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Abstract:  

     The presented study investigates the scheduling regarding 𝑛 jobs on a single 

machine. Each 𝑛 job is processed with no interruptions and becomes available for 

processing at time 0. The aim is to find a processing order with regard to jobs, 

minimizing “multi-criteria and multi-objective” for two problems. The first problem 

considers the summation completion time ∑𝐶𝑗, summation late work ∑𝑉𝑗, and 

maximal tardiness 𝐸𝑚𝑎𝑥, while the second problem considers the total completion 

time ∑𝐶𝑗, total earliness ∑𝐸𝑗, and maximum tardiness 𝑇𝑚𝑎𝑥 . In addition, a sub-

problem is presented for each problem and denoted by 1//  ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 and 

1// ∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥 for the first and second problems, respectively, which is an 

NP-hard problem. Two meta-heuristics methods “particle swarm optimization (PSO) 

and bee algorithm (BA)” were applied to acquire the optimal or near-optimal 

solution. Meta-heuristics methods solve problems of up to 𝑛 = 4000 jobs. Finally, 

in an attempt to increase the overall search efficiency, a hybrid algorithm was 

created by combining two algorithms, a hybrid between BA and PSO was created to 

create an alternative search method that incorporates the best properties that each 

method offers during problem-solving. Moreover, by comparing the performance of 

local search methods with a hybrid strategy, the hybrid strategy method outperforms 

BA and PSO. In addition, it can solve problems up to 𝑛 = 8000 jobs. Arithmetic 

results are calculated by coding (programming) algorithms using (MATLAB 2019a). 
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على جهاز واحد. ستتم معالجة كل مهمة بدون   n بحثت الدراسة المقدمة في الجدولة المتعلقة بالوظائف      
. الهدف هو العثور على أمر معالجة فيما يتعلق بالوظائف، مما  0وستصبح متاحة للمعالجة في الوقت انقطاع 

، وإجمالي  𝐶𝑗∑ يقلل من المعايير المتعددة والأهداف المتعددة لمشكلتين. المشكلة الأولى، إجمالي وقت الإنجاز
، وإجمالي  𝐶𝑗∑ ، والمشكلة الثانية، إجمالي وقت الإنجاز𝐸𝑚𝑎𝑥 ، والحد الأقصى للتأخير𝑉𝑗∑ العمل المتأخر 

بالإضافة إلى ذلك، تم تقديم مشكلة فرعية لكل مشكلة يرمز لها   𝑇𝑚𝑎𝑥 ، والحد الأقصى للتأخير𝐸𝑗∑ التبكير
𝐶𝑗∑ // 1 بالرمز   + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 1  و// ∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥 على    والثانية  الأولى  للمسألتين 

الجسيمات وخوارزمية   NP-hard .التوالي. وهي مشاكل )تحسين سرب  المحلي  للبحث  استخدام طريقتين  تم 
إلى تصل  مشاكل  المحلية  البحث  طرق  تحل  الأمثل.  شبه  أو  الأمثل  الحل  على  للحصول  𝑛 النحل(  =

الجمع   4000 إنشاء خوارزمية هجينة من خلال  تم  الشاملة،  البحث  كفاءة  لزيادة  وظيفة. وأخيرا، في محاولة 
بين   هجينة  خوارزمية  إنشاء  تم  خوارزميتين،  أفضل    PSOو  BAبين  تتضمن  بديلة  بحث  طريقة  لإنشاء 

الخصائص التي تقدمها كل طريقة أثناء حل المشكلات. علاوة على ذلك، من خلال مقارنة أداء طرق البحث  
، وبالإضافة إلى ذلك،  PSOو  BAالمحلية مع الاستراتيجية الهجينة، تتفوق طريقة الاستراتيجية الهجينة على  

إلى   تصل  مشاكل  حل  𝑛   يمكنها  = خوارزميات   8000 طريق  عن  الحسابية  النتائج  حساب  يتم  وظيفة. 
       MATLAB 2019a . الترميز )البرمجة( باستخدام

 

1. Introduction 

     The Machine Scheduling Problem (MSP), a crucial area of Operation Research (OR), and 

it can be defined as the problem of scheduling given 𝑛 jobs, each of them requires one or 

more operations, on one or more machines during a given period of time in a way that 

minimizes a given objective function. Scheduling is a decision-making method that plays a 

major role in our daily life and it is used in information processing, production, purchasing, 

distribution and transportation, among other areas of manufacturing and service industries as 

well as in some military problems [1]. Mathematical techniques and heuristic strategies are 

used to allocate limited resources in order to obtain optimal or near-optimal solutions to the 

job scheduling problem used in companies. Local search heuristics are based on observations 

of processes in the physical and biological sciences [2][3]. The Machine Scheduling problem 

MSP has become significantly more complex and large-scale in recent decades as a result of 

the development of more complex modeling techniques with making more assumptions [4]. 

Meta-heuristic Optimization strategies have become increasingly popular in the research 

community as a means of solving huge, difficult problems [5]. This is mostly caused by the 

time-consuming nature and general unsuitability of classical procedures. For the purpose of 

solving MSP, meta- heuristic algorithms were created [6]. 

