

Reverse Derivations With Invertible Values

Shahed .A. Hamil*, A. H. Majeed

Department of Mathematics, College of science, University of Baghdad, Baghdad, Iraq.

Abstract

In this paper, we will prove the following theorem, Let *R* be a ring with 1 having a reverse derivation $d \neq 0$ such that, for each $x \in R$, either d(x) = 0 or d(x) is invertible in *R*, then *R* must be one of the following: (i) a division ring *D*, (ii) D_2 , the ring of 2×2 matrices over *D*, (iii) $D[x]/(x^2)$ where char D = 2, d(D) = 0 and d(x) = 1 + ax for some *a* in the center *Z* of *D*. Furthermore, if $2R \neq 0$ then $R = D_2$ is possible if and only if *D* does not contain all quadratic extensions of *Z*, the center of *D*.

Keywords: derivation, reverse derivation.

الاشتقاقات العكسية مع القيم العكسية

شهد علي هامل*، عبد الرحمن حميد مجيد قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق .

الخلاصة

في هذا البحث سنقوم ببرهان المبرهنة التالية. لتكن
$$R$$
 حلقة مع 1 تمتلك اشتقاق عكسي $0 \neq D$ بحيث،
لكل $R = 3$ ، اما $D = (x)$ او $d(x)$ او $d(x)$ يكون لها نظير في R . فان R يجب ان تكون واحدة من الاتي : (1)
حلقة القسمة D ، (2) D_2 (2)، حلقة المصفوفات 2×2 على D ، (3) $(x^2)/(x^2)$ حيث $= D$ حيث D حيث D حيث D ملقة القسمة D ، (2) D_2 (2) D حيث D حلقة القسمة D ، (2) D حيث D

Introduction

Throughout, *R* will represent a ring with 1. Recall that a ring *R* is called prime if aRb = 0 implies a = 0 or b = 0; and it is called semiprime if aRa = 0 implies a = 0 [1]. A ring *R* is said to be 2-torion free, if whenever 2a = 0, with $a \in R$, then a = 0 [2]. An additive mapping *d* from *R* into itself is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$ [3]. Bresar and Vukman [4] have introduced the notion of a reverse derivation as an additive mapping *d* from *R* into itself satisfying d(xy) = d(y)x + yd(x) holds for all $x, y \in R$. Obviously, if *R* is commutative, then both derivation and reverse derivation are the same. The reverse derivations on semiprime rings have been studied by Samman and Alyamani [5]. A derivation *d* is called inner in case there exists $a \in R$ such that d(x) = [a, x] holds for all $x \in R$. In a recent paper [6] the authors proved that in case *R* is a prime ring with a non-zero right reverse derivations in prime and semiprime rings can be found in [7-11].

^{*}Email: ashahed10@yahoo.com

Recently Bergen, Herstein and Lanski [12] studied the structure of a ring R with a derivation $d \neq 0$ such

that, for each $x \in R$, d(x) = 0 or d(x) is invertible. They proved that, except for a special case which occurs when 2R = 0, such a ring must be either a division ring D or the ring D_2 of 2×2 matrices over a division

ring. In this paper we address ourselves to a similar problem of rings but with reverse derivations, namely:

suppose that *R* is a ring. If $d \neq 0$ is a reverse derivation of *R* such that for every $x \in R$, d(x) = 0 or d(x) is invertible in *R*, what can we conclude about *R*? We shall prove that *R* must be rather special. More precisely we shall prove the following:

THEOREM. Let *R* be a ring with 1 and $d \neq 0$ a reverse derivation of *R* such that, for each $x \in R$, d(x) = 0 or d(x) is invertible in *R*. Then *R* is either

1. a division ring *D*, or

2. D_2 , or

3. $D[x]/(x^2)$ where char D = 2, d(D) = 0 and d(x) = 1 + ax for some *a* in the center *Z* of *D*.

Furthermore, if $2R \neq 0$ then $R = D_2$ is possible if and only if D does not contain all quadratic extensions of Z, the center of D.

