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Abstract
In the present paper, we will study the generalized (P, Q) -type and

generalized lower (P, Q) -type of an entire function in several complex

variables with respect to the proximate order with index pair (P, Q) are
defined and their coefficient characterizations are obtained.
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1 Introduction

Kumar and Gupta [1] let f(z,,Z,,...,2,) be an entire function z =(z,,2,,...,2,) €C".
Let G be a region in R (positive hyper octant) and let G, — C" denote the region obtained
from G by a similarity transformation about the origin, with ratio of similitude R. Let

d,(G) =sup,s|z[ , where |z =|z,*[z,|* ...|z,|", and let 8G denote the boundary of the
region G. Let

f(2)="1(z,2,,....2,) = Zw:atl___tnz}...z;" = ia[zt =t +t, + -+t be the
0

t .ty = [t}=0

Z;

power series expansion of the function f(z). Let M ¢ (R) = max,q_ 1f(2).

To characterize the growth of f, order pg and type T of f are defined as .
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e = lim sup loglog M . (R)
R0 logR

For R >0 , the maximum term s 5 (R) of entire function f(z) is defined as (see [2] and

[31)

#1 (R) = max{la |d,(G) R"}.

[tf0

logM; ¢ (R)
—

G

,and Tg = Lim sup
—00

For entire function f(z) = Z:atzt , A.A. Gol'dberg [4,Th.1] obtained the order and type in
(RN
terms of the coefficients of its Taylor expansion as

o MGt
:I ———
Pe = i —loga,|
and
(epeTe)"" = lim sup{t]*** fa/d. @)1}, (0 < o <)

where d,(G) =max, . (r');r' =r're...r.

The concept of (p,q) -order, lower order (p,q) -order, (p,q)-type and lower (p,q) -type
of an entire function f(z,,z,,...,2,)having an index pair (p,q), was introduced by Juneja
etal. ([5], [6]). Thus f(z) is said to be of (p, ) -order p, and lower (p,q) -order A, if

i SUP log'” M ¢ (R) _ ps(p,q)

= 1.1
Ro>=inf  log!¥ R As(p,Q) 1)

where p and q are integers such that p>q>1.1f b< p (p,q) <o, where b=1,if p=q
and b=0if p>q,thenthe (p,q)-type T, and lower (p,q)-type t; is given by

. Suplog” I M (R) _Te(p.q)

R inf (|Og[qfl] R)pe(p,q) tG(p’ q)
and log™ x = expt™ x = log(log ™™ x) = exp (exp ™ x), m = 0,£1,+2, - -- provided that
0 < log™™ x < oo with log™™ x =exp™ x = x.

The growth of a function f(z) can be studied in terms of its order p; and type T, but

these concepts are inadequate to compare the growth of those functions which are of the same
order and of infinite type. Hence, for a refinement of the above growth scale, one may utilize
proximate order the concept of which is [7] as follows:

A function pg (R) defined on (0, 0) is said to be a proximate order of an entire function
with index pair (p,q) if it satisfies the properties: Lim pPs(R)=p; and

lim A (R) p'(R) =0, where A (R) = log!” R...logR.R.

Now, we define the generalized (p,q)-type T, and generalized lower (p,q) -type t; of
f (z) with respect to a given proximate order pg (R) as
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suplog®™ M (R) T!
RLOO- [a-1] pe(R) 7~ px !
inf (log""™~ R) te

(O<t; <T <o), (1.2)

A proximate order pg (R) is called a proximate order of an entire function f(z) with index
(p,q) if TS is non-zero and finite and the function f(z) is said to be of perfectly regular
(p,q) growth with respect to its proximate order pg (R) if T, =t .

In the present paper we obtain coefficient characterizations of generalized ~ (p,q) -type T¢
and generalized lower (p, Q) -type t; of the entire function f(z).

