

On The Generalized Type and Generalized Lower Type of Entire Function in Several Complex Variables With Index Pair (p, q)

Aiman Abdali Jaffar*, Mushtaq Shakir A. Hussein
Department of Mathematics, College of science, Al-Mustansiriyah University, Baghdad, Iraq.

Abstract

In the present paper, we will study the generalized (p, q)-type and generalized lower (p, q)-type of an entire function in several complex variables with respect to the proximate order with index pair (p, q) are defined and their coefficient characterizations are obtained.

Keywords: Entire function, generalized type, generalized lower type,index pair.

حول اعمام النوع واعمام النوع الادنى لدالة كلية ذات متغيرات معقدة متعدةة مـع دليل الزوج

(p, q)

أيمن عبد علي جعفر *، مشتاق شاكر عبد الحسين
قسم الرياضيات ، كلية العلوم، الجامعة المستتصرية، بغداد، العراق

الخلاصة:

في بحثا هذا سوف ندرس اعمام النوع (p, $($) واعمام النوع الادنى (p, $)$ (p) لدالة كلية ذات
متغيرات معقدة متعددة بالنسبة الى تقريب الرتبة لدليل الزوج (p, q) من خلال تعريفها على
المعاملات الميزة.

1 Introduction

Kumar and Gupta [1] let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be an entire function $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in C^{n}$. Let G be a region in R_{+}^{n} (positive hyper octant) and let $G_{R} \subset C^{n}$ denote the region obtained from G by a similarity transformation about the origin, with ratio of similitude R. Let $d_{t}(G)=\sup _{z \in G}|z|^{t}$, where $|z|^{t}=\left|z_{1}\right|^{t_{1}}\left|z_{2}\right|^{t_{2}} \ldots\left|z_{n}\right|^{t_{n}}$, and let ∂G denote the boundary of the region G. Let
$f(z)=f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\sum_{t_{1}, t_{2}, \ldots, t_{n}=0}^{\infty} a_{t_{1} \ldots t_{n}} z_{1}^{t_{1}} \ldots z_{n}^{t_{n}}=\sum_{\|t\|=0}^{\infty} a_{t} z^{t},\|t\|=t_{1}+t_{2}+\cdots+t_{n}$, be the
power series expansion of the function $f(z)$. Let $M_{f, G}(R)=\max _{z \in G_{R}}|f(z)|$.
To characterize the growth of f, order ρ_{G} and type T_{G} of f are defined as .

[^0]$\rho_{G}=\lim _{R \rightarrow \infty} \sup \frac{\log \log M_{f, G}(R)}{\log R}$, and $T_{G}=\lim _{R \rightarrow \infty} \sup \frac{\log M_{f, G}(R)}{R^{\rho_{G}}}$.
For $R>0$, the maximum term $\mu_{f, G}(R)$ of entire function $f(z)$ is defined as (see [2] and [3])
$\mu_{f, G}(R)=\max _{\| t \mid \geq 0}\left\{\left|a_{t}\right| d_{t}(G) R^{|t|}\right\}$.
For entire function $f(z)=\sum_{\| t| |=0}^{\infty} a_{t} z^{t}$, A.A. Gol'dberg [4,Th.1] obtained the order and type in terms of the coefficients of its Taylor expansion as
$\rho_{G}=\lim _{\| t \mid \rightarrow \infty} \sup \frac{\|t\| \log \||t|}{-\log \left|a_{t}\right|}$
and
$$
\left(e \rho_{G} T_{G}\right)^{1 / \rho_{G}}=\lim _{\| t \mid \rightarrow \infty} \sup \left\{\left.| | t\right|^{1 / \rho_{G}}\left[\left|a_{t}\right| d_{t}(G)\right]^{1 / t|t|}\right\},\left(0<\rho_{G}<\infty\right)
$$
where $d_{t}(G)=\max _{r \in G}\left(r^{t}\right) ; r^{t}=r_{1}^{t_{1}} r_{2}^{t_{2}} \ldots r_{n}^{t_{n}}$.
The concept of (p, q)-order, lower order (p, q)-order, (p, q)-type and lower (p, q)-type of an entire function $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ having an index pair (p, q), was introduced by Juneja et al. ([5] , [6]). Thus $f(z)$ is said to be of (p, q)-order ρ_{G} and lower (p, q)-order λ_{G} if