We shall also show that if $R = D_2$ then *d* must be inner, provided $2R \neq 0$; however, *d* may fail to be inner when 2R = 0. In addition, we shall show that if $R = D[x]/(x^2)$, then *d* cannot be inner.

Finally, we consider a similar situation, one in which d(x) = 0 or is invertible not for all $x \in R$, but for all x in a suitable subset. In that context we also get results that says that R = D, $R = D_2$, or R =

$D[x]/(x^2)$.

In what follows, *R* will be a ring with 1 and $d \neq 0$ will be a reverse derivation of *R* such that d(x) = 0 or is invertible, for all $x \in R$.

Preliminaries

We begin with the following

LEMMA 2.1. If d(x) = 0, then either x = 0 or x is invertible.

PROOF. Suppose that $x \neq 0$; since $d \neq 0$ there is $y \in R$ such that $d(y) \neq 0$. Hence d(y) is invertible. Now $d(yx) = xd(y) \neq 0$ since $x \neq 0$ and d(y) is invertible; therefore d(yx) is invertible, that is, xd(y) is invertible. Thus x is invertible.

LEMMA 2.2. If $L \neq R$ is a left ideal of R, then $L \bigcap d(R) = 0$.

PROOF. We may assume that $L \neq 0$; let $0 \neq x \in L \cap d(R)$, then x = d(y) for some $y \in R$; therefore d(y) is invertible, then *L* contains invertible element, implying that L = R, in contradiction to $L \neq R$. As an easy consequence of Lemma 2.1 we have

LEMMA 2.3. If $L \neq 0$ is a one-sided ideal of R, then $d(L) \neq 0$.

PROOF. Since $d\neq 0$ the lemma is certainly true if L = R. Suppose that $L \neq R$, L cannot contain invertible elements. If $0 \neq a \in L$, then by Lemma 2.1, $d(a) \neq 0$ since a is not invertible. Thus $d(L) \neq 0$; in fact we saw that d is not zero on the non-zero elements of L.

Another immediate consequence of Lemma 2.1 is

LEMMA 2.4. If 2x = 0 for some $x \neq 0$ in R, then 2R = 0.

PROOF. Since 2x = 0, d(2x) = 2d(x) = 0. If d(x) = 0 then, by Lemma 2.1, x is invertible and since

2x = 0 we get $0 = (2x) x^{-1} = 2$ and so 2R = 0. On the other hand, if $d(x) \neq 0$ then d(x) is invertible and since 2d(x) = 0 we get, once again, that 2R = 0.

LEMMA 2.5. If *L* is an ideal of *R*, then L + d(L) is also an ideal of *R*.

PROOF. It is clear.

LEMMA 2.6. If *L* is a proper ideal of *R*, then *L* is both minimal and maximal.

PROOF. It certainly suffices to show that every proper ideals of *R* is maximal. Let $L \subset T$ be proper ideals of *R*, by Lemma 2.5, L + d(L) is also an ideal of *R*. Since, by Lemma 2.3, $d(L) \neq 0$, and so L + d(L) contains invertible elements, we must have L + d(L) = R. Therefore if $t \in T$ there exist $a, b \in L$ such that t = a + d(b). Consequently, $d(b) = t - a \in T \cap d(L) = 0$ therefore $t = a \in L$. Thus L = T and *L* is maximal.

We can now narrow in on the structure of *R*:

LEMMA 2.7. (a) If I is a proper ideal of R, then $I^2 = 0$.