By [7] (log™™ R)”=™® is a monotonically increasing function of R for 0 < R, <R <0, so
we define a single valued real function y(k) of k for k >k, such that

k = (logi*™ R)*=®* = logl"™ R = y(k). (1.3)

Then we have the following :

Lemma 1.1. Let p;(R) be a proximate order with index pair (p,q) and let y(k) be
defined as in (1.3). Then

m dlog y(k) _ 1

(1.4)

ko= dlogk  pg—A
and for every n with 0 <77 <0
lim 20K) _ p¥(Pe=A) (1.5)
koo (k)
where A=1 when (p,q) =(2,2)

=0 otherwise.
Proof.
dlog y(k) d(log™ R)

dlogk  d{(ps(R) - A)log" R}
=1[ps (R) =~ A+ A (R) o5 (R)]

passing to the limits k — oo we obtain (1.4).

Again,
XOK) _ e

2(K)
taking limits we get (1.5).

o0

Lemma 1.2. Let f(z)= Z:a[zt be an entire function having proximate order p; (R) with
Jel=L

index pair (p,q). Let T, and t; be the generalized (p,q)-type and generalized lower
(p,q) -type of f(z) with respect to a proximate order p;(R) . Then

i SUP|09”4Jﬂfp(R)::T§
R inf (|Og[q—l] R)pG(R) tg '

(1.6)

Proof: By the maximum term in [8] and by using the type and lower type [6], we have
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For R> 0, the maximum term 1 5 (R) of entire function f(z) is defined as

# 6 (R) = 11 6 (R, ) = max{]la,| R}

Jtf=0
and
qsuplog s (R) _Tg
rRo=inf R te

Then from [6], we get (1.6).
2 Main Result

Theorem 2.1. If f(z):Z:aTZt is an entire function with proximate order p.(R) and
Jtf=2

(p,q) -order p. with index pair (p,q), then the generalized (p,q) -type T of f(z) with
respect to the proximate order pg(R) is given by

Pe—A

Z(Iog[piz]{”t”autu})

To/M = I OB o T W oaa 0, | @y
where
(pe =17/ pge it (p.a)=(22)
M =11eps it (p,g)=(2))
1 if ~ for all other index pair (p, Q).
and
ity -t ettt 21 for (p,g) = (22)
oy =41 ; bttt 2L for2<g< p<ow

0 ; atleastone t,t,,...,t =0.

Proof. From (1.6) for every £ >0 and for all

R>R,(0<R, =R,(e) <R<x)

log M ¢ (R) <exp'"2{(Tg +&)(log"™ R)*=™},

forall Rsuchthat 0 < Ry, < R < oo,

logfa,|d, (G) < exp!* A{(T: + £)(log!*™ R)* ™} —|it] log R. (2.2)
Now choose R such that

(Iog ™ RY* ™ = = log"™ (] ). (23)

g

For (p,q) # (2,2), (2.3) isreduced to

R 1 _
(|og[q 1 R)pG(R) — S |og[p 2] (”t”/pe)y
G

which gives that

K= —=—log"™ ]/ ) and 109" R = ZL— log " #1([t]/ o )J-

Tg+g Tg-i-g
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Using the results (2.2) yields
2(log™ e 2 (log'™])

1 1 ) '
log™®? — = log|a,|d, (G z(*log["’ Al o )]-{-0(1)

Passing to limits, we have (using (1.5))

: 2 (log'™ )
su [a-2]
[t log“ A {-(/|t]) log|a, |d, (G)}
For (p,q) = (2,2), the equation (2.3) becomes
(log R) ™= =|t||/ ps (TS + )1

} <T;(p=3). (2.4)

which implies that

= [t/ oo (T +2) and log R = 2([t]/ oo (T + 2)).

Hence, (2.2) is written as

Z2(th 3 (D
- Wit loglajd, (@) Z{ ] J[l‘ g/ s + ey J

P+ N p& ™y (] ps (Ts + &)

where

Pt =1/ (ps (R) —1) and 1+ p(t]) = o5 (R)/ (s (R) - 1).

Since

t . _ ) .
ygllmm/jfué+ﬁﬂ):(pak)M%]J (since ¢ is very small)
and

e/ s —ep™™® 1

e o 2 e (T + ) P
SO

pPeL1
imsup] G T 9
le>="""| —log|a,|d, (G) (s —D"

Again, for (p,q) =(2,), (2.3) is reduced to

[t/ s (T + &) = R*=®
which gives
k=R*® < R=y(K).