 

     In 2017 [3], three local search algorithms (descent method, simulated annealing, and tabu 

search ) are used to minimize multi-objective function  (∑𝐶𝑗 + ∑𝑇𝑗 + 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥)  up  to  

2000. In addition, the branch and bound method was used as exact method to solve this 

problem up to 𝑛 ≤ 25. In 2020 [7] used local search methods (LSM), simulated annealing, 

and particle swarm optimization to minimize multi-criteria and multi-objective function 

(∑𝐶𝑗 , ∑𝐸𝑗),  (∑𝐶𝑗 + ∑𝐸𝑗) for n ≤ 1000. In 2020 [8], two local search methods (Bees 

algorithm and Particle Swarm Optimization) were used to minimize (∑𝐶𝑗 , 𝑅𝐿 , 𝑇𝑚𝑎𝑥) and 

(∑𝐶𝑗+𝑅𝐿 + 𝑇𝑚𝑎𝑥) up to n ≤ 1000. In 2020 [9] used simulated annealing, tabu search to 

solve the problem 1/ 𝑟𝑗 / 𝑇𝑚𝑎𝑥 + ∑𝑤𝑗 + ∑𝑤𝑗𝑒
−𝑟𝐶𝑗 . Then, in 2022 [10], used two local search 

algorithms (genetic algorithm and particle swarm optimization) to minimize a multi-objective 

function, ∑ (𝐶𝑗 + 𝑇𝑗 + 𝐸𝑗 + 𝑉𝑗)
𝑛
𝑗=1 . In 2020 [11] used a heuristic algorithm to minimize the 

sum of total completion time, maximum earliness, and maximum tardiness in a single-

machine scheduling. In 2023 [12], two local search methods simulated annulling and bees 

algorithm were proposed to minimize multi-criteria (∑𝐶𝑗, ∑𝑉𝑗). In the same year,[13] three 
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new hybrid algorithms hybridizing a new method with a genetic algorithm, taboo search, and 

simulated annealing, denoted as 𝐺𝐴𝐻, 𝑇𝑆𝐻, and 𝑆𝐴𝐻 are proposed to minimize the total 

penalty cost defined as the sum of tardy, early, and overtime costs. 

 

     Despite the fact that complicated real-world MSP problems have been successfully tackled 

using meta-heuristic algorithms, not all issues using the no-free-lunch theorem have a 

standard algorithm (SA)[6] . As a result, contemporary ideas of modifying self-adaptive 

algorithms or hybrid algorithms that facilitate the selection of the appropriate algorithm seek 

to overcome the implicit limitations of Meta-heuristics in dealing with actual MSP situations. 

Due to the use of hybrid algorithms in the current study, proposed a new hybrid algorithm that 

combines the PSO and the BA. A hybrid technique between “particle swarm optimization and 

bee algorithm” is proposed, by combining PSO and BA to improve the results of BA and 

PSO. Moreover, it is used for solving the problem up to 𝑛 >  4000 jobs.  

 

     The rest of the paper is organized as follows: The conceptual framework is described in 

section 2. In the third Section, the mathematical formulation of the problems was presented. 

The fourth section presented the Hybrid BA-PSO algorithm, in addition to computational 

experiments for applications of PSO, BA, and BA-PSO. It is also presented comparison 

results for applying all problem-solving methods. The practical results of the proposed 

problems are evaluated in Section five. Finally, the main conclusions and further works are 

presented in Section six. 

 

2. Conceptual framework 

• The problems are organized and designed as multi-criteria mathematical models and a 

multi-objective sub-problem of the original problem is proposed. 

• Two Meta-heuristics methods PSO and BA are proposed to solve these problems up to 

𝑛 =  4000. 

• Moreover, a hybrid technique between “particle swarm optimization and bee algorithm” is 

proposed, by combining PSO and BA, which is adopted to find efficient solutions to this 

problem in a reasonable time up to 𝑛 = 8000 jobs.  

 

3. Mathematical Models 

     This problem can be illustrated on a single machine to schedule jobs to minimize multi-

criteria and multi-objectives: At time 0, the number of available jobs is represented as 𝑁 =
{1,2, … , 𝑛}, (i. e. , 𝑟𝑗 = 0 for all 𝑗) and they need processing on just one machine. For each 𝑗 

job, it has a processing time 𝑝𝑗, a due date 𝑑𝑗. In addition, a list of given jobs in the 

sequence 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛). This research article will use several terms that can be defined 

as follows:   

BA: Bees Algorithm.  

PSO: Particle Swarm Optimization 

𝐿𝑗: Lateness time of job 𝑗, s. t. 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗. 

𝑇𝑗: Tardiness for job 𝑗, s. t. 𝑇𝑗 = 𝑚𝑎𝑥 {0, 𝐿𝑗}, where 𝐿𝑗: Lateness time of job 𝑗, s. t. 𝐿𝑗 =

𝐶𝑗 − 𝑑𝑗. Aslo, 𝑇𝑚𝑎𝑥: Maximal tardiness  s. t. 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝑁{𝑇𝑗}.  

𝑉𝑗: Late work s.t., 𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗 , 𝑝𝑗} = 𝑚𝑖𝑛{𝐶𝑗 − 𝑑𝑗 , 𝑝𝑗}, ∑𝑉𝑗: Total Late work. 

𝐸𝑗: Earliness time for job 𝑗, s. t. 𝐸𝑗 = 𝑚𝑎𝑥 {0, −𝐿𝑗}, ∑𝐸𝑗: Total earliness time.  

𝐶𝑗: Completion time for job 𝑗, where 𝐶𝑗 = ∑ 𝑝𝑘
𝑗
𝑘=1 , ∑𝐶𝑗: Total completion time. 

𝐹𝐶𝑉𝐸: Objective Function of the problem  (𝑇𝐶𝑉𝑀𝐸), s.t., 𝐹𝐶𝑉𝐸 = 𝑀𝑖𝑛(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥). 

𝐹𝑆𝑃 : Objective Function of sub-problem.  