$\lim _{R \rightarrow \infty} \sup \frac{\log ^{[p]} M_{f, G}(R)}{\log ^{[q]} R}=\begin{aligned} & \rho_{G}(p, q) \\ & \lambda_{G}(p, q)\end{aligned}$
where p and q are integers such that $p \geq q \geq 1$. If $b \leq \rho_{G}(p, q) \leq \infty$, where $b=1$, if $p=q$ and $b=0$ if $p>q$, then the (p, q)-type T_{G} and lower (p, q)-type t_{G} is given by
$\lim _{R \rightarrow \infty} \sup \frac{\log ^{[p-1]} M_{f, G}(R)}{\left(\log ^{[q-1]} R\right)^{\rho_{G}(p, q)}}=\frac{T_{G}(p, q)}{t_{G}(p, q)}$
and $\log ^{[m]} x=\exp ^{[-m]} x=\log \left(\log ^{[m-1]} x\right)=\exp \left(\exp ^{[-m-1]} x\right), m=0, \pm 1, \pm 2, \cdots$ provided that $0<\log ^{[m-1]} x<\infty$ with $\log ^{[0]} x=\exp ^{[0]} x=x$.

The growth of a function $f(z)$ can be studied in terms of its order ρ_{G} and type T_{G}, but these concepts are inadequate to compare the growth of those functions which are of the same order and of infinite type. Hence, for a refinement of the above growth scale, one may utilize proximate order the concept of which is [7] as follows:
A function $\rho_{G}(R)$ defined on $(0, \infty)$ is said to be a proximate order of an entire function with index pair (p, q) if it satisfies the properties: $\lim _{R \rightarrow \infty} \rho_{G}(R)=\rho_{G}$ and $\lim _{R \rightarrow \infty} \Lambda_{[q]}(R) \rho^{\prime}(R)=0$, where $\Lambda_{[q]}(R)=\log ^{[q]} R \ldots \log R . R$.
Now, we define the generalized (p, q)-type T_{G}^{*} and generalized lower (p, q)-type t_{G}^{*} of $f(z)$ with respect to a given proximate order $\rho_{G}(R)$ as
$\lim _{R \rightarrow \infty} \sup \frac{\log ^{[p-1]} M_{f, G}(R)}{\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}}=\stackrel{T_{G}^{*}}{t_{G}^{*}},\left(0 \leq t_{G}^{*} \leq T_{G}^{*} \leq \infty\right)$.
A proximate order $\rho_{G}(R)$ is called a proximate order of an entire function $f(z)$ with index (p, q) if T_{G}^{*} is non-zero and finite and the function $f(z)$ is said to be of perfectly regular (p, q) growth with respect to its proximate order $\rho_{G}(R)$ if $T_{G}^{*}=t_{G}^{*}$.
In the present paper we obtain coefficient characterizations of generalized $\quad(p, q)$-type T_{G}^{*} and generalized lower (p, q)-type t_{G}^{*} of the entire function $f(z)$.
By [7] $\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}$ is a monotonically increasing function of R for $0<R_{0}<R<\infty$, so we define a single valued real function $\chi(k)$ of k for $k>k_{0}$ such that

$$
\begin{equation*}
k=\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)-A} \Leftrightarrow \log ^{[q-1]} R=\chi(k) . \tag{1.3}
\end{equation*}
$$

Then we have the following :
Lemma 1.1. Let $\rho_{G}(R)$ be a proximate order with index pair (p, q) and let $\chi(k)$ be defined as in (1.3). Then
$\lim _{k \rightarrow \infty} \frac{d \log \chi(k)}{d \log k}=\frac{1}{\rho_{G}-A}$
and for every η with $o<\eta<\infty$
$\lim _{k \rightarrow \infty} \frac{\chi(\eta k)}{\chi(k)}=\eta^{1 /\left(\rho_{G}-A\right)}$
where $A=1$ when $(p, q)=(2,2)$

$$
=0 \text { otherwise. }
$$

Proof.
$\frac{d \log \chi(k)}{d \log k}=\frac{d\left(\log ^{[q]} R\right)}{d\left\{\left(\rho_{G}(R)-A\right) \log ^{[q]} R\right\}}$
$=1 /\left[\rho_{G}(R)-A+\Lambda_{[q]}(R) \rho_{G}^{\prime}(R)\right]$.
passing to the limits $k \rightarrow \infty$ we obtain (1.4).
Again,
$\frac{\chi(\eta k)}{\chi(k)}=\eta^{1 /\left(\rho_{G}-A\right)}$,
taking limits we get (1.5).
Lemma 1.2. Let $f(z)=\sum_{|t|=1}^{\infty} a_{t} z^{t}$ be an entire function having proximate order $\rho_{G}(R)$ with index pair (p, q). Let T_{G}^{*} and t_{G}^{*} be the generalized (p, q)-type and generalized lower (p, q)-type of $f(z)$ with respect to a proximate order $\rho_{G}(R)$. Then
$\lim _{R \rightarrow \infty} \sup _{\inf } \frac{\log ^{[p-1]} \mu_{f, G}(R)}{\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}}=\frac{T_{G}^{*}}{t_{G}^{*}}$.
Proof: By the maximum term in [8] and by using the type and lower type [6], we have