If $2R \neq 0$, then \hat{R} is simple. (b)

PROOF.(a) If I is a proper ideal of R, then

 $d(I^2) \subset d(I)I + I d(I) \subset I,$

hence by Lemma 2.3, $I^2 = 0$ as *I* cannot contain any invertible elements. Suppose $2R \neq 0$ and let $I \neq 0$ be a proper ideal of R, then by Lemma 2.3, there is a (b)

 $b \in I$ such that $d(b) \neq 0$, so d(b) is invertible. Now, since $b^2 = 0$ by (a)

 $0 = d^{2}(b^{2}) = b d^{2}(b) + 2d(b)^{2} + d^{2}(b)b.$

in consequence of which, $2d(b)^2 \in I$, hence

$$0 = (2d(b)^{2})^{2} = 4d(b)^{4}.$$

Since d(b) is invertible we have $2^2 = 4 = 0$, so, by Lemma 2.4, 2R = 0, in contradiction to $2R \neq 0$. Therefore if $2R \neq 0$, R is simple.

By combining Lemmas 2.6 and 2.7 we see that if $2R \neq 0$, then R = D or $R = D_2$.

for any division ring D and every non-zero reverse derivation, d, of D we certainly have that d(x) = 0or d(x) is invertible for every $x \in R$. For D_{2} , under what conditions on D, is there a non-zero reverse derivation d with this property ? to answer this question we need to analyze the reverse derivation of the 2×2 matrices over an arbitrary ring. In the two lemmas we assume that S is any ring with 1, R = S₂, the ring of 2×2 matrices over S and d is any reverse derivation of R.

LEMMA 2.8. Let S be any ring with 1 and let $R = S_2$. If d is a reverse derivation of R, then there exists $\alpha, \beta, \gamma \in S$ such that:

$$d(\mathbf{e}_{11}) = \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix}, \ d(\mathbf{e}_{12}) = \begin{pmatrix} -\beta & \gamma \\ 0 & \beta \end{pmatrix}, \ d(\mathbf{e}_{21}) = \begin{pmatrix} -1 & 0 \\ -\gamma & 1 \end{pmatrix}, \ d(\mathbf{e}_{22}) = \begin{pmatrix} 0 & -\alpha \\ -\beta & 0 \end{pmatrix}$$

and for $a \in S$

and, for $a \in S$,

$$d\begin{pmatrix} a & 0\\ 0 & a \end{pmatrix} = \begin{pmatrix} f(a) & 0\\ -(a\beta - \beta a) & f(a) - a\gamma + \gamma a \end{pmatrix}$$

Since its proof is obtained by a straight-forward computation, we omit the proof. We use the formulas in Lemma 2.8 to prove the following fact inter-relating d and f: LEMMA 2.9. Let R, S, d, and f be as in Lemma 2.8. Then d is inner on R if and only if f is inner on S.

PROOF. If d is the inner derivation on R induced by $\begin{pmatrix} s & t \\ u & v \end{pmatrix}$, where s, t, u, $v \in S$, then it is immediate

that f(x) = xs - sx for all $x \in S$, hence f is inner on S. Conversely, if f is the inner derivation on S defined by f(x) = xr - rx, where $r \in S$, then

$$d(T) = T \begin{pmatrix} r & 0 \\ -\beta & r - \gamma \end{pmatrix} - \begin{pmatrix} r & 0 \\ -\beta & r - \gamma \end{pmatrix} T$$

for all $T \in R$, where β, γ are as in Lemma 2.8. This is verified by noting that *d* is the inner derivation induced by $\begin{pmatrix} r & 0 \\ -\beta & r-\gamma \end{pmatrix}$ agree on all matrix units and on the elements of *S*, hence on all of *R*.

Now we return to our original situation, assuming that *R* is a ring with 1 and a reverse derivation $d \neq 0$ such that for each $x \in R$ either d(x) = 0 or d(x) is invertible. We shall characterize those *D* for which $R = D_2$ has such a reverse derivation, at least when the characteristic of *D* is not 2. To do so we need LEMMA 2.10. If $R = D_2$ and $2R \neq 0$, then *d* is inner.

