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Abstract

Let M be an R-module, and let T be a submodule of M. A submodule K is called
T-Small submodule (K «; M) if for every submodule X of M suchthat T € K + X
implies that T < X. In our work we give the definition of T-coclosed submodule and
T-hollow-lifiting modules with many properties.
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Introduction
Throughout this paper R is commutative ring with identity and unitary R-modules, a submodule N
of M is small denoted by N « M if for any submodule X of M, N + X = M implies that X = M. Small
submodule were generalized by many researchers [1, 2, 3].In a previous work [4], the authors
introduced the concept of T-small submodule, that a submodule K of M is T=small, TS K + X
implies that T € X.

In another article [5], H. Al Redeeni introduced the concept of T-hollow module and T-lifiting
module. Also, T-coessential submodule was given the if A, B submodule of M such that A € B, A is

T-coessential of B (A Sr_. B) if % Kr+a %. In the present work, we develop the properties of this
A
concept.
In section one we introduce the T-coclosed submodule of Mand we investigate the basic properties

of it.
In section two we introduce T-hollow-lifiting module: an R-module M is called T-hollow- lifiting if

for every submodule N of M with % is %—hollow, then there exists a direct summand K of M such that
T S+_ce N. We give the basic properties and the relation between these modules with other concepts.
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S1.T-coclosed submodule:
Let R be aring and T be a submodule of an R-module M and A, B submodules of M such that A € B,

A is called T-coessential of B in M, brifly (A S¢_.. B) if % Kr+a Ll
A

- [3].
Lemma 1.1:[3]
(1) If T and A are two submoduls of a module M, then A &« M ifandonlyif 0 S;_., Bin M.
(2) If A, B and T are submodules of a module M such that A € B. Then A S;_.. B if whenever
T <€ B+ X impliesthat T € A + X, for every submodule X of M.
(3) If A4, B Cand T are submodules of on R-module M suchthat AS B C<S M. ThenB Sy_., C

in M iff —<<T+A —|n—.
2 —ce A

(4) Let M and N be two R-modules such that T < M and f: M — N be an epimorphism. If A S;_., B
in M, then f(A) S¢ry—ce f(B)inN.
Now, we prove the following propositions:-
Proposition (1.2):

Let N and M be R-modules such that T < N and let f: M — N be an epimorphism. If C € D <
N,then C Sr_c D iff f71(C) S-1¢py-e [T (D).

Proof:
=) Assume that C < D and let —— be a submodule of such that -3/ 1© ¢
) =T-ce 1(C) I(C) f_l(C) =
() K

7o + ey

Then f‘l(T)gf‘l(T)+f o) f~Y(D)+K and hence T <D+ f(K).

Therefore %g%(m. Thus % g% g@ and then % @ therefore T Cf(k), o)
-1 N WL K X))
[ (K) EK. Hence NG, then i < 15?”{)1@ I 1(c) thus

71O Spry=ce f7HD). &) Clear by (Lemma 1.1).
Now, we introduce the following definition of T-coclosed submodule.
Definition(1.3):
Let T be a submodule of an R-module M. Asubmodule L of M is called T-coclosed in M (denoted
by)L S;_.. M if L has aproper submodule K S4_., LieifK S;_., LthenK = L.
Remarks and Examples (1.4):
-If T=M and A S B be a submodule of M, then A is T-coessenal of B if and only if A is
coessential of B. So A is T-coclosed if and only if A is coclosed in M.
2- Consider Zg as Z-modules. Let T = {0,3}, A = {0} and B = {0, 2, 4}.
A Sr_.. B since % L7 % [3] but {0} + {0, 2,4}, thus B is not T- coclosed in Zg,  but A is
coclosed in B.
3- Consider Z, as Z-module. Let T = {0,2}, B = {0,2}. Now, if A = {0}, then % ={0,2}[ ] if

A={0,2} =2 = {0} <1 Z,, therefore B S7_c, Z,.
Proposition (1.5):-

Let T be a submodule of an R-module M and L be T-coclosed of M. Then % is %—coclosed in % for
every submodule K of M.

Proof: Suppose that there is a proper submodule N of L such that % E% is %—coesential in% then

LK
N/K <<17<;11\(’N/ '[hUS T1\1
N/K

%, since N c L, hence N € L and this is a contradiction( N is proper ).

