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Abstract 

    In this paper, we will  prove the following theorem, Let  R be a ring with 1 having 

a reverse derivation d ≠ 0  such that, for each x R, either d(x) = 0 or d(x) is 

invertible in R, then R must be one of the following:  (i) a division ring D, (ii) D 2 , 

the ring of 2×2 matrices over D,  (iii) D[x]/(x )2
 where char D = 2, d (D) = 0 and 

d(x) = 1 + ax for some a in the center Z of D. Furthermore, if 2R ≠ 0 then R = D 2 is 

possible if and only if D does not contain all quadratic extensions of Z, the center of 

D. 
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  الخلاصة

بحيث,  d 0 ≠ تمتمك اشتقاق عكسي 1حمقة مع  Rفي هذا البحث سنقوم ببرهان المبرهنة التالية. لتكن     
Rلكل x  اما , d(x) = 0 اوd(x)  نظير في  لهايكونR فان .R   ( 1) :يجب ان تكون واحدة من الاتي

][/)( D ( ,3)عمى  2 × 2المصفوفات حمقة  ,D( ,2 )2Dحمقة القسمة  2xxD  حيثchar D = 
2 ,d(D) = 0  وd(x) = 1 + ax  لبعضa  في المركزZ  لD ,2اذا  . بالاضافة الى ذلكR ≠ 0  فان 

R = 2D  . D ل  Zلا تحتوي عمى كافة توسعات  الدرجة الثانية من المركز  Dاذا وفقط اذا    
 

Introduction  
    Throughout,  R will represent a ring with 1. Recall that a ring R is called prime if aRb = 0 implies  a 

= 0 or b = 0; and it is called semiprime if aRa = 0 implies a = 0 [1]. A ring R is said to be 2-torion free, 

if whenever  2a = 0, with a   R, then a = 0 [2]. An additive mapping d from R into itself is called a 

derivation if d(xy) =  d(x)y + xd(y) holds for all x,y R [3]. Bresar and Vukman [4]  have introduced 

the notion of a reverse derivation as an additive mapping d from R into itself satisfying d(xy) = d(y)x + 

yd(x) holds for all x,y R. Obviously, if R is commutative, then both derivation and reverse derivation 

are the same. The reverse derivations on semiprime rings have been studied by Samman and Alyamani 

[5]. A derivation d is called inner in case there exists a R such that d(x) = [a, x] holds for all x R . 

In a recent paper [6] the authors proved that in case R is a prime ring with a non-zero right reverse 

derivation d and U be the left ideal of R then R is commutative. Some results concerning derivations in 

prime and semiprime rings can be found in [7-11]. 
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 Recently Bergen, Herstein and Lanski [12] studied the structure of a ring  R with a derivation d ≠ 0 

such 

 that, for each x R, d(x) = 0 or d(x) is invertible. They proved that, except for a special case which 

occurs when 2R = 0, such a ring must be either a division ring D or the ring D 2  of 2 × 2 matrices over 

a division   

ring. In this paper we address ourselves to a similar problem of rings but with reverse derivations, 

namely:  

suppose that R is a ring. If d ≠ 0 is a reverse derivation of R such that for every x R, d(x) = 0 or d(x) 

is invertible in R, what can we conclude about R? We shall prove that R must be rather special. More 

precisely we shall prove the following: 

THEOREM. Let R be a ring with 1 and d ≠ 0 a reverse derivation of R such that, for each x R, d(x) = 0   

or d(x) is invertible in R. Then R is either 

1. a division ring D, or  

2.  D 2 , or 

3. D[x]/( )2x  where char D = 2, d(D) = 0 and d(x) = 1 + ax for some a in the center Z of D.  

Furthermore, if 2R  ≠ 0 then R = D 2  is possible if and only if D does not contain all quadratic 

extensions of Z, the center of D. 

We shall also show that if R = D 2  then d  must be inner, provided 2R ≠ 0;  however, d  may fail to be 

inner when 2R = 0. In addition, we shall show that if R = D[x]/( )2x , then d cannot be inner. 

   Finally, we consider a similar situation, one in which d(x) = 0 or is invertible not for all x R, but 

for all x in a suitable subset. In that context we also get results that says that R = D, R = D 2 , or R = 

D[x]/( )2x .  

In what follows, R will be a ring with 1 and d ≠ 0 will be a reverse derivation of R such that d(x) = 0 or 

is invertible, for all x R. 

