Al-Muthafar & Taher

On δ-small M-Projective Modules

Nuhad S. Al-Mothafar, Munther T. Mohammed*

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

In this paper we study the concepts of δ -small M-projective module and δ -small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.

Keywords: δ -small M-projective modules, δ -small pseudo projective, δ -small M-pseudo projective modules.

حول مقاس M الاسقاطي من النوع δ الصغير

نهاد سالم المظفر، منذر طاهر محمد *

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق .

الخلاصة

1. Introduction

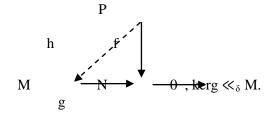
All rings in this paper are associative rings with identity, and all modules are unitary left Rmodules. Let M be an R-module. A submodule A of M is called essential (denoted by $A \subset M$) if every nonzero submodule of M has a nonzero intersection with A [1]. If A is a submodule of M, then the annihilator of A (denoted by Ann (A)) is defined as Ann (A) = $\{r \in R | rA = 0\}$ [1]. If M is Rmodule, then $Z(M) = \{x \in M : Ann (A) \subseteq_{e} R\}$ is called the singular submodule of M. If Z(M) = M, then M is called the singular module. If Z(M) = 0 then M is called nonsingular module [1]. A submodule N of a module M is called δ -small in M (denoted by N \ll_{δ} M), if whenever N + X = M with M/X singular, we have X = M [2]. An epimorphism f: $M \rightarrow N$ is said to split if there exists a homomorphism g: $N \rightarrow M$ with fog = I_N [3]. A non-zero module M is called δ -hollow, if every proper submodule in M is δ -small in M [4]. An R-module P is called M-projective, if for any epimorphism g: $M \rightarrow N$ and any homomorphism f: $P \rightarrow N$, there exists a homomorphism h: $P \rightarrow M$ such that goh = f[5]. A module P is called projective if it is M-projective for every R-module M [3]. Let N and L be submodules of M. N is called a δ -supplement of L if M = N + L and N \cap L \ll_{δ} N [4]. A module M is called Semisimple if it is a direct sum of simple modules [3]. An epimorphism g: $M \rightarrow N$ is said to be δ -small epimorphism if ker g is δ -small in M. [6]. A homomorphism f: M \rightarrow N is said to be factor through g and h. if it is the composite of homomorphisms $f = g \circ h$ [7]. A module N is called Mpseudo projective if for every submodule A of M, any epimorphism α : N \rightarrow M/A can be lifted to a homomorphism $\beta: N \rightarrow M$ [8].

^{*}Email: munthertaher2@yahoo.com

2. δ-small M-Projective Modules

In this section, we introduce the definition of δ -small M-Projective Modules as a generalization of M-projective module. Also we introduce the definition of δ -small short exact sequence.

Definition (2.1): let N and M be modules. Then N is called δ -small M-projective, if for any given module A, any δ -small epimorphism g: M \rightarrow A and any homomorphism f: N \rightarrow A, there exists a homomorphism h: N \rightarrow M such that goh = f. i.e. the following diagram is commutative:



Definition (2.2): A module N is called δ -small projective if it is δ -small M-projective for every R-module M,[6].

Definition (2.3): Let K, M, N be modules A short exact sequence

 $0 \to K \xrightarrow{f} M \xrightarrow{g} N \to 0$ is said to be δ -small short exact sequence if Kerg $\ll_{\delta} M$.

Proposition (2.4): Let U and M be modules, the following are equivalent:

(a) U is a δ -small M-projective module;

(b) For every δ -small short exact sequence with middle term

 $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$, the sequence

 $0 \to \operatorname{Hom}(U,K) \xrightarrow{Hom(I,f)} \operatorname{Hom}(U,M) \xrightarrow{Hom(I,g)} \operatorname{Hom}(U,N) \to 0 \text{ is short exact;}$

(c) For any δ -small submodule K of M, any homomorphism

h: U \rightarrow M/K factor through the natural epimorphism π : M \rightarrow M/K.

Proof: (a \Rightarrow b) By proposition (16.6 in [7]) (b) holds. It is enough to show that, Hom(1, g) is an epimorphism. Let $f_1 \in \text{Hom}(U, N)$. Since g is a δ -small epimorphism and U is a δ -small M-projective module, there exists a homomorphism h: U \rightarrow M such that goh = f_1 .

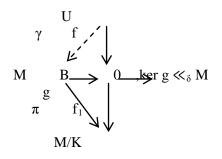
Now, Hom $(1, g)(h) = goh = f_1$.