For $R>0$, the maximum term $\mu_{f, G}(R)$ of entire function $f(z)$ is defined as
$\mu_{f, G}(R)=\mu_{f, G}(R, f)=\max _{\| t \mid \geq 0}\left\{\left\|a_{t}\right\| R^{\mid t \|}\right\}$
and
$\lim _{R \rightarrow \infty} \sup _{\inf } \frac{\log \mu_{f, G}(R)}{R^{\rho_{G}(R)}}=\frac{T_{G}^{*}}{t_{G}^{*}}$
Then from [6], we get (1.6).
2 Main Result
Theorem 2.1. If $f(z)=\sum_{|t| \mid=1}^{\infty} a_{t} z^{t}$ is an entire function with proximate order $\rho_{G}(R)$ and (p, q) -order ρ_{G} with index pair (p, q), then the generalized (p, q)-type T_{G}^{*} of $f(z)$ with respect to the proximate order $\rho_{G}(R)$ is given by
$T_{G}^{*} / M=\lim _{\| t \mid \rightarrow \infty} \sup \left[\frac{\chi\left(\log ^{[p-2]}\left\{\||t| \alpha_{|t|}\right\}\right)}{\log ^{[q-1]}\left\{-(1 /|t| \mid) \log \left(\left|a_{t}\right| d_{t}(G)\right)\right\}}\right]^{\rho_{G}-A}$,
where
$M=\left\{\begin{array}{lll}\left(\rho_{G}-1\right)^{\rho_{G}-1} / \rho_{G}^{\rho_{G}} & \text { if } & (p, q)=(2,2) \\ 1 / e \rho_{G} & \text { if } & (p, q)=(2,1) \\ 1 & \text { if } & \text { for all other index pair }(p, q) .\end{array}\right.$
and
$\alpha_{\||t|}= \begin{cases}\left(t_{1}^{t_{1}} t_{2}^{t_{2}} \cdots t_{n}^{t_{n}}\right)^{1 /|t|} /\|t\| & ; t_{1}, t_{2}, \ldots, t_{n} \geq 1, \text { for }(p, q)=(2,1) \\ 1 & ; t_{1}, t_{2}, \ldots, t_{n} \geq 1, \text { for } 2 \leq q \leq p<\infty \\ 0 & ; \text { at least one } t_{1}, t_{2}, \ldots, t_{n}=0 .\end{cases}$
Proof. From (1.6) for every $\varepsilon>0$ and for all
$R>R_{0}\left(0<R_{0}=R_{0}(\varepsilon)<R<\infty\right)$
$\log M_{f, G}(R)<\exp ^{[p-2]}\left\{\left(T_{G}^{*}+\varepsilon\right)\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}\right\}$,
for all R such that $0<R_{0}<R<\infty$,
$\log \left|a_{t}\right| d_{t}(G) \leq \exp ^{[p-2]}\left\{\left(T_{G}^{*}+\varepsilon\right)\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}\right\}-\|t\| \log R$.
Now choose R such that

$$
\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)-A}=\frac{1}{T_{g}^{*}+\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)
$$

For $(p, q) \neq(2,2),(2.3)$ is reduced to
$\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}=\frac{1}{T_{G}^{*}+\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)$,
which gives that
$k=\frac{1}{T_{G}^{*}+\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)$ and $\log ^{[q-1]} R=\chi\left(\frac{1}{T_{G}^{*}+\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)\right)$.

Using the results (2.2) yields
$\frac{\chi\left(\log ^{[p-2]}\|t\|\right)}{\log ^{[q-2]}\left\{-\frac{1}{\|t\|} \log \left|a_{t}\right| d_{t}(G)\right\}}<\frac{\chi\left(\log ^{[p-2]}\|t\|\right)}{\chi\left(\frac{1}{T_{G}^{*}+\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)\right)+o(1)}$.
Passing to limits, we have (using (1.5))
$\lim _{\| t \mid \rightarrow \infty} \sup \left[\frac{\chi\left(\log ^{[p-2]}|t| \mid\right)}{\log ^{[q-2]}\left\{-(1 /\|t\|) \log \left|a_{t}\right| d_{t}(G)\right\}}\right]^{\rho_{G}} \leq T_{G}^{*}(p \geq 3)$.
For $(p, q)=(2,2)$, the equation (2.3) becomes
$\left.(\log R)^{\rho_{G}(R)-1}=\|t\| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)\right]$,
which implies that
$k=\|t\| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)$ and $\log R=\chi\left(\|t\| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)\right)$.
Hence, (2.2) is written as