𝐹𝐶𝐸𝑇: Objective Function of the problem  (𝑆𝐶𝐸𝑀𝑇), s.t., 𝐹𝐶𝐸𝑇 = 𝑀𝑖𝑛(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥)   
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MOF: Multi-Objective Function.  

MCF: Multi- Criteria Function. 

EFSO: Efficient Solution [4], a schedule 𝛼∗ is known as efficient solution or Pareto optimal 

or (non-dominated), if we cannot find another schedule 𝛼 satisfying ℎ𝑗(𝛼) ≤ ℎ𝑗(𝛼
∗), 𝑗 =

1,2, . . , 𝑛, with at least one of the above considered a strict disparity. Another way is that 𝛼∗ is 

dominated by 𝛼 [11]. 

OP: optimal, σ∗ is the schedule which is considered as optimal in the case when there is no 

other schedule σ that satisfies 𝑓𝑗(𝜎) ≤ 𝑓𝑗(𝜎̇), 𝑗 = 1: 𝑘 (𝑘: criteria's number), assuming a strict 

inequality for a minimum of one of the conditions that have been mentioned earlier. If not, 𝜎 

can be considered dominant over 𝜎̇ [4]. 

 

      Finding a schedule 𝛽 ∈ 𝑆 is the aim of the first problem (𝑆 is the set of all possible 

feasible schedules that satisfies all the constraints of the problem) that minimizes the multi-

criteria 𝐹𝐶𝑉𝐸 = 𝑚𝑖𝑛(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥).  This problem denoted by (𝑇𝐶𝑉𝑀𝐸) , and this problem 

is denoted by:    

  

𝐹𝐶𝑉𝐸 = 𝑀𝑖𝑛(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥)

subject to                                 

𝐶𝑗 ≥ 𝑝𝑗(𝛽),                              

𝐶𝑗 =∑𝑝𝑘

𝑗−1

𝑘=1

(𝛽) + 𝑝𝑗(𝛽),       

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗(𝛽),                      

𝐸𝑗 ≥ 𝑑𝑗(𝛽) − 𝐶𝑗 ,                      

𝑉𝑗 = 𝑚𝑖𝑛{𝑇𝑗 , 𝑝𝑗(𝛽)},               

𝑉𝑗 ≥ 0, 𝐸𝑗 ≥ 0, and 𝑇𝑗 ≥ 0,     

 

}
 
 
 
 

 
 
 
 

  𝑗 from 1 to 𝑛

}
 
 
 
 
 

 
 
 
 
 

                                           (1)    

 

For  the problem(𝑇𝐶𝑉𝑀𝐸), sub-problem can be concluded: The 1//(∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥) 

problem is referred to as the problem (𝑆𝑃1), and it can be defined as follows:  

 

𝐹𝑆𝑃 = 𝑀𝑖𝑛(∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥)               

subject to                                                     

𝐶𝑗 = ∑ 𝑝𝛽𝑘
𝑗
𝑘=1                                              𝑗 = 1: 𝑛

𝐶𝑗 = 𝐶(−1+𝑗) + 𝑝𝛽𝑗                                       𝑗 = 2: 𝑛

𝐸𝑗 ≥ 𝑑𝛽𝑗 − 𝐶𝑗                                               𝑗 = 1: 𝑛 

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎𝑗                                               𝑗 = 1: 𝑛  

𝑉𝑗 = 𝑚𝑖𝑛 {𝑇𝑗 , 𝑝𝛽𝑗}                                     𝑗 = 1: 𝑛  

𝑉𝑗 ≥ 0,  𝐸𝑗 ≥ 0,  𝑇𝑗 ≥ 0                             𝑗 = 1: 𝑛
                     }

 
 
 
 
 

 
 
 
 
 

                                            (2). 

 

       Finding the order of processing jobs that will minimize this sub-problem and it is the 

main goal. The objective of the sub-problem is to find the sequence of job processing that will 

minimize ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 [1]. 

The second problem is denoted by (𝑆𝐶𝐸𝑀𝑇), and it can be formulated mathematically as 

follows: 
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𝐹𝐶𝐸𝑇 = 𝑀𝑖𝑛(∑𝐶𝑗, ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥)

subject to                                
𝐶1 = 𝑝𝛽1                                          

𝐶𝑗 ≥ 𝑝𝛽𝑗                        𝑗 = 1: 𝑛     

𝐶𝑗 = 𝐶𝛽(𝑗−1) + 𝑝𝛽𝑗       𝑗 = 2: 𝑛    

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝛽𝑗              𝑗 = 1: 𝑛      

𝐸𝑗 ≥ 𝑑𝛽𝑗 − 𝐶𝑗              𝑗 = 1: 𝑛  

𝑇𝑗 ≥ 0, 𝐸𝑗 ≥ 0            𝑗 = 1: 𝑛
     
}
 
 
 
 

 
 
 
 

                                                 (3). 

 

     Furthermore, from the problem (𝑆𝐶𝐸𝑀𝑇) a sub-problem can be concluded: The 1//(∑𝐶𝑗 +

∑𝐸𝑗 + 𝑇𝑚𝑎𝑥) problem is referred to as the problem (𝑆𝑃2), and it can be defined as follows: 

  

𝐹𝐶𝐸𝑇 = 𝑀𝑖𝑛{∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥}

s. t.                                                 
𝐶1 = 𝑝𝛽1                                          

𝐶𝑗 ≥ 𝑝𝛽𝑗                        𝑗 = 1: 𝑛  

𝐶𝑗 = 𝐶𝛽(−1+𝑗) + 𝑝𝛽𝑗    𝑗 = 2: 𝑛 

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝛽𝑗             𝑗 = 1: 𝑛

𝐸𝑗 ≥ 𝑑𝛽𝑗 − 𝐶𝑗              𝑗 = 1: 𝑛

𝑇𝑗 ≥ 0, 𝐸𝑗 ≥ 0            𝑗 = 1: 𝑛

   

}
 
 
 
 

 
 
 
 

                                            (4).      