 $(b \Rightarrow c)$ Let K be a δ -small submodule of M and let h: U \rightarrow M/K be an epimorphism. Consider the following δ -small short exact sequence:

 $0 \to K \xrightarrow{i} M \xrightarrow{\pi} N \to 0$ where i is the inclusion homomorphism and π is the natural epimorphism. By (b), the homomorphism Hom(I, π): Hom(U, M) \to Hom(U, M/K) is an epimorphism.

i.e. there exists a homomorphism $f \in Hom(U, M)$ such that $h = Hom(I, \pi)(f) = \pi of$.

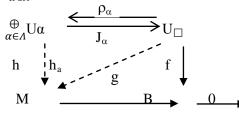
 $(c \Rightarrow a)$ Let g: $M \to B$ be a $\delta\text{-small}$ epimorphism and f: $U \to B$ be any homomorphism. Consider the following diagram:



Where K = Kerg, π : M \rightarrow M/K is the natural epimorphism and f₁: B \rightarrow M/K is an isomorphism. By (c), there exists a homomorphism γ : U \rightarrow M such that $\pi \circ \gamma = f_1 \circ f$. and by (the factor theorem p.45 in [7]) we have $f_1 \circ g = \pi$. Now, $f_1 \circ g \circ \gamma = \pi \circ \gamma = f_1 \circ f$. Thus $g \circ \gamma = f_1$ since f_1 is an isomorphism.

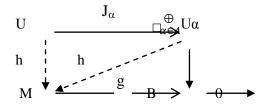
Proposition (2.5): Let M be an R-module and $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be an indexed set of Modules. Then $\bigoplus_{\alpha \in \Lambda} U\alpha$ is a δ -small M-projective if and only if every U_{α} is a δ -small M-projective.

Proof: (\Rightarrow) Let $\underset{\alpha \in \Lambda}{\oplus}$ U α be a δ -small M-projective and let $\alpha \in \Lambda$. Consider the following diagram:



Where g: $M \to B$ is a δ -small epimorphism, f: $U_{\alpha} \to B$ is any homomorphism, ρ_{α} and J_{α} are the projections and the injection homomorphisms, respectively. Since $\stackrel{\oplus}{}_{\alpha \in \Lambda} U_{\alpha}$ is δ -small M-projective, then there exists a homomorphism h: $\stackrel{\oplus}{}_{\alpha \in \Lambda} U_{\alpha} \to M$ such that goh = fo ρ_{α} . Let $h_{\alpha} = hoJ_{\alpha}$: $U_{\alpha} \to M$. \Rightarrow goh_{\alpha} = gohoJ_{\alpha} = fo\rho_{\alpha}oJ_{\alpha} = foI = f.

(⇐) Let g : M → B be a δ-small epimorphism and let f : ${}^{\oplus}_{\alpha \in \Lambda}$ Uα→ B be any homomorphism.For each $\alpha \in \Lambda$, consider the following diagram:



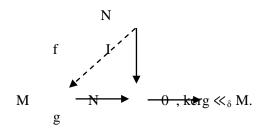
Where $J_{\alpha}: U_{\alpha} \to {}_{\alpha \in \Lambda}^{\oplus} U_{\alpha}$ is the injection homomorphism. Since U_{α} is δ -small M-projective, for each $\alpha \in \Lambda$, so there exists $h_{\alpha}: U_{\alpha} \to M$, such that $g_{\circ}h_{\alpha} = f_{\circ}J_{\alpha}$; for each $\alpha \in \Lambda$. Define h: ${}_{\alpha \in \Lambda}^{\oplus} U_{\alpha} \to M$ by $h(\psi) = \sum_{\alpha \in \Lambda} h_{\alpha}(\psi(\alpha))$. Clearly h is well-defined and a homomorphism. Now $(g_{\circ}h)(\psi) = g(h(\psi)) = g(\sum h_{\alpha}(\psi(\alpha)))$

$$= \sum_{\alpha \in \Lambda} (g_{\circ}h_{\alpha})(\psi(\alpha)) = \sum_{\alpha \in \Lambda} (f_{\circ}J_{\alpha})(\psi(\alpha)) = f(\sum_{\alpha \in \Lambda} J_{\alpha}(\psi(\alpha))) = f(\psi)$$

Thus $\bigoplus_{\alpha \in \Lambda} U_{\alpha}$ is δ -small M-projective module.