PROOF. Given $d, f, \alpha, \beta, \gamma$ be as in Lemma 2.8. Then, by Lemma 2.9, it is enough to prove f is inner on D. If $a, b, c, e \in D$, then by Lemma 2.8 and by the multiplicative law for reverse derivation we have

(1)
$$d\begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} f(a) - b\beta - c & f(b) + a\alpha + b\gamma - e\alpha \\ f(c) + \beta a & -e\beta - \gamma c & f(e) - e\gamma + \gamma e + \beta b + c \end{pmatrix}.$$

By (1) we have for $a \in D$ that

$$d\begin{pmatrix} a & 0\\ f(a) & a \end{pmatrix} = \begin{pmatrix} 0 & 0\\ u & v \end{pmatrix}$$

Where

$$u = f(f(a)) + \beta a - a\beta - \gamma f(a) \text{ and } v = f(a) - a\gamma + \gamma a + f(a).$$

Since $\begin{pmatrix} 0 & 0 \\ u & v \end{pmatrix}$ is not invertible we must have u = v = 0. thus v = 0 gives us

(2)
$$0 = v = f(a) - a\gamma + \gamma a + f(a).$$
which gives us

 $2f(a) = a \gamma - \gamma a$

Since char $D \neq 0$, dividing by 2 we see that *f* is the inner derivation on *D* induced by $\frac{1}{2}(\gamma)$. The condition:"*D* does not contain all quadratic extensions of *Z*"

will come up. By this we mean that there are elements δ and σ in Z such that the polynomial $t^2 + \delta t + \sigma$ has no root in

LEMMA 2.11. If *D* is a division ring then $R = D_2$ has reverse inner derivation $d \neq 0$ such that for all $x \in R$ either d(x) = 0 or d(x) is invertible if and only if *D* does not contain all quadratic extensions of *Z*. PROOF.Suppose that *R* has such a reverse inner derivation induced by the matrix $M \in R$. We claim that *M* cannot be a diagonal matrix; for if

$$M = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \text{ where } a, b \in D, \text{ computing}$$
$$e_{12}M - Me_{12} = \begin{pmatrix} 0 & b - a \\ 0 & 0 \end{pmatrix}$$

we have, by our basic hypothesis, that b = a Computing

$$\begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} M - M \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} c a - a c & 0 \\ 0 & 0 \end{pmatrix} ,$$

For all $c \in D$, we get that $a \in Z$. Hence $M \in Z$, whence d = 0, contrary to hypothesis. Since M is not diagonal there exists an invertible matrix $T \in D_2$ such that

$$TMT^{-1} = \begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix}$$
 where $\alpha, \beta \in D$.

The reverse inner derivation induced by $T M T^{-1}$ also has the property that all its values are 0 or invertible. we may assume that *d* is induced by $\begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix}$, $\alpha, \beta \in D$.

If $\gamma \in D$ then

$$d\begin{pmatrix} \gamma & 0\\ 0 & \gamma \end{pmatrix} = \begin{pmatrix} 0 & 0\\ \gamma \alpha - \alpha \gamma & \gamma \beta - \beta \gamma \end{pmatrix}$$

which is not invertible, therefore $\alpha \gamma = \gamma \alpha$, $\beta \gamma = \gamma \beta$. In short, α and β are both in Z. Since

$$d\begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix} = 0, \text{ by [Lemma 1, [12]], we have that } \begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix} \text{ is invertible, hence } \alpha \neq 0.$$

For $\gamma \in D$,

$$d\begin{pmatrix} 0 & 1 \\ 0 & \gamma \end{pmatrix} = \begin{pmatrix} \alpha & \beta - \gamma \\ \gamma \alpha & -\alpha \end{pmatrix}$$

cannot be 0 by [Lemma 1, [12]], so is invertible. This gives us that

$$(\gamma^2 - \beta \gamma - \alpha) \alpha \neq 0$$
 for all $\gamma \in D$.

In other words the quadratic polynomial $t^2 - \beta t - \alpha$ over Z has no root in D, and so D does not contain all quadratic extensions of Z.

Conversely, if *D* does not contain all quadratic extensions of *Z* there exist α , $\beta \in Z$, with $\alpha \neq 0$, such that $\alpha x^2 - \beta x - 1$ has no solution in *D*.