 

4. Hybrid Meta-Heuristics Algorithm (BA-PSO) 

     The problems  𝑇𝐶𝑉𝑀𝐸  and  𝑆𝐶𝐸𝑀𝑇 in scheduling machine problems belong to the NP-hard 

meta-heuristics category [14], and they are considered large-scale problems (containing a 

large number of jobs) and they cannot be solved by analytical methods. Meta-Heuristics 

works well for large-scale MSP challenges. On the other hand, hybridization leads to 

powerful (robust) solution methods. Modern Meta-heuristics take into account intensification 

and diversification (exploration and exploitation), while the building of the hybrid model, 

which consists of these two basic elements. For an algorithm to be efficient and successful 

(both in terms of speed and quality), it must be able to effectively scan the entire search space 

and condense its search into the area of the optimal or near-optimal solution. To improve the 

speed and quality of any algorithm, a balance must be struck between exploration and 

exploitation. An effective combination of these two basic approaches almost guarantees 

global optimum [6]. Search algorithms were chosen to balance exploration and exploitation. 

In this paper, we propose a new hybrid algorithm that combines the PSO algorithm and the 

BA algorithm, to solve the models 𝑇𝐶𝑉𝑀𝐸  and  𝑆𝐶𝐸𝑀𝑇, by combining 𝑃𝑆𝑂 as well as 𝐵𝐴. 

This method aims to create an alternative research method that incorporates the best 

properties offered by each method while solving problems. PSO is a very simple idea that 

does not require a complex data structure to implement. It does not use any complex or 

expensive mathematical functions. Moreover, it does not require a lot of memory. Fast 

convergence, minimal control parameters, easy calculations, good performance, and the 

absence of derived calculations make PSO an attractive option for solving problems. While, 

the bee algorithm is more scalable, when it comes to finding and collecting food. Food 

processors are more efficient because they require fewer steps.  

First, we introduce the steps of the PSO algorithm as follows: 
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Algorithm 1: PSO Algorithm   

Step 1: Dimension (d), LB(minx), UB(maxx), No. of Particles (N), Maximum number of 

iterations (max_iter).    

Step 2: Randomly initialize Swarm (S) population of N particles Position (P) and velocity 

(V) (i=1,2,…, N). 

Step 3: Select hyperparameter values w, c1 and c2. 

Step 4: Calculate the Fitness value for each particle. 

Step5: FOR Iter=1 : max_iter    { loop max_iter times }  

            FOR i=1: N                      { for each particle } 

               a. Compute the new velocity of the ith particle (V) 

S[i].V=w*S[i].V+r1*c1*(S[i].bestP - S[i].P)+ 

             r2*c2*( bestP_S - S[i].P) ; 

               b. Compute the new position of ith particle using its new velocity 

                    S[i].P = S[i].P + S[i].V; 

               c. IF position is not in the range [minx, maxx] then clip it 

                    IF S[i].P < minx : S[i].P = minx ; 

                    IF S[i].P > maxx : S[i].P = maxx ; 

               d. Calculate Fitness S[i]. Fit and update the new best of each particle and the 

new best of Swarm. 

                IF S[i].Fit  < S[i].bestFit  

                        S[i].bestFit = S[i].Fit ; 

                        S[i].bestP = S[i].P ; 

                ENDIF 

                IF S[i].Fit < best_fitness_swarm 

                        best_fitness_swarm = S[i].Fit ; 

                        best_pos_swarm = S[i].P ; 

                ENDIF 

              END-FOR {i} 

           END-FOR {iter} 

Step 6: Return the best particle of Swarm. 

 

Secondly, we introduce the steps of the BA algorithm as follows: 

Algorithm 2: BA Algorithm   

Step 1: Dimension (d), No. of Bees (N), LB, UB, Maximum number of iterations 

(max_iter).    

Step 2: Randomly initialize Swarm (S) population of N Bees X[LB,UB], (i=1,2,…,N); 

Step 3: Select hyperparameter values m, e, nep, nsp, ngp. 

Step 4: Calculate the Fitness value for each Bee. 

Step 5: FOR Iter=1 : max_iter    { loop max_iter times }  

            FOR i=1: e  

                Swap random neighborhood for S[i].X; 

                Calculate Fitness S[i].Fit; 

END-FOR {i} 

FOR i=e+1: m   

     Swap random neighborhood for S[i].X; 

     Calculate Fitness S[i].Fit; 

END-FOR {i} 

Randomly initialize Swarm (S) population of N-m Bees X (i=m+1,2,…, N). 

SORT By (S.Fit);  

            IF S[i].Fit < best_fitness_Bee 
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                  best_fitness_Bee = S[i].Fit ; 

                  best_Bee = S[i].X ; 

             END-IF 

         END-FOR {iter} 

Step 6: Return the best Bee of Swarm. 

 

     Now, the hybridization of BA with PSO can be seen when applying equation (2) of the 

position that updated in the PSO algorithm in step (5) by applying the swapping of the 

neighborhood for m best bees in the swarm, which applied for BA in step (5). This hybrid will 

be more helpful in improving the best position for each particle in the swarm. 

The steps of the BA-PSO algorithm are as follows: 

 

Algorithm 3:BA-PSO Algorithm  

Step 1:  Dimension (d), LB(minx), UB(maxx), No. of Particles (Bees) (N), Maximum 

number of iterations (max_iter).    