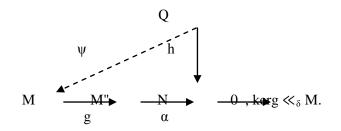
Proposition (2.6): If N is δ -small M-projective module, then every δ -small epimorphism g: M \rightarrow N splits.

Proof: Let N be a δ -small M-projective, I: N \rightarrow N be the identity and g: M \rightarrow N be a δ -small epimorphism, then by δ -small M-projectivity there exists a homomorphism f: N \rightarrow M such that g \circ f = I. so the δ -small epimorphism g: N \rightarrow M splits.



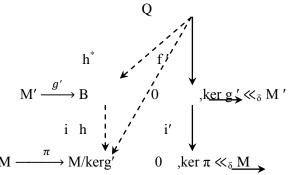
Proposition (2.7): Let M and Q be an R-module. If $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is a δ -small short exact sequence and Q is a δ -small M-projective, then Q is δ -small M' and M''-projective.

Proof: First we show that Q is a δ -small M''-projective, let α : M'' \rightarrow N be a δ -small epimorphism and let h: Q \rightarrow N be any homomorphism. Consider the following diagram:



Since α and g are δ -small epimorphism so $\alpha_0 g$ is δ -small epimorphism [6], and since Q is δ -small Mprojective, there exists a homomorphism $\psi: Q \to M$ such that $\alpha_0 g_0 \psi = h$, i.e., $g_0 \psi$ is the required homomorphism.

Now to show that Q is δ -small M'-projective, we may assume that M' \leq M, let g': M' \rightarrow B be a δ -small epimorphism and f': Q \rightarrow B be homomorphism. Consider the following diagram:



Where i be the inclusion homomorphism and π is the natural epimorphism.

Define i': $B \to M/\text{Kerg'}$ by i'(b) = a + Kerg', where b = g'(a), for some $a \in M'$. Its clear that g is well define and homomorphism. Since Q is a δ -small M-projective module, there exists a homomorphism h: $Q \to M$ such that $\pi_0 h = i'of'$. We claim that $h(Q) \le M'$. Let $w \in h(Q)$, then there exists $q \in Q$ such that w = h(q). Now, $\pi h(q) = i'of'(q) = i'og'(a)$ for some $a \in M'$.

Hence $\pi h(q) = a + \text{Kerg'}$ and therefore $a - h(q) \in \text{Kerg'} \leq M'$. Thus $h(q) \in M'$ and consequently $h(Q) \leq M'$. Define $h^*: Q \to M'$ by $h(x) = h^*(x)$, for all $x \in Q$. Now, $i'_0g'_0h^* = \pi_0h^* = \pi_0h^* = \pi_0h = i'_0f'$. Since i' is a monomorphism, we get $g'_0h^* = f'$.

Hence Q is δ -small M'-projective module.

Corollary (2.8): Let Q be a δ -small M-projective module, if N \subseteq M, then Q is δ -small N-projective and δ -small M/N-projective.

Proof: Its clear from the short exact sequence $0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$ and proposition (2.8).

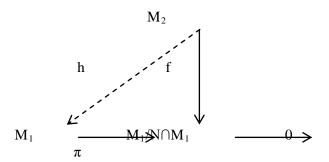
Proposition (2.9): If M is δ -hollow module then every M-projective module is δ -Small M-projective. **Proof:** Follows by the fact every submodule of M is δ -small in M.

Proposition (2.10): Let M_1 and M_2 be modules, with $M = M_1 \oplus M_2$, then the following are equivalent:

(1) M_2 is a δ -small M_1 -projective;

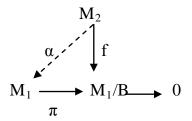
(2) For any submodule N of M, such that M_1 is a δ -supplement of N in M, there exists a submodule N_1 of N such that $M = M_1 \oplus N_1$.

Proof: $(1 \Rightarrow 2)$ Let M_1 be a δ -supplement of a submodule N in M, then $M = N + M_1$ with $N \cap M_1 \ll_{\delta} M_1$. Let $\pi: M_1 \to M_1/N \cap M_1$ be the natural epimorphism. Define f: $M_2 \to M_1/N \cap M_1$ by $f(x) = y + N \cap M_1$, for all $x \in M_2$, we have x = y + n, for some $y \in M_1$ and $n \in N$. Cleary f is well-defined and a homomorphism. Consider the following diagram:



Since M_2 is a δ -small M_1 -projective, there exists a homomorphism h: $M_2 \rightarrow M_1$, such that $\pi_0 h = f$. Define $N_1 = \{y - h(y): y \in M_2\}$. We claim that $N_1 \subseteq N$. Let $x \in N_1$, then x = w - h(w), for some $w \in M_2$. Now, $\pi h(w) = f(w)$. Since $M = N + M_1$ and $w \in M_2$, then w = n + v for some $n \in N$ and $v \in M_1$. But $h(w)+N \cap M_1 = f(w) = v + N \cap M_1$. This implies that $h(w) - v \in N$ and thus $w - h(w) \in N$, i.e., $x \in N$. It is clear that $M = M_1 + N_1$. Let $w \in M_1 \cap N_1$, so w = y - h(y) for some $y \in M_2$. Thus w + h(y) = y = 0. Thus w = 0. Hence $M = M_1 \oplus N_1$.

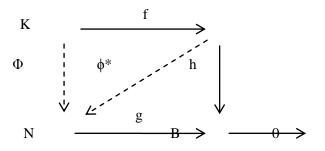
 $(2 \Rightarrow 1)$ Let $\pi: M_1 \rightarrow M_1/B$ be the natural epimorphism, where $B \ll_{\delta} M_1$ and let $f: M_2 \rightarrow M_1/B$, Define $N = \{x - y \mid f(x) = \pi(y), where x \in M_2, y \in M_1\}$. It is clear that $M = M_1 + N$. We claim that $N \cap M_1 \subseteq B$. Let $w \in N \cap M_1$, so $w \in N$ and hence $w = m_2 - m_1$, for some $m_2 \in M_2$, $m_1 \in M_1$, where $f(m_2) = \pi(m_1)$. Thus $w + m_1 = m_2 = 0$, since $M = M_1 \oplus M_2$. Therefore $\pi(m_1) = 0$ which implies that $m_1 \in B$ and hence $w \in B$. But $B \ll_{\delta} M_1$, thus $N \cap M_1 \ll_{\delta} M_1$. Thus M_1 is a δ -supplement of N in M. By (2), there exists a submodule N_1 of N such that $M = M_1 \oplus N_1$. Define $\alpha: M_2 \rightarrow M_1$ by $\alpha(w) = v$, where w = n + v for some $n \in N_1$ and $v \in M_1$. Clearly α is well-defined and homomorphism. Now for the diagram



Let $w \in M_2$, then w = n + v, where $n \in N_1$ and $v \in M_1$, but $n \in N$, so n = x - y, where $f(x) = \pi(y)$. Hence w = x - y + v which implies that $w - x = v - y \in M_1 \cap M_2 = 0$. Thus w = x and v = y. Therefore $\pi\alpha(w) = \pi(v) = \pi(y) = f(x) = f(w)$. Consequently M_2 is a δ -small M_1 -projective module.

Proposition (2.11): Let M, N and K be modules, where K is δ -small projective. Let f: K \rightarrow M be an epimorphism. Then M is δ -small N-projective if for every homomorphism ϕ : K \rightarrow N, there exists a homomorphism ϕ^* : M \rightarrow N such that ϕ^* of = ϕ .

Proof: Let g: $N \rightarrow B$ be δ -small epimorphism and h: $M \rightarrow B$ be any homomorphism. Consider the following diagram:

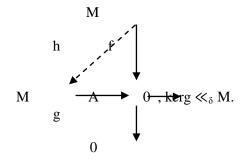


By δ -small projectivity of K, there exists a homomorphism ϕ : $K \to N$, such that $go\phi = hof$. By our hypothesis, there exists a homomorphism ϕ^* : $M \to N$, such that $\phi^*of = \phi$, and so $go\phi^*of = go\phi = hof$. Now For $m \in M$, we have $(go\phi^*)(m) = g(\phi^*(m)) = g(\phi^*(f(x)))$, where m = f(x), for some $x \in K$. Hence $(go\phi^*)(m) = (go\phi^*of)(x) = (go\phi^*)(f(x)) = (go\phi)(x) = h(f(x)) = h(m) \Rightarrow go\phi^* = h$. Therefore M is δ -small N-projective module.

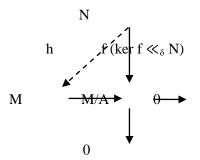
3. δ-Small M-Pseudo Projective Modules

In this section, we give new definitions, definitions of δ -Small pseudo projective module and δ -Small M-Pseudo Projective Module as a generalization of pseudo projective module and M-Pseudo Projective Module respectively and give some results. Recall that An R-module M is called pseudo projective if for any given module A and epimorphisms f: M \rightarrow A and g: M \rightarrow A, there exists an h in End (M) such that f = g o h. also recall that a module N is called M-pseudo projective if for every submodule A of M, any epimorphism α : N \rightarrow M/A can be lifted to a homomorphism β : N \rightarrow M.