$$
\frac{\chi(\|t\|)}{-(1 /\|t\|) \log \left|a_{t}\right| d_{t}(G)}<\frac{\chi(\|t\|)}{\chi\left(\frac{\|t\|}{\rho_{G}\left(T_{G}^{*}+\varepsilon\right)}\right)\left(1-\frac{\left\{\|t\| /\left(T_{G}^{*}+\varepsilon\right)\right\}^{p(t \mid t)}}{\rho_{G}^{1+p(\| \| \|)} \chi\left(\|t\| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)\right)}\right)},
$$

where
$p(\|t\|)=1 /\left(\rho_{G}(R)-1\right)$ and $1+p(\|t\|)=\rho_{G}(R) /\left(\rho_{G}(R)-1\right)$.
Since
$\lim _{\| t \mid \rightarrow \infty} \frac{\chi(\|t\|)}{\chi\left(\mid t \| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)\right)}=\left(\rho_{G} T_{G}^{*}\right)^{1 /\left(\rho_{G}-1\right)} \quad$ (since ε is very small)
and
$\lim _{\|t \mid\| \infty} \frac{\left(\|t\| /\left(T_{G}^{*}-\varepsilon\right)\right)^{p(t|t|)}}{\rho_{G}^{1+p(t \mid t)} \chi\left(\|t\| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)\right)}=\frac{1}{\rho_{G}}$
so
$\lim _{\| t \mid \rightarrow \infty} \sup \left[\frac{\|t\| \chi(\mid t \|)}{-\log \left|a_{t}\right| d_{t}(G)}\right]^{\rho_{G}-1} \leq \frac{\rho_{G}^{\rho_{G}}}{\left(\rho_{G}-1\right)^{\rho_{G}-1}} T_{G}^{*}$.
Again, for $(p, q)=(2,1),(2.3)$ is reduced to
$\|t\| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)=R^{\rho_{G}(R)}$
which gives
$k=R^{\rho_{G}(R)} \Leftrightarrow R=\chi(k)$.
Equation (2.2) is converted into
$\frac{\chi(\| t \mid)}{\left(\left|a_{t}\right| d_{t}(G)\right)^{-1 / t / t \mid}}<\frac{\chi(\| t \mid)}{e^{-1 / \rho_{G}} \chi\left(\mid t \| / \rho_{G}\left(T_{G}^{*}+\varepsilon\right)\right)}$.
Passing to limits we have
$\lim _{|x| \rightarrow \infty} \sup \left(\frac{\chi(|t|)}{\left(|a| t \mid d_{t}(G)\right)^{-1 / t|t|}}\right)^{\rho_{G}} \leq T_{G}^{*} e \rho_{G}$.
Equations (2.4), (2.5) and (2.6) combine into
$\lim _{\| t \mid \rightarrow \infty} \sup \left[\frac{\chi\left(\log ^{[p-2]}\|t\| \alpha_{\mid t t}\right)}{\log ^{[q-2]}\left\{-\left(1 /||t|) \log \left|a_{t}\right| d_{t}(G)\right\}\right.}\right]^{\rho_{G}-A} \leq T_{G}^{*} / M$.
To prove the reverse inequality, let
$\lim _{\| t \mid \rightarrow \infty} \sup \left[\frac{\chi\left(\log ^{[p-2]} \| t| | \alpha_{|t|}\right)}{\log ^{[q-2]}\left\{-(1 /||t||) \log \left|a_{t}\right| d_{t}(G)\right\}}\right]^{\rho_{G}-A}=\beta / M$.
For any $\varepsilon>0$, we have for all $\|t\|>m_{0}=m_{0}(\varepsilon)$
$\left|a_{t}\right| d_{t}(G) R^{|t|}<\exp \left[-\|t\| \exp ^{[q-2]}\left(\chi\left(\frac{M}{\alpha} \log ^{[p-2]}\|t\| \alpha_{|t| \|}\right)\right)+\|t\| \log R\right]$,
where $\alpha=\beta+\varepsilon$
So,
$\log \mu_{f, G}(R)<\max _{\| t \mid \geq 0}\left[-\|t\| \exp ^{[q-2]}\left(\chi\left(\frac{M}{\alpha} \log ^{[p-2]}\|t\| \alpha_{|t| \|}\right)\right)+\|t\| \log R\right]$.
For $(p, q) \neq(2,1)$ and $(2,2)$, using (1.4) it can be easily seen that the maximum value on the right-hand side is attained for

$$
\|t\|=\left[\exp ^{[p-2]}\left(\alpha\left\{\log ^{[q-2]}\left(\frac{\rho_{G}}{1+\rho_{G}} \log R\right)\right\}^{\rho_{G}(R)}\right)\right] .
$$