Step 2: Randomly initialize Swarm (S) population of N particles Position (P) (Bees 

X[LB,UB]) and velocity (V) (i=1,2,…,N). 

Step 3: Select hyperparameter values w, c1, c2, m, e, nep, nsp, ngp. 

Step 4: Calculate Fitness value for each particle (Bee). 

Step 5: FOR Iter=1 : max_iter    { loop max_iter times }  

            FOR i=1: N                      { for each particle (Bee) } 

               a. Compute new velocity of ith particle (V) 

S[i].V=w*S[i].V+r1*c1*(S[i].bestP - S[i].P)+ 

             r2*c2*( bestP_S - S[i].P) ; 

               b. Compute new position of ith particle using its new velocity 

                    S[i].P = S[i].P + S[i].V; 

               c. IF position is not in range [minx, maxx] then clip it 

                    IF S[i].P < minx : S[i].P = minx ; 

                    IF S[i].P > maxx : S[i].P = maxx ; 

d. Randomly initialize Swarm (S) population of N-m Particles (Bees) X (i=m+1,2,…,N). 

SORT By (S.Fit);  

            IF S[i].Fit < best_fitness_Bee 

                  best_fitness_Bee = S[i].Fit ; 

                  best_Bee = S[i].X ; 

             END-IF 

               e. Calculate Fitness S[i].Fit and update new best of each particle and new best of 

Swarm. 

                IF S[i].Fit  < S[i].bestFit  

                        S[i].bestFit = S[i].Fit ; 

                        S[i].bestP = S[i].P ; 

                ENDIF 

                IF S[i].Fit < best_fitness_swarm 

                        best_fitness_swarm = S[i].Fit ; 

                        best_pos_swarm = S[i].P ; 

                ENDIF 

              END-FOR {i} 

           END-FOR {iter} 

Step6: Return best particle of Swarm. 

Note: The hybrid between BA and PSO is represented by adding the step (5-d) in the BA-

PSO algorithm. 

The BA-PSO results are compared with the results of PSO and BA meta-heuristics methods. 
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4.1 Computational Experiments 

      All algorithms were done in MATLAB R2019a and implemented on Intel(R) Core (TM) 

i7-2630 QM CPU @ 2.00 GHz 2.00 GHz and 4.00 GB of RAM. Local searches are run for a 

maximum of 10 minutes (600 seconds), and if the instance takes longer than 600 seconds, the 

instance will not be resolved and stopped. 

 

4.2 Test Problem 

      The problems were generated randomly and for each 𝑗 job, where 𝑗 ∈ 𝑁,𝑁 = {1, . . . , 𝑛}. 
• The processing time were distributed uniformly during the period [1,10]. 
• The due date was uniformly distributed over the period [1,70] s.t., 𝑑𝑗 ∈

{

[1,30], 1 ≤ 𝑛 ≤ 29
[1,40], 30 ≤ 𝑛 ≤ 99
[1,50], 100 ≤ 𝑛 ≤ 999
[1,70], otherwise

 , under condition 𝑑𝑗 ≥ 𝑝𝑗  ∀ 𝑗 = 1,… , 𝑛.                                                                                                                             

• All results of applying all proposed methods represent averages of the results of (5) 

examples for each 𝑛. 

• After averaging 10,000 cycles or more using the 10-8-1 configuration, training is 

considered finished. 

The used abbreviations are: 

 

Abbreviations Description 

ACT/S Average processing time (Average of CPU-Time per second).       

ANEFS Average number of efficient solutions. 

Av Average value of objective function. 

EX Example Number.                                       

𝑛𝑖  The jobs number, while  𝑖 denoted the number of problems tested. 

RL 0 < Real < 1 

 

     The parameters in meta-heuristics methods were used as follows: 

For PSO: Particle’s count (𝑁_𝑃𝑎𝑟 =  20), maximal velocity [𝑣𝑚𝑎𝑥  = number of available 

jobs], minimal velocity (𝑣𝑚𝑖𝑛 = 1), weight of inertial (𝑤 ∈ [0.4,0.9]). The first acceleration 

parameter (𝑐1 ∈ [0.5,2]), the second acceleration parameter (𝑐2 = 𝑐1 = 2), the population 

conservation diversity (random 𝑟1, 𝑟2 ∈ [0,1]) and some hundreds of generations. 

For BA: Scout bee population (Count of scout bees) (𝑛𝑛 = 20, number of available Jobs 
(𝑛)), the number of lections selected from among the 𝑛 sites visited (𝑚 = 5), the number of 

sites that are better than the 𝑚𝑚 of sites selected (𝑒 = 2). For the best sites, the number of 

bees assigned (𝑛𝑒𝑝 = 5), at the other selected sites, the number of bees was recruited (𝑚 −
𝑒)(𝑛𝑠𝑝 = 3), and a maximum number iteration (𝑀𝐼 = 1000). 

■ Applying PSO and BA to the first problem 1//(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) and sub-problem 1// ∑𝐶𝑗 +

∑𝑉𝑗 + 𝐸𝑚𝑎𝑥  for different numbers of jobs, and comparing efficient results between PSO and 

BA are shown in the Table 1. 
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Table 1: PSO and BA comparison outcomes for the first problem 1//(∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) and 

sub-problem 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥  for different numbers of jobs.  