Let *d* be a reverse inner derivation of D_2 induced by $\begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix}$. We claim that every non-zero value of *d* is invertible. Let *a*, *b*, *c*, and *e* be in *D*; then

$$d\begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} \alpha b - c & a - e + \beta b \\ \alpha (e - a) - \beta c & c - \alpha b \end{pmatrix}.$$

if we let $m = \alpha b - c$ and $n = a - e + \beta b$ then

 $\alpha(e-a) - \beta c = -\alpha n + \beta m$, and

$$d\begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} m & n \\ -\alpha n + \beta m & -m \end{pmatrix}$$

Suppose, for the moment, that m = 0; in that case

$$d\begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} 0 & n \\ -\alpha n & 0 \end{pmatrix}$$

which is either 0 or invertible, since $\alpha \neq 0$. If, on the other hand, $m \neq 0$ then

$$d \begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} m & n \\ -\alpha n + \beta m & -m \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \begin{pmatrix} 1 & w \\ -\alpha w + \beta & -1 \end{pmatrix}$$

where $w = m^{-1}e$. Since $m \neq 0$, $d \begin{pmatrix} a & b \\ c & e \end{pmatrix}$ is invertible if and only if $\begin{pmatrix} 1 & w \\ -\alpha w + \beta & -1 \end{pmatrix}$ is invertible, that is, if and apply if

invertible, that is, if and only if

$$-1 - w(-\alpha w + \beta) \neq 0$$

However, by our choice of α and β , $\alpha w^2 - \beta w - 1 = 0$ for all $w \in D$. Thus *d* is a reverse inner derivation of D_2 all of whose non-zero values are invertible.

The only piece that remains in order to prove our main theorem is the case where 2R = 0 and R is neither D nor D_2 . We handle this case with

LEMMA 2.12. If R is not simple then $R = D[x]/(x^2)$, where char D = 2, d(D) = 0, d(x) = 1 + ax for some a in Z, the center of D; moreover, d is not inner.

PROOF. By Lemmas 2.6 and 2.7, 2R = 0, all proper ideals of R have square zero, and all proper ideals of R are both minimal and maximal. As a result, we easily obtain that R contains a unique (left, right, two-sided) ideal M and $M^2 = 0$. Therefore, as in the proof of Lemma 2.6, R = M + d(M), hence if $r \in R$ there exist m, $n \in M$ such that d(r) = m + d(n). Consequently, d(r - n) = m $\in M \cap d(R) = 0$ and so, if $D = \ker d$ then, by Lemma 2.1, D is a division ring and R = D + M. By the uniqueness of M, if $0 \neq x \in M$ then R = D + Dx and thus $sd(x)s^{-1} = s + tx$ where $s, t \in D$ and $s \neq 0$. Since d(D) = 0, if we replace x by sx, we may assume d(x) = 1 + ax for some $a \in D$.

If $s \in D$, we can use the facts M = Rx, $M^2 = 0$, d(s) = 0, and d(x) = 1 + ax to obtain

$$0 = d((sx)^2) = d(sx)sx + sxd(sx) = (1 + ax)s^2x + sx(1 + ax)s = s^2x + sxs = s(sx + xs).$$

If $s \neq 0$, s is invertible, hence $xs = sx$ and x is in the center of R. Therefore $R = D[x]/(x^2)$.

Now, if $s \in D$ then sx + xs = 0, thus

0 = d(sx + xs) = (1 + ax) s + s (1 + ax) = axs + sax = (as + sa)x.

Since all non-zero elements of *D* are invertible in *R*, as + sa = 0, hence *a* is in the center of *D*. Finally, since $x \in M$ and $d(x) \notin M$, it is clear that *d* is not inner.