Thus, for R sufficiently large we get from (2.8)

$$
\frac{\log ^{[q-1]} \mu_{f, G}(R)}{\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}}<\alpha \frac{\left[\log ^{[q-2]}\left(\rho_{G}\left(1+\rho_{G}\right)^{-1} \log R\right)\right]^{\rho_{G}(R)}}{\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}}+o(1)
$$

Proceeding to limits

$$
\begin{equation*}
T_{G}^{*} \leq \alpha \tag{2.9}
\end{equation*}
$$

Consider when $(p, q)=(2,1)$. Let $\|t\|=\alpha\left(R e^{-1 / \rho_{G}}\right) / M$, equation (2.8) is then reduced to
$\frac{\log \mu_{f, G}(R)}{R^{\rho_{G}(R)}}<\frac{\alpha}{\rho_{G} M} e-\rho_{G}(R) / \rho_{G}$
and passing to limits we get

$$
\begin{equation*}
T_{G}^{*} \leq \alpha \tag{2.10}
\end{equation*}
$$

If $(p, q)=(2,2)$, in order to get the maximum value of the right-hand side of the inequality (2.8) $\|t\|$ is given by
$\|t\|=\frac{\alpha}{M}\left(\frac{\rho_{G}-1}{\rho_{G}}\right)^{\rho_{G}(R)-1}(\log R)^{\rho_{G}(R)-1}$,
which reduces (2.8) to
$\frac{\log \mu_{f, G}(R)}{(\log R)^{\rho_{G}(R)}}<\frac{\alpha}{M} \frac{\left(\rho_{G}-1\right)^{\rho_{G}(R)-1}}{\rho_{G}^{\rho_{G}(R)}}$.
On taking limits we get

$$
\begin{equation*}
T_{G}^{*} \leq \alpha \tag{2.11}
\end{equation*}
$$

(2.9), (2.10) and (2.11) give
$T_{G}^{*} \leq \alpha=(\beta+\varepsilon)$.
Since this inequality holds for every $\varepsilon>0$, so $T_{G}^{*} \leq \beta$. This and (2.7) together prove the theorem.
Taking $\rho_{G}(R)=\rho_{G}$ and $\chi(k)=k^{1 /\left(\rho_{G}-A\right)}$, we have the following corollary which gives a formula for the (p, q) -type T_{G} of the entire function $f(z)$.
Theorem 2.2. Let $f(z)=\sum_{\| t \mid=0}^{\infty} a_{t} z^{t}$ be an entire function having the proximate order $\rho_{G}(R)$ and (p, q)-order ρ_{G} such that

$$
\phi(\|t\|)=\left|a_{t} / a_{t+1}\right|,
$$

forms a non-decreasing function of $\|t\|$ for $\|t\|>m_{0}$. Then the generalized lower (p, q)-type t_{G}^{*} of $f(z)$ is given by
where M, A and $\alpha_{|t| \mid}$ are the same as given in Theorem 2.1.
Proof. Since by hypothesis, $\phi(\|t\|)$ is a non-decreasing function of $\|t\|$ for $\|t\|>m_{0}$. We have $\phi(\mid t \|)>\phi(\|t\|-1)$ for infinitely many values of $\|t\|$; otherwise $f(z)$ ceases to be an entire function. So $\phi(\mid t \|) \rightarrow \infty$ as $\|t\| \rightarrow \infty$.

When $\phi(\|t\|)>\phi(\|t\|-1)$, the term $a_{t} z^{t}$ becomes maximum and then
$\mu_{f, G}(R)=\left|a_{t}\right| R^{|t|}, v(R)=\|t\|$ for $\phi(\|t\|-1) \leq R<\phi(|t| \|)$.
First, let $0<t_{G}^{*}<\infty$, in view of Lemma 1.2., for any ε satisfying $0<\varepsilon<t_{G}^{*}$ and for all $R>R_{0}=R_{0}(\varepsilon)$ we get
$\log \mu_{f, G}(R)>\exp ^{[p-2]}\left[\left(t_{G}^{*}-\varepsilon\right)\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}\right]$.
Let $a_{m_{1}} z^{m_{1}}$ and $a_{m_{2}} z^{m_{2}}\left(m_{1}>m_{0}, \phi\left(m_{1}-1\right)>R_{0}\right)$.
be two consecutive maximum terms of $f(z)$. Then since $\phi(\|t\|)$ is a non-decreasing function of $\|t\|$ for $\|t\|>m_{0}$, we have for $m_{1} \leq\|t\| \leq m_{2}-1$,
$\phi\left(m_{0}\right)=\phi\left(m_{1}+1\right)=\ldots=\phi(\|t\|)=\ldots=\phi\left(m_{2}-1\right)$
And

$$
\begin{equation*}
\left|a_{t}\right| R^{|t| \mid}=\left|a_{m_{2}}\right| R^{m_{2}} \text { for } R=\phi(| | t \|) . \tag{2.14}
\end{equation*}
$$