Preliminaries 

We begin with the following 

LEMMA 2.1. If d(x) = 0, then either x = 0 or x is invertible. 

PROOF. Suppose that x ≠ 0; since d ≠ 0 there is y   R such that d(y) ≠ 0. Hence d(y) is invertible. Now 

d(yx) = xd(y) ≠ 0 since x ≠ 0 and d(y) is invertible; therefore d(yx) is invertible,   that is, xd(y) is 

invertible. Thus x  is invertible. 

LEMMA 2.2. If L ≠ R is a left ideal of  R, then L   d(R) = 0. 

PROOF.  We may assume that L ≠ 0;  let 0 ≠ x   L   d(R), then x = d(y) for some y   R;  therefore 

d(y) is invertible, then L contains invertible element, implying that L = R, in contradiction to L ≠ R. 

As an easy consequence of  Lemma 2.1 we have  

LEMMA 2.3. If L ≠ 0 is a one-sided ideal of  R , then d( L) ≠ 0. 

PROOF. Since d≠0 the lemma is certainly true if L = R. Suppose that L ≠ R, L cannot contain invertible 

elements. If 0 ≠ a L, then by Lemma 2.1, d(a) ≠ 0 since a is not invertible. Thus d( L) ≠ 0; in fact we 

saw that d  is not  zero on the non-zero elements of L. 

Another immediate consequence of Lemma 2.1 is 

LEMMA 2.4. If 2x = 0 for some x ≠ 0 in R, then 2R = 0. 

PROOF. Since 2x = 0, d(2x) = 2d(x) = 0. If d(x) = 0 then, by Lemma 2.1, x is invertible and since 

 2x = 0 we get 0 = (2x)
1x  = 2 and so 2R = 0. On the other hand, if d(x) ≠ 0 then d(x) is invertible and 

since 2d(x) = 0 we get, once again, that 2R = 0. 

LEMMA 2.5.  If L is an ideal of R, then L + d(L) is also an ideal of R. 

PROOF. It is clear. 

LEMMA 2.6. If L is a proper ideal of R, then L is both minimal and maximal. 

PROOF. It certainly suffices to show that every proper ideals of R is maximal. Let L   T  be proper  

ideals of R, by Lemma 2.5, L + d(L)  is also an ideal of R. Since, by Lemma 2.3, d(L)  ≠ 0, and so L + 

d(L) contains invertible elements, we must have L + d(L) = R. Therefore if t   T there exist a ,b   L  

such that t  = a + d(b). Consequently, d(b) = t - a    T   d(L)  = 0 therefore t = a  L. Thus L = T 

and  L is maximal. 
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We can now narrow in on the structure of R: 

LEMMA 2.7. (a) If I is a proper ideal of  R,  then  I 
2

=  0. 

(b) If 2R ≠ 0, then R is simple. 

PROOF.(a) If I is a proper ideal of R, then  

 d( I ,)()()2 IIdIIId   

hence by Lemma 2.3, I
2

= 0 as I cannot contain any invertible elements. 

(b) Suppose 2R  ≠ 0 and let I ≠ 0 be a proper ideal of R, then by Lemma 2.3, there is a 

b   I such that d(b)  ≠ 0, so d(b) is invertible. Now, since b 02   by (a)  

 

0 = d ,)()(2)()( 22222 bbdbdbdbb   

 

in consequence of which, 2d(b)
2

,I hence 

  

0 = (2d(b)
22 )  = 4d(b)

4
. 

  

Since d(b) is invertible we have 2
2

= 4 = 0, so, by Lemma 2.4, 2R  = 0, in contradiction to 

2R≠0. Therefore if 2R≠0, R is simple. 

By combining Lemmas 2.6 and 2.7we see that if 2R ≠ 0, then R = D or R = D 2 . 

for any division ring D and every non-zero reverse derivation, d, of D we certainly have that d(x) = 0 

or d(x) is invertible for every x   R. For D 2 , under what conditions on D, is there a non-zero reverse 

derivation d  with this property ? to answer this question we need to analyze the reverse derivation of 

the 2 × 2 matrices over an arbitrary ring.  In the two lemmas we assume that S is any ring with 1, R = 

S 2 , the ring of 2 × 2 matrices over S and d is any reverse derivation of R.  