Equation (2.2) is converted into
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2t 2(t]) |
(ald @)™ e 1(t]/ po (TS + )

Passing to limits we have

. 2 ).
msup((latldt(e»'“ = Tofe: e

Equations (2.4), (2.5) and (2.6) combine into

. { Z(Iog[p_Z]”t”aHtH)
[t]—>=

Pe—A
su <T;/M. 2.7
g W) Iog|a[|dt<G)}} o/ &0

To prove the reverse inequality, let

. 20109 ?[t]e,)
O

log““{~(/[t]) logla,|d, (G)}
Forany & >0, we have for all |t > m, =m, (&)
_ M _
B @R <o) -[len 1 M iog s, || g

where a = f+¢
So,

M
log 11, & (R) < max{— It] exp [q—z]( Z[; Iog[p‘z]“t”“tD +|t[ log R} (2.8)

[t[=0

For (p,q) = (2,1) and (2, 2), using (1.4) it can be easily seen that the maximum value on
the right-hand side is attained for

pc(R)
It] = exp“’”[oz{log[“](’D—G log Rj} J :
1+ ps

Thus, for R sufficiently large we get from (2.8)

log"™ 11,6 (R)  [log"?(pe (1+ pg) " log R)J=®
(|Og[q—1] R)PG(R) (|Og[q—l] R)pG(R)

+0(2).

Proceeding to limits
T; <e. (2.9)
Consider when (p, ) = (2). Let [t = «(Re™¥**)/M , equation (2.8) is then reduced to
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log u ¢ (R) a

RPG(R) < ,DGM e_pG(R)/pG

and passing to limits we get

T, <. (2.10)
If (p,q)=1(2,2), in order to get the maximum value of the right-hand side of the inequality
(2.8) [t] is given by

=& 21" ogryens
M ps ,

which reduces (2.8) to

|Og /Llf,G(R) <£ (IOG _1)PG(R)*1
(Iog R)PG(R) M pGpG(R)

On taking limits we get

T <a. (2.11)
(2.9), (2.10) and (2.11) give
To <a=(L+¢).

Since this inequality holds for every &>0, so T, < /. This and (2.7) together prove the
theorem.
Taking ps(R) = pg and y(k) = k¥s=% \we have the following corollary which gives a

formula for the (p, q) -type T, of the entire function f(z).

Theorem 2.2. Let f(z) = Z:aizt be an entire function having the proximate order pg(R)
Jtl=o0

and (p,q)-order pg such that
oll)= .|

forms a non-decreasing function of [t| for [t > m,. Then the generalized lower (p,q) -type
t, of f(z) isgiven by
where M, A and @, are the same as given in Theorem 2.1.
Proof. Since by hypothesis, ¢Q|t||) is a non-decreasing function of [t|| for [t|| > m,. We have
#(t])> #(t] —2) for infinitely many values of [t]; otherwise f(z) ceases to be an entire
function. So ¢(t]) — oo as || — .

when #(t])> #(t] —1), the term a,z" becomes maximum and then
0B ~[a] R, VR - ] for ol —1) < R <)
First, let O <tg <0, in view of Lemma 1.2. , for any ¢ satisfying 0 < ¢ <tg and for all
R>R, =R,(&) we get
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log 1; ¢ (R) > exp”2[(t; —&)(log"* ™ R)=™]. (2.12)
Let a, z™ and &, z™ (m, >my,#(m -1)>R)) .

be two consecutive maximum terms of f(z). Then since ¢(“t||) is a non-decreasing function

of [t for [[t]| > m,, we have for m, <[t||<m, -1,

#(my) = p(m, +1) = .= #(|t]) = ... = p(m, - 1) (2.13)
And
la|R" = a,, [R™ for R =g(t]). (2.14)

Hence, (2.12),(2.13) and (2.14) give

gl 0, (B)+ ] g (1) > oI ~ )1og™ >}
or,

_ {x(log'*? HtHaHtH )yt
— expl(os — A) log“ I {—/|t]) log|a,|d,}] °
{Z(Iog[p_Z] HtHaHtH )}pG_A

” pl(p. - logflog ot - @t 0 2t ~e)og™ oK)~ 3]

(2.15)