Hence, (2.12),(2.13) and (2.14) give
$\log \left|a_{t}\right| d_{t}(G)+\|t\| \log \phi(\|t\|)>\exp ^{[p-2]}\left[\left(t_{g}^{*}-\varepsilon\right)\left(\log ^{[q-1]} \phi(\|t\|)\right)^{\rho_{G}(\phi(\|t\|))}\right]$
or,

$$
\begin{align*}
& X \equiv \frac{\left\{\chi\left(\log ^{[p-2]}\|t\| \alpha_{\| t t)}\right)\right\}^{\rho_{G}-A}}{\exp \left[\left(\rho_{G}-A\right) \log ^{[q-1]}\left\{-(1 /\|t\|) \log \left|a_{t}\right| d_{t}\right\}\right]} . \\
& >\frac{\left\{\chi\left(\log ^{[p-2]}\|t\| \alpha_{|t|}\right)\right\}^{\rho_{G}-A}}{\exp \left[\left(\rho_{G}-A\right) \log ^{[q-1]}\left\{\log \phi(\|t\|)-(1 /\|t\|) \exp ^{[p-2]}\left\{\left(t_{G}^{*}-\varepsilon\right)\left(\log ^{[q-1]} \phi(\|t\|)\right)^{\rho_{G}(\phi(\mid t \|))}\right\}\right\}\right]} \tag{2.15}
\end{align*}
$$

We note that the minimum value of the function

$$
S(R)=\frac{\left\{\chi\left(\log ^{[p-2]} \| t \mid \alpha_{|t|}\right)\right\}^{\rho_{G}-A}}{\exp \left[\left(\rho_{G}-A\right) \log ^{[q-1]}\left\{\log R-(1 /\|t\|) \exp ^{[p-2]}\left\{\left(t_{G}^{*}-\varepsilon\right)\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}\right\}\right\}\right]}
$$

is attained at a point $R=R_{0}$ satisfying

$$
\begin{equation*}
\frac{E_{[p-2]}\left\{\left(t_{G}^{*}-\varepsilon\right)\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}\right\}}{\Lambda_{[q-1]}(R)}=\|t\| / R \rho_{G} . \tag{2.16}
\end{equation*}
$$

For $(p, q)=(2,1),(2.16)$ gives $R^{\rho_{G}(R)}=\|t\| /\left(t_{G}^{*}-\varepsilon\right) \rho_{G} \Leftrightarrow R=\chi\left(\|t\| /\left(t_{G}^{*}-\varepsilon\right) \rho_{G}\right)$.
Hence

$$
\begin{align*}
X>\min _{0<R<\infty} S(R) & =\min \frac{\left(\chi\left(\|t\| \alpha_{|t|}\right)\right)^{\rho_{G}}}{\exp \left[\rho_{G}\left\{\log R-\left(t_{G}^{*}-\varepsilon\right) R^{\rho_{G}(R)} /\|t\|\right\}\right]} \\
& =e\left[\chi(\|t\|) / \chi\left(\|t\| /\left(t_{G}^{*}-\varepsilon\right) \rho_{G}\right)\right]^{\rho_{G}} \\
& \approx e \rho_{G}\left(t_{G}^{*}-\varepsilon\right) . \tag{2.17}
\end{align*}
$$

For $(p, q)=(2,2),(2.16)$ becomes
$(\log R)^{\rho_{G}(R)-1}=\frac{\|t\|}{\rho_{G}\left(t_{G}^{*}-\varepsilon\right)} \Leftrightarrow \log R=\chi\left(\|t\| /\left(t_{G}^{*}-\varepsilon\right) \rho_{G}\right)$.
Hence,

$$
\begin{align*}
& \min _{0<R<\infty} S(R)=\left(\chi(\|t\|) / \chi\left(\|t\| /\left(t_{G}^{*}-\varepsilon\right) \rho_{G}\right)\right)^{\rho_{G}-1}\left\{\rho_{G} /\left(\rho_{G}-1\right)\right\}^{\rho_{G}-1} . \\
& \approx \frac{\rho_{G}^{\rho_{G}}}{\left(\rho_{G}-1\right)^{\rho_{G}-1}}\left(t_{G}^{*}-\varepsilon\right) \tag{2.18}
\end{align*}
$$