 

EX 

PSO(𝑇𝐶𝑉𝑀𝐸) BA(𝑇𝐶𝑉𝑀𝐸) PSO(𝑆𝑃) BA(𝑆𝑃) 

MCF TIME MCF 
TIM

E 
MOF TIME MOF 

TIM

E 

𝑛5 𝐴𝑉(𝐹𝐶𝑉𝐸) ACT/S 𝐴𝑉(𝐹𝐶𝑉𝐸) 
ACT

/S 
𝐴𝑉(𝐹𝑆𝑃1) 

ACT/

S 
𝐴𝑉(𝐹𝑆𝑃1) 

ACT

/S 

10 (241.5,32.1,17.8) RL (279.2,33.7,19.2) RL 287.2 RL 298.6 RL 

40 (3489.8,201.7,15.5) 1.3 (4464.4,204.7,15.7) RL 3557.4 1.4 4458.6 RL 

70 (10922,377,20) 2.4 (13143,359,16) RL 10825.2 3.7 13105.4 RL 

100 (22285,546,21) 3.0 (27779,547,16) 1.7 22545.0 2.7 27794.2 1.1 

400 (374360 ,2180,20) 5.5 (433010,2180,20) 6.2 376577.0 4.2 429908.8 5.6 

700 
(1180958.8,3848.2,1

8.9) 
88.8 

(1344027.4,3848.2,1

4.2) 
153.3 

1149249.

0 
83.7 

1334630.

2 
73.7 

100

0 

(2453939.2,5490.7,1

6.3) 
97.3 

(2739034.8,5492.9,1

5.2) 
266.7 

2421338.

6 
8.1 

2721013.

4 
98.2 

200

0 

(9951740.6,10961.7,

13.2) 
221.0 

(10923270.3,10963.6

,16.7) 
316.7 

9907230.

0 
19.0 

1086567

8.2 
108.2 

300

0 

(22934199.2,16420.1

,16.9) 
257.2 

(24585762.6,16420.0

,12.8) 
430.9 

2292368

5.8 
161.4 

2439831

3.4 
168.4 

400

0 

(41063190.9,21881.9

,18.5) 

1168.8

34 
- - 

4054666

4.0 

229.4

68 
- - 

 

■ Applying PSO and BA to the second problem 1//(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥)and sub-problem 1// 

∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥 for different numbers of jobs, and comparing the results' efficiency 

between PSO and BA as it is shown in Table 2. 

 

Table 2:   PSO and BA comparison results for the first problem 1//(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥) and sub-

problem 1// ∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥  for different numbers of jobs.  

 

EX 

PSO(𝑆𝐶𝐸𝑀𝑇) BA(𝑆𝐶𝐸𝑀𝑇) PSO(𝑆𝑃) BA(𝑆𝑃) 

MOF 
TIM

E 
MOF 

TIM

E 
MOF 

TIM

E 
MOF 

TIM

E 

𝑛5 𝐴𝑉(𝐹𝐶𝐸𝑇) 
ACT/

S 
𝐴𝑉(𝐹𝐶𝐸𝑇) 

ACT/

S 
𝐴𝑉(𝐹𝑆𝑃2) 

ACT/

S 
𝐴𝑉(𝐹𝑆𝑃2) 

ACT/

S 

4 (60.8, 24.2,2.2) RL (61.1,24.8,3.2) RL 84.2 RL 84.2 RL 

10 (256.0,24.4,32.1) RL (287.3,22.9,37.3) RL 308.0 RL 322.4 RL 

40 (3536.9,22.2,203.3) 1.2 (4440.9,20.1,208.5) RL 3633.4 1.0 4518.6 RL 

70 (9613.5,23.3,338.6) 1.9 (13439,16,374) RL 9664.4 1.9 13402.8 RL 

100 (22950,28,550) 2.8 (27992,14,551) 1.3 22630.0 2.5 27659.4 1.0 

400 (374420,10,2190) 4.3 (437160,20,2190) 6.7 367993.2 6.1 432600.8 5.7 

700 
(1140294.9,18.3,3825

.5) 
269.9 

(1357740.5,14.2,3906

.2) 
233.5 

1182448.

0 
3.8 

1348859.

8 
25.4 

100

0 

(2440929.0,17.2,5493

.9) 
142.8 

(2734789.4,13.4,5497

.9) 
395.8 

2333107.

2 
124.2 

2709013.

6 
79.8 

200

0 

(9942739.2,19.2,1097

0.4) 
252.5 

(10949480.9,19.0,109

72.6) 
265.6 

9919191.

0 
437.1 

1085871

9.2 
132.5 

300

0 

(22747664.3,20.5,164

28.6) 
32.3 

(24546895.3,13.0,164

29.2) 
727.3 

2279398

2.0 
157.3 

2441078

8.4 
116.1 

400

0 

(40701320.7,21882.5,

14.1) 
842.3 - -     
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■ The efficient results of BA − PSO are compared with those of BA and PSO for the first 

problem 1//(∑𝐶𝑗 , ∑𝑉𝑗, 𝐸𝑚𝑎𝑥) for different numbers of jobs, as it is displayed in Table 3. 

 

Table 3: Results of applying BA − PSO and comparison with BA, PSO for the first problem 

1//(∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥) for different numbers of jobs.  