Definition (3.1): An R-module M is said to be δ -small pseudo projective if for any module A, with δ -small epimorphism g: M \rightarrow A and epimorphism f: M \rightarrow A there exists an h \in End (M) such that f = g \circ h. i.e. the following diagram is commutative:

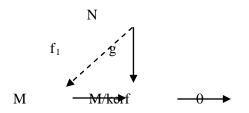


Definition (3.2): An R-module N is called δ -small M-pseudo projective module if for any submodule A of M, any δ -small epimorphism f: N \rightarrow M/A can be lifted to a homomorphism h: N \rightarrow M. i.e. the following diagram is commutative:



Proposition (3.3): Let N be a δ -small M-pseudo projective module, then any epimorphism f: M \rightarrow N splits.

Proof: Let f: $M \to N$ be an epimorphism. Then $N \cong M/\text{ker}(f)$ so g: $N \to M/\text{ker}f$ is an isomorphism, since N is δ -small M-pseudo projective then g can be lifted to homomorphism $f_1: N \to M$. thus $f \circ f_1$ is the identity map, therefore the epimorphism f: $M \to N$ splits.

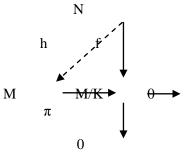


Proposition (3.4): Let N be a δ -hollow R-module the following conditions are equivalent:

(1) N is δ -small M-pseudo projective module.

(2) N is M-pseudo projective module.

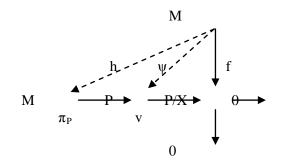
Proof(1) \Rightarrow (2) Let N be a δ -small M-pseudo projective module. Let K be any submodule of M, let f: N \rightarrow M/K any epimorphism. Since N is δ -hollow module so every proper submodules of N are δ -small in N. so Ker f \ll_{δ} N, and by (1) the homomorphism f can be lifted to a homomorphism h: N \rightarrow M. such that $\pi \circ g = f$. with π : M \rightarrow M/K. i.e. the following diagram is commutative:



Thus, N is M-pseudo projective module. (2) \Rightarrow (1), it clear by definition.

Proposition (3.5): If $M = P \bigoplus N$ is δ -small pseudo projective then $P \bigoplus N$ is δ -small P-pseudo projective as well as δ -small N-pseudo projective.

Proof: Let f: $M \to P/X$ be any δ -small epimorphism where X is a submodule of P, $\pi_P: M \to P$ be the projection map and v: $P \to P/X$ be the natural epimorphism. Then by δ -small pseudo projectivity of M there exists h: $M \to M$ such that the following diagram is commutative:



i.e. $f = v \circ \pi_P \circ h$, define $\psi = \pi_P \circ h$ thus $v \circ \psi = f$ and hence M is δ -small P-pseudo-projective. Similarly we can show that M is δ -small N-pseudo-projective.

References :

- 1. Goodearl K. R. 1976. *Ring theory, Non-Singular Rings and Modules*, Mercel Dekker, New York. pp. 15-40.
- **2.** Zhou Y. **2000**. Generalization of Perfect, Semiperfect and Semiregular Rings, Algebra colloquium, 7(3). pp:305-318.
- **3.** Wisbauer R. **1991**. Foundations of Modules and Rings theory, Gordon and Breach, Philadelphia. pp:57-166
- **4.** Nematollahi M. J. **2009**, On δ-supplemented modules, Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, pp:155-158.
- 5. Azumayya G. Mbuntum. F and Varadarajan. K. 1957. On M-projective and M-injective modules, *pacific journal of mathematics*, 59(1), pp:9-16.
- **6.** Almothafar N. S. and Yassin, S. M, **2013** On δ-small projective module, *Iraqi Journal of science*, 54, pp:855-860.
- 7. Anderson, F. W. and Fuller K. R. 1974. *Rings and Categories of Modules*, Sipringer-Verlag, New York. pp:45-185.
- 8. Talebi Y. and Gorji I. K. 2008. On Pseudo-Projective and Pseudo Small Projective Modules,

Al-Muthafar & Taher Iraqi Journal of Science, 2014, Vol 55, No.4B, pp:1935-1941

International Journal of Algebra, 2(10), pp:463-468.