For $(p, q) \neq(2,2)$ and $(2,1),(2.16)$ is reduced to

$$
\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}=\frac{1}{t_{G}^{*}-\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right) \Leftrightarrow \log ^{[q-1]} R=\chi\left(\frac{1}{t_{G}^{*}-\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)\right) .
$$

So

$$
\begin{align*}
\min _{0<R<\infty} S(R)= & \left(\chi\left(\log ^{[p-2]} \mid t \| \alpha_{\|t\|}\right)\right)^{\rho_{G}} / \exp \left\{\rho_{G} \log ^{[q]}\left(R e^{-1 / \rho_{G}}\right)\right\} \\
\cong & \left\{\chi\left(\log ^{[p-2]} \| t \mid \alpha_{\| t t \mid}\right) /\left(\log ^{[q-1]} R\right)\right\}^{\rho_{G}} \\
= & \left\{\chi\left(\log ^{[p-2]}\|t\| \alpha_{|t|}\right) / \chi\left(\frac{1}{t_{G}^{*}-\varepsilon} \log ^{[p-2]}\left(\|t\| / \rho_{G}\right)\right)\right\} \\
& \approx t_{G}^{*}-\varepsilon . \tag{2.19}
\end{align*}
$$

(2.15),(2.17),(2,18) and (2.19) combine into
$\lim _{\| t \mid \rightarrow \infty} \inf X \geq t_{G}^{*} / M$.
The inequality (2.20) is obvious if $t_{G}^{*}=0$. When $t_{G}^{*}=\infty$, above arguments with an arbitrarily large number in place of $\left(t_{G}^{*}-\varepsilon\right)$ leads to
$\lim _{\| x \mid \rightarrow \infty} \inf X=\infty$.
We now prove that strict inequality cannot hold in (2.20). for if it holds, then there exists a number $\delta\left(\delta>t_{G}^{*}\right)$ such that

$$
\frac{\delta}{M}=\lim _{\|t\| \rightarrow \infty} \inf \left[\frac{\chi\left(\log ^{[p-2]} \| t| | \alpha_{|t|}\right)}{\log ^{[q-2]}\left\{-(1 /|\| t|) \log \left|a_{t}\right| d_{t}(G)\right\}}\right]^{\rho_{G}-A} .
$$

Let δ_{1} be such that $\delta>\delta_{1}>t_{G}^{*}$, then for all $\|t\|>m_{0}$

$$
\log \left|a_{t}\right| d_{t}(G)>-\|t\| \exp ^{[q-2]}\left[\frac{\chi\left(\log ^{[p-2]} \| t \mid \alpha_{|t|}\right)}{\left(\delta_{1} / M\right)^{1 /\left(\rho_{G}-A\right)}}\right]
$$

Therefore, for sufficiently large R and $\|t\|$ we have
$\log M_{f, G}(R)>-\|t\| \exp ^{[q-2]}\left[\frac{\chi\left(\log ^{[p-2]}\|t\| \alpha_{\|t\|}\right)}{\left(\delta_{1} / M\right)^{1 /\left(\rho_{G}-A\right)}}\right]+\|t\| \log R$.
For $(p, q)=(2,1)$, choose $\|t\|=\left[\rho_{G} \delta_{1} R^{\rho_{G}(R)}\right]$, then in view of Lemma 1.1.,
$\log M_{f, G}(R)>-\|t\| \log \left[\frac{\chi\left(\|t\| \alpha_{\| t t}\right)}{\left(e \rho_{G} \delta_{1}\right)^{1 / \rho_{G}}}\right]+\|t\| \log \chi\left(\|t\| / \rho_{G} \delta_{1}\right)$
or,

$$
\frac{\log M_{f, G}(R)}{R^{\rho_{G}(R)}}>\delta_{1}
$$

Passing to limits

$$
\begin{equation*}
t_{G}^{*} \geq \delta_{1} \tag{2.22}
\end{equation*}
$$

In case $(p, q)=(2,2)$, choose
$(\log R)^{\rho_{G}(R)-1}=\frac{M\|t\|}{\delta_{1}\left\{\left(\rho_{G}-1\right) / \rho_{G}\right\}^{\rho_{G}-1}}=k$,
Then (2.21) is reduced to
$\log M_{f, G}(R)>\|t\|\left[\log R-\chi(\|t\|)\left(M / \delta_{1}\right)^{1 /\left(\rho_{G}-1\right)}\right]$
$\approx \frac{\|t\|}{\rho_{G}} \log R$
or,
$\frac{\log M_{f, G}(R)}{(\log R)^{\rho_{G}(R)}}>\delta_{1}$
which gives on passing to limits