LEMMA 2.8. Let S be any ring with 1 and let R = S 2 . If d is a reverse derivation of R, then there exists 

 ,  ,    S such that: 

 

d(e 11 )= 








0

0




 , d(e 12 ) = 













0
 , d(e 21 ) = 













1

01


 ,   d(e 22 ) = 













0

0




  

and, for a   S,   

 

d 








a

a

0

0
 = 









 aaafaa

af

 )()(

0)(
  . 

 

Since its proof is obtained by a straight-forward computation, we omit the proof. 

We use the formulas in Lemma 2.8 to prove the following fact inter-relating d and f: 

LEMMA 2.9. Let R, S, d, and f be as in Lemma 2.8. Then d is inner on R if and only if f is inner on S. 

PROOF. If d is the inner derivation on R  induced by 








vu

ts
, where s, t, u, v   S, then it is immediate 

that f (x)  = xs - sx for all x  S, hence f is inner on S. 

Conversely, if f is the inner derivation on  S  defined by f (x) = xr -rx, where r    S, then  

 

d( T ) = T
r

r

r

r
T 




















 

00
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for all T R , where  ,  are as in Lemma 2.8.  This is verified by noting that d  is the inner 

derivation induced by 








  r

r 0
 agree on all matrix units and on the elements of S, hence on all 

of R. 

Now we return to our original situation, assuming that R is a ring with 1 and a reverse derivation d ≠ 0 

such that for each x R  either d(x) = 0 or d(x) is invertible. We shall characterize those D for which 

R = D 2  has such a reverse derivation, at least when the characteristic of D is not 2. To do so we need 

LEMMA 2.10.If R = D 2  and 2R ≠ 0, then d is inner. 

PROOF. Given d, f,  ,,  be as in Lemma 2.8. Then, by Lemma 2.9, it is enough to prove f is inner 

on D. If a, b, c, e D , then by Lemma 2.8 and by the multiplicative law for reverse derivation we 

have  

 

(1) d 





















cbeeefceacf

ebabfcbaf

ec

ba





)()(

)()(
 . 

 By  (1)  we have for a D  that  

 

           d 

















vuaaf

a 00

)(

0
 

 

Where  

 

u = f ( )())( afaaaf      and  

v = f ( )() afaaa   . 

 

Since  








vu

00
 is not invertible we must have u = v = 0. 

thus v = 0 gives us 

 

(2)         0 =  v = f ( )() afaaa   . 

   which gives us 

 

2f (a) = a a   

Since char D ≠ 0, dividing by 2 we see that f is the inner derivation on D induced by ½( ) . The 

condition:"D does not contain all quadratic extensions of Z"  

will come up. By this we mean that there are elements   and   in Z such that the polynomial t

  t2
 has no root in  

LEMMA 2.11. If D is a division ring then R = D 2  has reverse inner derivation d  ≠ 0 such that for all x 

  R either d(x) = 0 or d(x) is invertible if and only if D does not contain all quadratic extensions of Z. 

PROOF.Suppose that R has such a reverse inner derivation induced by the matrix M R . We claim 

that M cannot be a diagonal matrix; for if  

 

M = 








b

a

0

0
, where a, b D , computing 

e 1212 eMM   = 






 

00

0 ab
 



Hamil & Majeed                Iraqi Journal of Science, 2014, Vol 55, No.4B, pp:1953-1961 

1957 

we have, by our basic hypothesis, that b = a Computing 

 








 



















00

0

00

0

00

0 caacc
MM

c
  , 

 

For all c   D, we get that a   Z. Hence M    Z, whence d = 0, contrary to hypothesis. Since M is not 

diagonal there exists an invertible matrix T   D 2  such that  

 

T M T 











10
1

     where D, . 

 

The reverse inner derivation induced by T M T 
1
 also has the property that all its values are 0 or 

invertible. we may assume that d  is induced by  










10
   , D, . 

If  D  then  

 

d 












0

0









 

00
 

 

which is not invertible, therefore .,   In short,  and    are both in Z. 

Since 

 

 d ,0
10











by [ Lemma 1, [12] ] , we have that  











10
 is invertible, hence   ≠ 0.  

 For D , 

 

 d 

























0

10
  

 

cannot be 0 by [ Lemma 1, [12] ] , so is invertible. This gives us that 

 

 )( 2    ≠ 0   for all D . 

 

In other words the quadratic polynomial t   t2
  over Z has no root in D, and so D does not 

contain all quadratic extensions of Z.  

    Conversely, if D does not contain all quadratic extensions of Z there exist ,, Z  with   ≠ 0, 

such that 12  xx  has no solution in D. 