We note that the minimum value of the function

{Z(IOQ[H]”t”autu)}p@_A
exp[(p — A) log“{log R — (1/[t]) exp ™ ?{(t; — &)(log"*™ R)**™}}]
is attained at a point R = R satisfying
E[pfz]{(tg —8)(|0g[q71] R)pG(R)}
A[q—l](R)

For (p,0) =(21), (2.16) gives R*® =|lt| /(ts —&)ps <= R= z(t]/ts —)ps)-
Hence

S(R) =

=|it|/Ros - (2.16)

U (Zter
X S ) = Lo t0g R— (8, — &) R (3]

= el 7 (It / 2]/ ¢t —£)pe)1™
~eps(ts - £). (217)
For (p,q) =(2,2), (2.16) becomes

logR po(R)L —” < logR = tl/ (t —& .
(logR) . (t:; ) g Z(” ”/( G )PG)

Hence,

min S(R) = (x(t])/ 2]/t — &)pe )™ {pe /(ps —DY*".

0<R<x

~PE g (2.18)
R |
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For (p,q) # (2,2) and (2,1), (2.16) is reduced to

(Iog"™ RY*® = 1 1og™ (] p) < log* ' R = ;{i log!®“ (lt]/ Pe)]-
t—¢ . —¢

So
min S(R) = (z(log"™ |tfa )™ /exp{p; log'¥ (Re ")}

0<R<o
= {Z(Iog[piz]”t”aHtH)/(log[qq] R)}™

_ 1 _
. {x(log”’ Mo of 1 toa” <||t||/pe>j}
t;—¢
~t; —¢. (2.19)
(2.15),(2.17),(2,18) and (2.19) combine into
lim inf X >t; /M . (2.20)

[t

The inequality (2.20) is obvious if t; =0. When t; =oo, above arguments with an
arbitrarily large number in place of (t; — ) leads to

liminf X =00,

[t]>=
We now prove that strict inequality cannot hold in (2.20). for if it holds, then there exists a
number §(6 > tg) such that

S . #(log'* HtH“HtH) et
— = lim inf
M [ log ' #{~(V/|lt|)) log|a,|d, (G)}

Let &, be such that & > &, > tg, then for all |t > m,

[p-2]
logla,|d, (G) > | eXp[QZ]{Z (log™ ”t“at)}

(51/M )J/(pe—A)
Therefore, for sufficiently large R and [t| we have

x(log"* ”t”aHtH)
(51/|V| )]/(pG*A)

log M 5 (R) > —|t] exp [“]{ }+ [t|log R. (2.21)

For (p,q) =(2.1), choose ||| =[ps5, R”®], then in view of Lemma 1.1. ,

x (”t”aHtH)

logM; 5 (R) > —t]
oot o - oy )

} +[t]tog ]/ ps )

or,
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logM 5 (R)

YECEEEC

Passing to limits
>, (2:22)
Incase (p,q) =(2,2), choose
M| _
o{(pe _1)/ pG}pG_l

Then (2.21) is reduced to

(Iog R)pe(R)fl —

log M ¢ (R) > [t|[log R — x(ft[)(M/&,)Y =]
~ M log R
Ps

or,
logM; 5 (R)

(|0g R)pG(R) > 51

which gives on passing to limits
£ >4,. (2.23)
Further, consider (p,q) # (21) and (2, 2) if [t| is given by

log"*([t]/ o) ).
5 ’

log*-2 (||t||//0@) _ 51(|Og[q_l] R/e&‘)PG(R/eg) & logtet R/e‘g _ ;{

then

IO [p-2] t
log M, ;(G) > ||t||{|og R — exp®? {Z(agf/—%””) }}

[p-2] [p-2]

log"* M ¢ (R)
(|Og[q—l] R)pG(R)

or,

>0, +0(1).

Proceeding to limits we have
ts > 0. (2.24)
S0 (2.22),(2.23) and (2.24) are formed in to
t > 6,
which is a contradiction. Hence the proof of the theorem is complete.
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Corollary 2.3. Let f(z) = Zatzt be an entire function having the (p,q)-order p, and

(L
lower (p,q)-type ts(0<t, <o) such that ¢(“t||) is non-decreasing function of || for
[t] > my, then

t./M = lim inf 1og™" e
S e {logt A (—/|t]) logla )3
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