$$
\begin{equation*}
t_{G}^{*} \geq \delta_{1} \tag{2.23}
\end{equation*}
$$

Further, consider $(p, q) \neq(2,1)$ and $(2,2)$ if $\|t\|$ is given by

$$
\log ^{[p-2]}\left(\|t\| / \rho_{G}\right)=\delta_{1}\left(\log ^{[q-1]} R / e^{\varepsilon}\right)^{\rho_{G}\left(R / e^{\varepsilon}\right)} \Leftrightarrow \log ^{[q-1]} R / e^{\varepsilon}=\chi\left(\frac{\log ^{[p-2]}\left(\|t\| / \rho_{G}\right)}{\delta_{1}}\right)
$$

then
$\log M_{f, G}(G)>\|t\|\left\{\log R-\exp ^{[q-2]}\left[\frac{\chi\left(\log ^{[p-2]}\|t\|\right)}{\delta_{1}^{1 / \rho_{G}}}\right]\right\}$

$$
=\|t\|\left[\varepsilon+\exp ^{[q-2]}\left\{\frac{\chi\left(\log ^{[p-2]}\left(\|t\| / \rho_{G}\right)\right)}{\delta_{1}^{1 / \rho_{G}}}\right\}-\exp ^{[q-2]}\left\{\frac{\chi\left(\log ^{[p-2]}\|t\|\right)}{\delta_{1}^{1 / \rho_{G}}}\right\}\right]
$$

or,

$$
\frac{\log ^{[p-1]} M_{f, G}(R)}{\left(\log ^{[q-1]} R\right)^{\rho_{G}(R)}}>\delta_{1}+o(1)
$$

Proceeding to limits we have

$$
\begin{equation*}
t_{G}^{*} \geq \delta_{1} \tag{2.24}
\end{equation*}
$$

So (2.22),(2.23) and (2.24) are formed in to

$$
t_{G}^{*} \geq \delta_{1}
$$

which is a contradiction. Hence the proof of the theorem is complete.

Corollary 2.3. Let $f(z)=\sum_{\|t\|=0}^{\infty} a_{t} z^{t}$ be an entire function having the (p, q)-order ρ_{G} and lower (p, q)-type $t_{G}\left(0 \leq t_{G}<\infty\right)$ such that $\phi(\|t\|)$ is non-decreasing function of $\|t\|$ for $\|t\|>m_{0}$, then
$t_{G} / M=\lim _{\| t \mid \rightarrow \infty} \inf \frac{\log ^{[p-2]}\|t\| \alpha_{\|t\|}}{\left\{\log ^{[q-2]}\left(-(1 /\|t\|) \log \left|a_{t}\right|\right)\right\}^{\rho_{G}-A}}$.

Acknowledgment

The author is thankful to the referees for their helpful comments and suggestions for improving the paper.

References

1. Kumar D. and Gupta Deepti, 2011, On the approximation of entire function of several complex variables, International Mathematical Forum, 6(11), pp:501-516.
2. Gopala J. Krishna, 1969, Maximum term of a power series in one and several complex variables, Pacific J. Math. 29 pp:609-621.
3. Gopala J. Krishna, 1970, Probabilistic techniques leading to a Valiron-type theorem in several complex variables, Ann. Math. Statist. 41, pp:2126-2129.
4. Gol'dberg A.A., 1959, Elementary remarks on the formulas for defining order and type of functions of several variables, Akad. Nauk Armjan. SSR. Dokl., 29, pp:145-152.
5. Juneja O.P., Kapoor G.P., and Bajpai S.K., 1976, On the (p, q)-order and lower (p, q)order of an entire function. J. Reine Angew. Math., 282, pp:53-67.
6. Juneja O.P., Kapoor G.P., and Bajpai S.K., 1977, On the (p, q)-type and lower (p, q)-type of an entire function. J. Reine Angew. Math. 290, pp:180-190.
7. Nandan, Krishna, Doherey R.P. and Srivastava R.S.L., 1980, Proximate order of an entire function with index pair (p, q). Indian J. pure appl. Math., 11, pp:33-39.
8. Susheel Kumar and Srivastava G.S., 2011, Maximum term and lower order of entire function of several complex variables, Bulletin of Mathematical analysis and Application, 3(1), pp: 156-164.

[^0]: *Email: aiman_math2011@yahoo.com