Let d  be a reverse inner derivation  of D 2 induced by .
10










We claim that every non-zero 

value of  d  is invertible.  Let a, b, c, and e be in D; then  

 

  d 





















bccae

beacb

ec

ba





)(
 . 

 

if we let m  =  cb   and n  =  a – e + b  then  
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,)( mncae     and  

 

 d 



















mmn

nm

ec

ba


  . 

 

Suppose, for the moment, that m = 0; in that case 

 

 d 



















0

0

n

n

ec

ba


 

 

which is either  0 or invertible, since  ≠ 0. 

If, on the other hand, m ≠ 0 then  

 

 d 





































1

1

0

0

 w

w

m

m

mmn

nm

ec

ba
 

where w = m e1
.  Since m  ≠ 0, d 









ec

ba
is invertible if and only if  









 1

1

w

w
 is 

invertible, that is, if and only if 

 

-1 -  w(- ) w  ≠  0. 

However, by our choice of   and , 12  ww  = 0 for all w  D. Thus d  is a reverse inner  

derivation  of  D 2  all of whose non-zero values are invertible. 

The only piece that remains in order to prove our main theorem is the case where 2R = 0 and 

 R is neither D nor D 2 . We handle this case with 

 

LEMMA 2.12. If R is not simple then  R = D[x]/( x
2

), where char D = 2, d( D)=  0, d(x) = 1 + ax  for 

some a  in  Z, the center of D;  moreover, d  is not inner. 

PROOF. By Lemmas 2.6 and 2.7, 2R = 0, all proper ideals of R have square zero, and all proper  

 ideals of R are both minimal and maximal. As a result,we easily obtain that R contains a unique (left, 

right, two-sided) ideal M and M 
2

= 0. Therefore, as in the proof of Lemma 2.6, R = M + d(M), hence 

if r R  there exist m, n M  such that d(r) = m + d(n). Consequently, d(r – n) = m 

0)(  RdM   and so, if D = ker d then, by Lemma 2.1, D  is a division ring and R = D + M.  By 

the uniqueness of M, if 0 ≠ x M then R = D + Dx and thus sd(x)s
1

 = s + tx where s, t D  and s 

≠ 0. Since d(D) = 0, if we replace x by sx, we may assume d(x) = 1 + ax for some a D .  

If  s ,D  we can use the facts M = Rx, M 
2

= 0, d(s) = 0, and  d(x)  = 1 + ax   to obtain  

 

 0  =  d( (sx)
2

)  =  d(sx)sx + sxd(sx)  =  ( 1 + ax)s x2
 + sx(1 + ax)s  = s x2

 + sxs = s(sx + xs). 

If s  ≠  0, s is invertible, hence xs = sx and x is in the center of R. Therefore R = D[x]/(x
2

). 

 

Now, if  s D then   sx + xs  =  0, thus  

 

0 = d (sx + xs) = (1 +  ax) s + s ( 1 +  ax)  =  axs + sax  =  (as + sa)x. 

 

Since all non-zero elements of D are invertible in R, as + sa  = 0, hence a is in the center of D. 

Finally, since x M and d(x) M, it is clear that d is not inner. 
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Results 

    We can now prove our main result, which is the theorem stated at the outset, and which we record 

as 

THEOREM 3.1.  Let R be a ring with 1 and d  ≠ 0 a reverse derivation of R such that, for each x  

R, d(x) = 0 or d(x)  is invertible in R. Then R is either  

1. a division ring D, or  

2.  D 2 , or 

3.  D[x]/(x
2

). where char D = 2, d(D) = 0 and  d(x) = 1 + ax for some a  in the center Z of D. 

Furthermore, if 2R ≠ 0 then R = D 2  is possible if and only if D does not contain all quadratic 

extensions of Z, the center of D. 

PROOF.  If  R  is simple,  then by Lemma 2.6 either  R  =  D  or  R  =  D 2 . 

Furthermore if  2R ≠ 0, by Lemma 2.10 D 2   has such a reverse derivation if and only  

if it has a reverse inner derivation  with the special property. However Lemma 2.11 tells us that D 2  

has such a reverse inner derivation if and only if D does not contain all quadratic  

extensions of Z.  

If R is not simple, then by applying Lemma 2.12 we obtain our result. 

One question concerning Theorem 3.1 remains. Namely, in the case R = D 2  is it necessary 

 to assume 2R ≠ 0 in order to prove that T is inner?  