Also since L is T-coclosed, therefore % is %—coclosed in %
Proposition 1.6: Let , K and L be submodules of an R-module M such that T <L, K « Land

L M . .
— Cr_ce — Then L is T-coclosed in M.
K K

Proof: Let N <L such that N<S;_., L and N + K < L,thus dhiy g Hence UAL Cr_ce £by
K K K

(Lemma 1.1). But% is %—coclosed then +K = L ,thus N = L (since N «< L) therefore L is T-coclosed.
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Proposition 1.7: Let T be a submodule of an R-module M and f: M — Nbe an epimorphism such that
kerf LT M.IfL Cr_ce M, then f(L) S1(T)—cc N.

Proof: Let A < f(L) such that A Srry_ce f(L) Jlet K = f~1(4) then by (prop. (1.2)) we have
KCr_ e L+Kerf. But Kerf cK=kerf+KnL and since kerf <&y M, then
LNKCr_. kerf+LNK by (lemma 1.1). Therefore LNK S;_.. L. But L is T-coclosed in M,
thusLNK = Landhence L = K and L € f~1(A4). Then f(L) c A therefore A = f(L).

S, T-(hollow-lifting) module

Recall that a module M is called hollow- lifting for every submodule N of M with % is hollow, there

exists a direct summand K of M such that K ., N [6] we introduce the following concept.
Definition (2.1):- Let T be a submodule of an R-module M. M is called T-(hollow-lifting) if for every

N of M with % is %—hollow; there exists a direct summand K of M suchthat K S;_., N.

Remarks and Examples (2.2):

1- For non-zero module M if T = M, then M is M-(hollow-lifting) if and only if Mis hollow lifting
thus Z, as Z- module is Z, —(hollow-lifting) module

2- Consider Z4 as Z-module and T = {6, §] then Zg as Z-module is T-(hollow-lifting ) module.

3- Every nonzero module M is 0-(hollow-lifting) module.

4- It is clear that every module having no T-hollow factor modules is T-(hollow-lifting) module.

An R module is called T-lifting module if for every submodule X of M, there exists a direct summand
D of Mand H < M suchthat X = D + H [ 5].

Proposition (2.3):- Every T-lifting module is T-(hollow-lifting).

Proof: Let T < M, then for every submodule N of M, there exists a direct summand D and H <<T M

such that N =D + H. Now if M is %—hollow to show D S;_., N i.e <<T+D PL let H c - +
where D € B € M. Then % %4‘% thus TS H+D. But K M Then T € B and hence

DS N.
Note: The converse of the above is not true, i.e T-(hollow-lifting) module needs not to be T-lifting.

Let T and N be submodules of Msuch that T € N and M be indecomposable R-module which has
no hollow factor module then M is T-(hollow-lifting). To show that Mis not T-lifting suppose M is T-
lifting, and N < M, then there exists K < @M such that K S;_., N, Thus M = K@K where K < M.
But is indecomposable thus K = 0 therefore N < M and hence M is T-hollow contradaction.
Proposition (2.4): Let T be submodule of indecomposable R-module M, If M is T-hollow lifting
module then Mis T-hollow or has no T-hollow factor module.

Proof: Suppose M has T-hollow factor module then there exists a paper submodule N of M such that

% is %—hollow, M is T-hollow lifting, then there exists a direct summand K of M such that S;_., N .
but M is indecomposable then K = {0} hence N < M, thus M is T-hollow [5,2.2.8].

Proposition (2.5): Let M be T-(hollow-lifting) module and N, K be submodules of M such that% is %
hollow and T € N + K then there exists a direct summand A of M such that T€ N + A and
ASr_.. KinM.

Proof : Let N, K and T be submodules of M such that ﬂ is Z—hollow. Since M is T-(hollow-lifting)

then there exists a direct summand A of M such that A gT ce KinM.NowT € N + K then M c

N+2+A -t M but Krea — 2 Thus 2 ¢ M and hence T € N + A.
A

Proposmon (2.6). Let M be T-(hollow-llftmg) module, then every T-coclosed submodule K of M with
% is %—hollow is a direct summand of M.

Proof: Suppose M is T-(hollow-lifting) module and let K be T-coclosed submodule in M such that
N S;_.. KinM but K is T-coclosed so K = N then K is a direct summand of M.
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