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Abstract 

    In the present paper, we will study the generalized ),( qp -type and 

generalized lower ),( qp -type of an entire function in several complex 

variables with respect to the proximate order with index pair ),( qp  are 

defined and their coefficient characterizations are obtained. 
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حول اعمام النوع واعمام النوع الادنى لدالة كمية ذات متغيرات معقدة متعددة مع دليل الزوج 
(p, q) 

 
 مشتاق شاكر عبد الحسين ، *أيمن عبد عمي جعفر

 ، العراققسم الرياضيات ، كمية العموم، الجامعة المستنصرية، بغداد

 
 الخلاصة:

لدالة كمية ذات  (p, q)واعمام النوع الادنى  (p, q)في بحثنا هذا سوف ندرس اعمام النوع     
من خلال تعريفها عمى  (p, q)متغيرات معقدة متعددة بالنسبة الى تقريب الرتبة لدليل الزوج 

 المعاملات المميزة.
 

1 Introduction 

    Kumar and Gupta [1] let ),,,( 21 nzzzf   be an entire function 
n

n Czzzz  ),,,( 21  . 

Let G be a region in 
nR (positive hyper octant) and let 

n

R CG   denote the region obtained 

from G by a similarity transformation about the origin, with ratio of similitude R. Let 
t

Gzt zGd  sup)( , where 
nt

n

ttt
zzzz 21

21 , and let G  denote the boundary of the 

region G. Let 
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  , ntttt  21 , be the  

power series expansion of the function )(zf . Let )(max)(, zfRM
R

GzGf  . 

To characterize the growth of f, order G  and type GT  of  f  are defined as . 
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For 0R  , the maximum term )(, RGf  of entire function )(zf  is defined as (see [2] and 

[3]) 
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For entire function 





0

)(
t

t

t zazf , A.A. Gol'dberg [4,Th.1] obtained the order and type in 

terms of the coefficients of its Taylor expansion as  
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The concept of ),( qp -order, lower order ),( qp -order, ),( qp -type and lower ),( qp -type 

of an entire function ),,,( 21 nzzzf  having an index pair ),( qp , was introduced by Juneja 

et al. ([5] , [6]). Thus )(zf  is said to be of ),( qp -order G  and lower ),( qp -order G  if 
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where p and q are integers such that 1 qp . If  ),( qpb G , where 1b , if qp   

and 0b if qp  , then the ),( qp -type GT  and lower ),( qp -type Gt  is given by  
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and ,2,1,0),exp(exp)log(logexplog ]1[]1[][][   mxxxx mmmm
 provided that 

  xm ]1[log0  with xxx  ]0[]0[ explog . 

 

   The growth of a function )(zf  can be studied in terms of its order G  and type GT , but 

these concepts are inadequate to compare the growth of those functions which are of the same 

order and of infinite type. Hence, for a refinement of the above growth scale, one may utilize 

proximate order the concept of which is [7] as follows: 

   A function )(RG  defined on ),0(   is said to be a proximate order of an entire function 

with index pair ),( qp  if it satisfies the properties: GG
R

R  


)(lim  and  

0)()(lim ][ 


RRq
R

 , where ..loglog)( ][

][ RRRR q

q   

   Now, we define the generalized ),( qp -type 


GT  and generalized lower ),( qp -type 


Gt  of 

)(zf  with respect to a given proximate order )(RG  as  
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A proximate order )(RG  is called a proximate order of an entire function )(zf  with index 

),( qp  if 


GT  is non-zero and finite and the function )(zf  is said to be of perfectly regular 

),( qp  growth with respect to its proximate order )(RG  if 
  GG tT . 

In the present paper we obtain coefficient characterizations of generalized      ),( qp -type 


GT  

and generalized lower ),( qp -type  


Gt  of the entire function )(zf . 

By [7] 
)(]1[ )(log

Rq GR


 is a monotonically increasing function of R for  RR00 , so 

we define a single valued real function )(k  of k for 0kk   such that  

).(log)(log ]1[)(]1[ kRRk qARq G 
 

                           (1.3) 

Then we have the following : 

Lemma 1.1. Let )(RG  be a proximate order with index pair ),( qp  and let )(k  be 

defined as in (1.3). Then 
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where A = 1  when )2,2(),( qp  

              = 0  otherwise. 

Proof. 
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passing to the limits k  we obtain (1.4). 
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taking limits we get (1.5). 

Lemma 1.2. Let  
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t zazf  be an entire function having proximate order )(RG  with 

index pair ),( qp . Let 


GT  and 


Gt  be the generalized ),( qp -type and generalized lower 

),( qp -type of )(zf  with respect to a proximate order )(RG . Then 
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Proof: By the maximum term in [8] and by using the type and lower type [6], we have 
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For 0R , the maximum term )(, RGf  of entire function )(zf  is defined as  
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Then from [6], we get (1.6). 

2 Main Result 

Theorem 2.1. If 
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),( qp -order G  with index pair ),( qp , then the generalized ),( qp -type 
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Proof. From (1.6) for every 0  and for all  

))(0( 000  RRRRR   

}))(log{(exp)(log
)(]1[]2[

,

Rq

G

p

Gf
GRTRM

   , 

for all R such that ,0 0  RR  

.log}))(log{(exp)(log
)(]1[]2[ RtRTGda

Rq

G

p

tt
G                          (2.2) 

Now choose R such that 

.)(log
1

)(log ]2[)(]1[

G

p

g

ARq t
T

R G 


 






                                (2.3) 

For )2,2(),( qp ,  (2.3) is reduced to 
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Using the results (2.2) yields 
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Passing to limits, we have (using (1.5)) 
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For )2,2(),( qp , the equation (2.3) becomes 
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Again, for )1,2(),( qp , (2.3) is reduced to 
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Equation (2.2) is converted into  
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Passing to limits we have  
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Equations (2.4), (2.5) and (2.6) combine into  

 

.
)}(log)1({log

)(log
suplim

]2[

]2[

MT
Gdat

t
G

A

tt

q

t

p

t

G































                         (2.7) 

 

   To prove the reverse inequality, let 
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   For )1,2(),( qp  and (2, 2), using (1.4) it can be easily seen that the maximum value on 
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Thus, for R sufficiently large we get from (2.8)  
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Proceeding to limits 
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Consider when ).1,2(),( qp  Let MeRt G )(
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 , equation (2.8) is then reduced to  
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On taking limits we get 
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Since this inequality holds for every 0 , so 

GT . This and (2.7) together prove the 

theorem. 
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 , we have the following corollary which gives a 

formula for the ),( qp -type GT  of the entire function ).(zf  

Theorem 2.2. Let 
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t
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Proof. Since by hypothesis,  t  is a non-decreasing function of t  for 0mt  . We have 
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For )2,2(),( qp  and (2,1), (2.16) is reduced to 
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Proceeding to limits we have 
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So (2.22),(2.23) and (2.24) are formed in to 
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which is a contradiction. Hence the proof of the theorem is complete. 



Jaffar & Hussein        Iraqi Journal of Science, 2014, Vol 55, No.4B, pp:1942-1952 

1952 

Corollary 2.3. Let 
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