We now present an example that shows if 2R = 0 then R = D 2  can have a reverse outer  derivation d 

such that d(x) = 0 or d(x)  is invertible , for all x R. 

Example 3.2. Take R = M 2 (F) for F = GF(2) (x) <<y>>, the field of (finite) Laurent series with 

coefficients in the rational function field in one variable over GF(2). Define a reverse derivation   on 

F by extending the action  (f (x)) = 0 and  (y) = xy. If a F is written a = a oE a , where a E  is 

the series of even powers of y appearing in a, and a Eo aa  , then  (a) = ax o . Let  A = 










01

1x
   M 2 ( F )  and set d  =  d A  where d A  is a reverse inner derivation of  M 2 (F)  

induced by A  and   is the reverse derivation of M 2 (F) 

  defined by  

 

 





















)()(

)()(

eccxxc

baaxxa

ec

ba




  

 

Not that d  is not inner since 

 

 d 

















xy

xy

y

y

0

0

0

0
 

 

An easy computation shows 

 

d 





















oE

Eo

xecbxcea

xbeaxacb

ec

ba
. 

 

It can now be shown by a direct, if somewhat tedious computation that d has invertible values; and we 

omit the details. 

We shall now consider a situation closely related to the one we have been discussing. 
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THEOREM 3.3. Let R be a ring with 1 and suppose that d  ≠ 0 is a reverse derivation of R such that d(L)  

≠  0 for some an  ideal L of R and d(x) = 0 or d(x)  is invertible for every x L . Then R = D, or R = D

2 , or R = D[x]/(x )2
 where 2R = 0 for some division ring D. 

PROOF. Suppose that L ≠ 0 is an ideal of R such that d(L) ≠ 0, and such that for every x L either d(x) 

= 0 or d(x) is invertible. Since we already know the answer when L = R, we suppose that L ≠ R. We 

wish to determine the structure of R. Since the arguments will be similar to the ones we have given 

earlier we give then more sketchily here.  

Let 0 ≠ x R be such that d(x) = 0 then, since xL L  and d(xL) = d(L)x we easily get the result of 

Lemma 2.1, namely, that x is invertible in R. This immediately implies the results of Lemmas 2.3 and 

2.4, that is, that if d(W) = 0 for some left ideal W of R then W  = 0, and if R  have 2-torsion then 2R = 

0.  

As before, from our assumptions on L, L + d (L) = R, hence if W is a proper ideal of R containing L 

and w W  then w = a + d (b), for some a, b L . Once again,  

 

w – a = d(b) 0)(  LTW   

 

and so, W = L. By this argument and our analog to Lemma 2.3, L and every non-zero ideal of R 

contained in L are maximal, hence L is both minimal and maximal. 

We now examine l (L) = {x 0|  xLR }. Since 1 = a  + d(b), for some a, b ,L  

 if x   l( L ) then  

 

x = (a  + d (b)) x = ax – bd(x) + d(xb) = ax – bd(x) L  

 

and so, by the minimality of L, l ( L) =  0 or l( L) = L.  

Suppose l( L)  =  0, then R  is semiprime for if  I 02   and  I  ≠ 0 we obtain the contradiction 0 = I 

LLILIIL  )(2
. It easily follows that R is simple, for if I  ≠ 0 then  

 

0 ≠ d(I ,)()2 ILdL   

 

hence I = R. By Wedderburn's theorem, R = D  or  R = D 2 . 

On the other hand, suppose l (L) = L, that is L 02  . By repeated use of the maximality and 

minimality of L we obtain that L is the unique ideal of R, for if  I ≠ L is an ideal of R  then 

 R = I + L and so, 

 

L = LR = LI + L
2

= LI  I, 

 

a contradiction. It is now clear that L is the unique (left, right, two-sided) ideal of R. Now, 

 as in Lemma 2.7, if b L  such that d(b) ≠ 0 then 

 

0 = d ,)()(2)()( 22222 bbdbdbdbb   

 

hence 2d(b) L2
and so 4d(b)

4
= 0. Once again, 2R = 0. Let x R and y L  such that  

d(x) L  and d(y) ≠ 0; in this case  

d(xy)  = d(y)x + yd(x)  = d(y)x 

and so, x is 0 or invertible. Therefore D = {x })(| LxdR   is a division ring and by the identical 

argument used in the proof of Lemma 2.12 we obtain that R = D[x]/(x
2

)  where 

 d(x) =  1 +  ax for some a  in the center of D.  
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