = s + tx wheres,t € D and's
# 0. Since d(D) = 0, if we replace x by sx, we may assume d(x) = 1 + ax for some ae D .

If s €D, we can use the facts M =Rx, M >=0, d(s) =0, and d(x) =1+ ax to obtain

0 = d((sx)%) = d(sx)sx +sxd(sx) = (1+ax)s®X +sx(1+ax)s =s%X + 5Xs = 5(SX + Xs).
If s # 0, s is invertible, hence xs = sx and x is in the center of R. Therefore R = D[x]/(x?).

Now, if s € Dthen sx+xs = 0, thus
O0=d(sx+xs)=(1+ ax)s+s(1+ ax) = axs+sax = (as+ saXx.

Since all non-zero elements of D are invertible in R, as + sa =0, hence a is in the center of D.
Finally, since x € M and d(x) ¢ M, itis clear that d is not inner.
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Results
We can now prove our main result, which is the theorem stated at the outset, and which we record
as
THEOREM 3.1. LetR be aring with 1 and d # 0 a reverse derivation of R such that, for each x
eR, d(x) =0 or d(x) isinvertible in R. Then R is either
1. adivision ring D, or

2. D,,or

3. D[x]/(x?). where char D = 2, d(D) = 0 and d(x) = 1 + ax for some a in the center Z of D.
Furthermore, if 2R # 0 then R = D, is possible if and only if D does not contain all quadratic
extensions of Z, the center of D.

PROOF. If R issimple, then by Lemma 2.6 either R = D or R = D, .

Furthermore if 2R # 0, by Lemma 2.10 D, has such a reverse derivation if and only

if it has a reverse inner derivation with the special property. However Lemma 2.11 tells us that D,

has such a reverse inner derivation if and only if D does not contain all quadratic
extensions of Z.
If R is not simple, then by applying Lemma 2.12 we obtain our result.

One question concerning Theorem 3.1 remains. Namely, in the case R = D, is it necessary

to assume 2R # 0 in order to prove that T is inner?

We now present an example that shows if 2R = 0 then R = D, can have a reverse outer derivation d
such that d(x) = 0 or d(x) is invertible , for all x eR.

Example 3.2. Take R = M, (F) for F = GF(2) (x) <<y>>, the field of (finite) Laurent series with
coefficients in the rational function field in one variable over GF(2). Define a reverse derivation 6 on
F by extending the action ¢ (f (x)) =0and o (y) =xy. Ifa € F iswrittena =a, + a,, where a. is

the series of even powers of y appearing in a, and a,= @ — ag, then 6 (a) = ax,. Let A =

X 1 —
(1 OJ € M,(F) andsetd = d ,+ o where d, is a reverse inner derivation of M, (F)

induced by A and J is the reverse derivation of M , (F)
defined by

5 (a bJ ~ (xa —ax + &(a) 5(b)J

c e XC—cx+0(c) o)

Not that d is not inner since
qlY 0 xy 0

0 y) (0 x
An easy computation shows

a b b+c+xa, a+e+xb.
d = .

c e at+e+Xxc, b+c+xe,
It can now be shown by a direct, if somewhat tedious computation that d has invertible values; and we

omit the details.
We shall now consider a situation closely related to the one we have been discussing.
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THEOREM 3.3. Let R be a ring with 1 and suppose that d # 0 is a reverse derivation of R such that d(L)
# 0 for some an ideal L of R and d(x) = 0 or d(x) is invertible for every xe L. ThenR=D,orR=D
5, OrR= D[x]/(xz) where 2R = 0 for some division ring D.

PROOF. Suppose that L # 0 is an ideal of R such that d(L) # 0, and such that for every xe L either d(x)

= 0 or d(x) is invertible. Since we already know the answer when L = R, we suppose that L # R. We
wish to determine the structure of R. Since the arguments will be similar to the ones we have given
earlier we give then more sketchily here.

Let 0 # x € R be such that d(x) = 0 then, since xLc L and d(xL) = d(L)x we easily get the result of

Lemma 2.1, namely, that x is invertible in R. This immediately implies the results of Lemmas 2.3 and
2.4, that is, that if d(W) = 0 for some left ideal W of R then W =0, and if R have 2-torsion then 2R =
0.

As before, from our assumptions on L, L + d (L) = R, hence if W is a proper ideal of R containing L
andw e W thenw=a+d (b), for some a, be L. Once again,

w—a=db) eWNT(L)=0

and so, W = L. By this argument and our analog to Lemma 2.3, L and every non-zero ideal of R
contained in L are maximal, hence L is both minimal and maximal.

We now examine | (L) ={x € R|xL = 0}. Since 1 =a +d(b), forsomea, b € L,

if x e I(L) then

x=(a +d (b)) x=ax—bd(x) + d(xb) = ax —bd(x) € L

and so, by the minimality of L, I (L) = O or I( L) = L.
Suppose I(L) = 0, then R is semiprime for if | =0 and | #0 we obtain the contradiction 0 = |
L=1(1L) =1L =L.Iteasily follows that R is simple, for if | # 0then

0#d(1°’L) cd(L)N 1,

hence | = R. By Wedderburn's theorem,R=D or R=D, .

On the other hand, suppose | (L) = L, that is L? =0. By repeated use of the maximality and

minimality of L we obtain that L is the unique ideal of R, for if | #L isan ideal of R then
R =1+ L and so,

L=LR=LI+L’=LIc I,

a contradiction. It is now clear that L is the unique (left, right, two-sided) ideal of R. Now,
asin Lemma 2.7, if b € L such that d(b) # 0 then

0=d2(b?) =bd?(b) +2d(b)? +d2(b)b,

hence 2d(b) > e Landso 4d(b)* = 0. Once again, 2R = 0. Letx € Rand y € L such that
d(x) € L and d(y) # 0; in this case

d(xy) =d(y)x +yd(x) =d(y)x
and so, x is 0 or invertible. Therefore D = {xe R|d(x) € L} is a division ring and by the identical

argument used in the proof of Lemma 2.12 we obtain that R = D[x]/(x*) where
d(x) = 1+ ax for some a in the center of D.
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