 

EX 

BA − PSO(𝑇𝐶𝑉𝑀𝐸) PSO(𝑇𝐶𝑉𝑀𝐸) BA(𝑇𝐶𝑉𝑀𝐸) 

MCF TIME MCF TIME MCF TIME 

𝑛5 𝐴𝑉(𝐹𝐶𝑉𝐸) 
ACT/

S 
𝐴𝑉(𝐹𝐶𝑉𝐸) 

ACT/

S 
𝐴𝑉(𝐹𝐶𝑉𝐸) 

ACT/

S 

10 (189.9,19.2,20.9) RL (241.5,32.1,17.8) RL (279.2,33.7,19.2) RL 

40 (3466.5,201.4,17.6) 1.9 (3452.8,200.9,18.9) 1.4 (4464.4,204.7,15.7) RL 

70 (10678.0,350.8,16.3) 3.7 (10922,377,20) 2.4 (13143,359,16) RL 

100 (22939.5,545.4,17.9) 5.5 (22285,546,21) 3.0 (27779,547,16) 1.7 

400 (370071.8,2180.4,19.4) 23.0 (372160,2180,20) 5.0 (433010,2180,20) 6.2 

700 (1124860.4,3811.5,18.4) 35.2 
(1180958.8,3848.2,18.9

) 
88.8 (1344027.4,3848.2,14.2) 153.3 

100

0 
(2295791.9,5489.4,17.9) 59.4 

(2453939.2,5490.7,16.3

) 
97.3 (2739034.8,5492.9,15.2) 266.7 

200

0 
(9475283.7,10917.9,16.9) 101.7 

(9951740.6,10961.7,13.

2) 
221.0 

(10923270.3,10963.6,16.

7) 
316.7 

300

0 
(21869964.4,16377.9,15.8) 150.6 

(22934199.2,16420.1,1

6.9) 
257.2 

(24585762.6,16420.0,12.

8) 
430.9 

400

0 
(39792541.3,22087.9,18.6) 217.9 

(41063190.9,21881.9,1

8.5) 

1168.

8 
- - 

500

0 
(62652747.8,27452.5,19.5) 270.1 - - - - 

600

0 
(90710011.2,32945.9,18.8) 318.0 - - - - 

700

0 

(124816483.2,38442.5,18.3

) 
383.5 - - - - 

■ The optimal results of BA − PSO are compared with those of  BA and PSO for the first 

problem 1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 for different numbers of jobs, Table 3 displays these 

outcomes.  

 

Table 4: Results from using PSO − BA and comparing them to BA and PSO for the problem 

1// ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 for various numbers of jobs.  

 

EX 

BA − PSO(𝑆𝑃1) PSO(𝑆𝑃1) BA(𝑆𝑃1) 

MOF TIME MOF TIME MOF TIME 

𝑛5 𝐴𝑉(𝐹𝑆𝑃1) ACT/S 𝐴𝑉(𝐹𝑆𝑃1) ACT/S 𝐴𝑉(𝐹𝑆𝑃1) ACT/S 

10 224.2 RL 287.2 RL 298.6 RL 

40 3622.2 1.8 3557.4 1.4 4458.6 RL 

60 7572.0 2.5 7514.0 1.7 9444.0 RL 

70 10353.0 3.7 10825.2 3.7 13105.4 RL 

100 22398.8 5.6 22545.0 2.7 27794.2 1.1 

400 342926.6 21.1 376577.0 4.2 429908.8 5.6 

700 1069815.2 31.0 1149249.0 83.7 1334630.2 73.7 

1000 2272494.4 44.7 2421338.6 8.1 2721013.4 98.2 

2000 9290653.2 95.2 9907230.0 19.0 10865678.2 108.2 

3000 21606031.2 144.2 22923685.8 161.4 24398313.4 168.4 

4000 39878241.2 194.8 40546664.0 229.4 - - 

5000 62379935.6 349.5 - - - - 

6000 90475774.6 309.1 - - - - 

7000 123836583.2 335.0 - - - - 

8000 162636634.6 376.7 - - - - 
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■ The efficient results of BA − PSO are compared with those of BA and PSO for the first 

problem 1//(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥) for different numbers of jobs, and these results are shown in 

Table 5. 

 

Table 5: The results of applying BA − PSO  and comparison findings for the second problem 

1//(∑𝐶𝑗, ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥) using BA and PSO for different numbers of jobs. 

 

EX 

BA − PSO(𝑆𝐶𝐸𝑀𝑇) PSO(𝑆𝐶𝐸𝑀𝑇) BA(𝑆𝐶𝐸𝑀𝑇) 

MCF TIME MCF 
TIM

E 
MCF 

TIM

E 

𝑛5 𝐴𝑉(𝐹𝐶𝐸𝑇) ACT/S 𝐴𝑉(𝐹𝐶𝐸𝑇) 
ACT/

S 
𝐴𝑉(𝐹𝐶𝐸𝑇) 

ACT/

S 

10 (192.0,18.8,21.5) RL (256.0,24.4,32.1) RL (287.3,22.9,37.3) RL 

40 (3535.8,200.4,16.3) 1.9 (3536.9,22.2,203.3) 1.2 (4440.9,20.1,208.5) RL 

70 (10523.1,350.1,18.7) 3.7 (9613.5,23.3,338.6) 1.9 (13439,16,374) R 

100 (22996.5,546.7,17.9) 5.0 (22950,28,550) 2.8 (27992,14,551) 1.3 

400 (360353.7,2180.6,18.4) 21.0 (374420,10,2190) 4.3 (437160,20,2190) 6.7 

700 
(1107115.0,3811.1,20.

5) 
34.2 

(1140294.9,18.3,3825.5

) 
269.9 

(1357740.5,14.2,390

6.2) 
233.5 

1000 
(2366517.2,5489.9,17.

9) 
48.9 

(2440929.0,17.2,5493.9

) 
142.8 

(2734789.4,13.4,549

7.9) 
395.8 

2000 
(9473947.5,10917.8,17

.6) 
103.6 

(9942739.2,19.2,10970.