Results

We can now prove our main result, which is the theorem stated at the outset, and which we record as

THEOREM 3.1. Let *R* be a ring with 1 and $d \neq 0$ a reverse derivation of *R* such that, for each $x \in R$, d(x) = 0 or d(x) is invertible in *R*. Then *R* is either

1. a division ring *D*, or

2. D_2 , or

3. $D[x]/(x^2)$, where char D = 2, d(D) = 0 and d(x) = 1 + ax for some *a* in the center *Z* of *D*. Furthermore, if $2R \neq 0$ then $R = D_2$ is possible if and only if *D* does not contain all quadratic extensions of *Z*, the center of *D*.

PROOF. If R is simple, then by Lemma 2.6 either R = D or $R = D_2$.

Furthermore if $2R \neq 0$, by Lemma 2.10 D_2 has such a reverse derivation if and only

if it has a reverse inner derivation with the special property. However Lemma 2.11 tells us that D_2 has such a reverse inner derivation if and only if D does not contain all quadratic extensions of Z.

If R is not simple, then by applying Lemma 2.12 we obtain our result.

One question concerning Theorem 3.1 remains. Namely, in the case $R = D_2$ is it necessary

to assume $2R \neq 0$ in order to prove that *T* is inner?

We now present an example that shows if 2R = 0 then $R = D_2$ can have a reverse outer derivation *d* such that d(x) = 0 or d(x) is invertible, for all $x \in R$.

Example 3.2. Take $R = M_2(F)$ for F = GF(2)(x) <<y>, the field of (finite) Laurent series with coefficients in the rational function field in one variable over GF(2). Define a reverse derivation δ on F by extending the action $\delta(f(x)) = 0$ and $\delta(y) = xy$. If $a \in F$ is written $a = a_E + a_o$, where a_E is the series of even powers of y appearing in a, and $a_o = a - a_E$, then $\delta(a) = ax_o$. Let A =

 $\begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \in M_2(F) \text{ and set } d = d_A + \overline{\delta} \text{ where } d_A \text{ is a reverse inner derivation of } M_2(F)$

induced by A and δ is the reverse derivation of $M_2(F)$ defined by

$$\overline{\delta} \begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} xa - ax + \delta(a) & \delta(b) \\ xc - cx + \delta(c) & \delta(e) \end{pmatrix}$$

Not that d is not inner since

$$d\begin{pmatrix} y & 0\\ 0 & y \end{pmatrix} = \begin{pmatrix} xy & 0\\ 0 & xy \end{pmatrix}$$

An easy computation shows

$$d\begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} b + c + xa_o & a + e + xb_E \\ a + e + xc_E & b + c + xe_o \end{pmatrix}.$$

It can now be shown by a direct, if somewhat tedious computation that d has invertible values; and we omit the details.

We shall now consider a situation closely related to the one we have been discussing.

THEOREM 3.3. Let *R* be a ring with 1 and suppose that $d \neq 0$ is a reverse derivation of *R* such that $d(L) \neq 0$ for some an ideal *L* of *R* and d(x) = 0 or d(x) is invertible for every $x \in L$. Then R = D, or R = D

₂, or $R = D[x]/(x^2)$ where 2R = 0 for some division ring D.

PROOF. Suppose that $L \neq 0$ is an ideal of *R* such that $d(L) \neq 0$, and such that for every $x \in L$ either d(x) = 0 or d(x) is invertible. Since we already know the answer when L = R, we suppose that $L \neq R$. We wish to determine the structure of *R*. Since the arguments will be similar to the ones we have given earlier we give then more sketchily here.

Let $0 \neq x \in R$ be such that d(x) = 0 then, since $xL \subset L$ and d(xL) = d(L)x we easily get the result of Lemma 2.1, namely, that x is invertible in R. This immediately implies the results of Lemmas 2.3 and 2.4, that is, that if d(W) = 0 for some left ideal W of R then W = 0, and if R have 2-torsion then 2R = 0.

As before, from our assumptions on L, L + d(L) = R, hence if W is a proper ideal of R containing L and $w \in W$ then w = a + d(b), for some $a, b \in L$. Once again,

 $w - a = d(b) \in W \cap T(L) = 0$

and so, W = L. By this argument and our analog to Lemma 2.3, L and every non-zero ideal of R contained in L are maximal, hence L is both minimal and maximal.

We now examine $l(L) = \{x \in R | xL = 0\}$. Since 1 = a + d(b), for some $a, b \in L$, if $x \in l(L)$ then

 $x = (a + d(b)) x = ax - bd(x) + d(xb) = ax - bd(x) \in L$

and so, by the minimality of L, l(L) = 0 or l(L) = L. Suppose l(L) = 0, then R is semiprime for if $I^2 = 0$ and $I \neq 0$ we obtain the contradiction $0 = I^2 L = I(IL) = IL = L$. It easily follows that R is simple, for if $I \neq 0$ then

 $0 \neq d(\mathbf{I}^2 L) \subset d(L) \cap I,$

hence I = R. By Wedderburn's theorem, R = D or $R = D_2$.

On the other hand, suppose l(L) = L, that is $L^2 = 0$. By repeated use of the maximality and minimality of L we obtain that L is the unique ideal of R, for if $I \neq L$ is an ideal of R then R = I + L and so,

$$L = LR = LI + L^2 = LI \subset I,$$

a contradiction. It is now clear that *L* is the unique (left, right, two-sided) ideal of *R*. Now, as in Lemma 2.7, if $b \in L$ such that $d(b) \neq 0$ then

$$0 = d^{2}(b^{2}) = b d^{2}(b) + 2d(b)^{2} + d^{2}(b)b,$$

hence $2d(b)^2 \in L$ and so $4d(b)^4 = 0$. Once again, 2R = 0. Let $x \in R$ and $y \in L$ such that $d(x) \in L$ and $d(y) \neq 0$; in this case d(xy) = d(y)x + yd(x) = d(y)xand so, x is 0 or invertible. Therefore $D = \{x \in R | d(x) \in L\}$ is a division ring and by the identical argument used in the proof of Lemma 2.12 we obtain that $R = D[x]/(x^2)$ where

d(x) = 1 + ax for some a in the center of D.

Hamil & Majeed

References:

- 1. Jacobson, N.1964. Structure of rings. Amer. Math. Soc. Coll. Publ.
- **2.** Vukman J.**1997**. Centralizers on prime and semiprime rings. *Comment. Math. Univ. Carolin*,38(2), pp: 231-240.
- **3.** Argac, N. and Inceboz, H.G.**2009**. Derivations of prime and semiprime rings. *J. Korean Math. Soc.*,46(5), pp: 997-1005.
- 4. Bresar, M. and Vukman, J.1989. On some additive mappings in rings with involution. *Aequations math*, 38, pp: 178-185.
- 5. Samman, M., Alyamani, N. 2007. Derivations and reverse derivations in semiprime rings. *International Mathematical Forum*, 2(39), pp: 1895-1902.
- 6. Jaya, Subba Reddy, C. and Hemavathi, K. 2014. Right reverse derivations on prime rings. *International Journal of Research in Engineering & Technolog*, 2(3), pp: 141-144.
- 7. Posner, E. 1957. Derivations in prime rings. Proc. Amer. Math. Soc, 8, pp: 1093-1100.
- 8. Samman, M.S. and Thaheem, A.B. 2003. Derivations on semiprime rings. Int. J. of Pure and Applied Mathematics, 5(4), pp: 469-477.
- **9.** Hongan, M.**1997**. A note on semiprime rings with derivations. *Intrnat. J. Math. Sci.*, 20(2), pp: 413-415.
- 10. Daif, M.N. and Bell, H. E. 1992. Remark on derivations on semiprime rings. *Intrnat. J. Math. Sci.*, 15(1),pp: 205-206.
- 11. Hamdi, A.D. 2007. (σ, τ) derivations on semiprime rings. Msc. Thesis, Department of Mathematics, College of Science, University of Baghdad.
- 12. Bergen J., Herstein, I.N. and Lanski, C.1983. Derivations with invertible values. *Can. J. Math.*, XXXV(2), pp: 300-310.