4) 
252.5 

(10949480.9,19.0,10

972.6) 
265.6 

3000 
(22022993.5,16376.5,1

6.8) 
151.6 

(22747664.3,20.5,1642

8.6) 
32.3 

(24546895.3,13.0,16

429.2) 
727.3 

4000 
(39953660.9,22086.2,1

6.0) 
215.2 

(40701320.7,21882.5,1

4.1) 
842.3 - - 

5000 
(63148609.3,27451.9,2

3.0) 
276.6 - - - - 

6000 
(90710011.2,32945.9,1

8.8) 
729.6 - - - - 

7000 
(124024405.6,38444.8,

16.9) 
377.8 - - - - 

■ The optimal results of  BA − PSO are compared with those of BA and PSO for the first 

problem 1// ∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥 for different numbers of jobs, and Table 6 displays these 

results.  

 

Table 6: Application results of  BA − PSO  and comparison with the results of PSO and BA for 

the 1// ∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥  problem for different numbers of jobs. 

 

EX 

BA − PSO(𝑆𝑃2) PSO(𝑆𝑃2) BA(𝑆𝑃2) 

MOF TIME MOF TIME MCF TIME 

𝑛5 𝐴𝑉(𝐹𝑆𝑃2) ACT/S 𝐴𝑉(𝐹𝑆𝑃2) ACT/S 𝐴𝑉(𝐹𝑆𝑃2) ACT/S 

10 225.8 RL 308.0 RL 322.4 RL 

40 3606.4 2.0 3633.4 1.0 4518.6 RL 

70 10312.0 3.5 9664.4 1.9 13402.8 RL 

100 22526.2 5.4 22630.0 2.5 27659.4 1.0 

400 346594.8 20.5 367993.2 6.1 432600.8 5.7 

700 1063224.0 32.0 1182448.0 3.8 1348859.8 25.4 

1000 2263702.8 45.9 2333107.2 124.2 2709013.6 79.8 

2000 9338328.0 91.6 9919191.0 437.1 10858719.2 132.5 

3000 21708195.6 166.8 22793982.0 157.3 24410788.4 116.1 

4000 39702542.0 182.7 40592615.6 185.5 - - 

5000 62463734.0 388.2 65009326.8 32.9 - - 

6000 62463734.0 388.2 - - - - 

7000 90487941.2 283.3 - - - - 

8000 124004991.8 336.4 - - - - 
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5.  Evaluate the practical results of the proposed problems 

     The results presented in this section are based on computational experiments and they 

include: 

• From Tables 1 and 2, we note that these results show that the value averages for using PSO 

(𝐹𝐶𝑉𝐸) are better than BA (𝐹𝐶𝑉𝐸), for problems 𝑇𝐶𝑉𝑀𝐸  and sub-problem for  𝑇𝐶𝑉𝑀𝐸 , for 

different 𝑛. Also, the average processing time in MATLAB (CPU time) for PSO (𝐹𝐶𝑉𝐸) is less 

than that of BA (𝐹𝐶𝑉𝐸).   

• From Tables 1 and 2, we note that these results show that the value averages for using PSO 

(𝐹𝐶𝐸𝑇) are better than BA (𝐹𝐶𝐸𝑇), for problems 𝑆𝐶𝐸𝑀𝑇 and sub-problem for  𝑆𝐶𝐸𝑀𝑇, for 

different 𝑛. Also, the average processing time in MATLAB (CPU time) for PSO (𝐹𝐶𝐸𝑇) is less 

than that of BA (𝐹𝐶𝐸𝑇).   

• From Tables 3 and 4, we note that these results show that the value averages for using BA-

PSO (𝐹𝐶𝑉𝐸) are better than PSO (𝐹𝐶𝑉𝐸) and BA (𝐹𝐶𝑉𝐸), for problems 𝑇𝐶𝑉𝑀𝐸 and sub-problem 

for 𝑇𝐶𝑉𝑀𝐸 , for different 𝑛. Also, the average processing time in MATLAB (CPU time) for 

PSO (𝐹𝐶𝑉𝐸) is less than that of BA-PSO (𝐹𝐶𝑉𝐸) and BA (𝐹𝐶𝑉𝐸).   
• From Tables 5 and 6, note these results show that the value averages for using BA-PSO 

(𝐹𝐶𝐸𝑇) are better than PSO (𝐹𝐶𝐸𝑇) and BA (𝐹𝐶𝑉𝐸), for problems 𝑆𝐶𝐸𝑀𝑇 and sub-problem for 

𝑆𝐶𝐸𝑀𝑇, for different 𝑛. Also, the average processing time in MATLAB (CPU time) for PSO 

(𝐹𝐶𝐸𝑇) is less than that of BA-PSO (𝐹𝐶𝐸𝑇) and BA (𝐹𝐶𝐸𝑇). 
 

6. Discussions and Conclusions 

     In the current study, two meta-heuristics methods PSO and BA were applied to solve two 

problems on single-machine scheduling; 1//(∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), 1//(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥) which are 

denoted by 𝑇𝐶𝑉𝑀𝐸 , 𝑆𝐶𝐸𝑀𝑇 respectively, and for sub-problem is derived for each problem to 

find the best or closest to best solution up to 𝑛 = 4000 jobs. Finally, a hybrid between PSO 

and BA is done to create an alternative search method that incorporates the best properties that 

each method offers during problem-solving.  Moreover, by comparing the performance of 

meta-heuristics methods with a hybrid strategy, the hybrid strategies method outperforms 

other methods up to 𝑛 = 8000 jobs. Finally, the results of BA-PSO were better than that of 

BA and PSO, and the results of PSO were better than that of BA in all research problems. 
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