Yaseen and Elewi

Iraqi Journal of Science, 2019, Vol.60, No.11, pp: 2486-2489 DOI: 10.24996/ijs.2019.60.11.20

ISSN: 0067-2904

ON T-HOLLOW-LIFITING MODULES

Sahira M. Yaseen*, Alaa A.Elewi

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 17/4/2019 Accepted: 17/7/2019

Abstract

Let *M* be an R-module, and let *T* be a submodule of *M*. A submodule *K* is called *T*-Small submodule ($K \ll_T M$) if for every submodule *X* of *M* such that $T \subseteq K + X$ implies that $T \subseteq X$. In our work we give the definition of *T*-coclosed submodule and *T*-hollow-lifting modules with many properties.

Keywords: T-small submodule, T-coessential submodule, T-coclosed submodule, T-hollow, T-lifiting module.

المقاسات الرفع المجوفة من النمط T

ساهره محمود ياسين *، ألاء عباس عليوي

قسم الرباضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

لتكن Mمقاسا معرف على الحلقة Rوليكن Tمقاسا جزئيا من M . المقاس الجزئي K يدعى مقاس جزئي صغير من النمط T اذا كان لكل مقاس جزئي X من M بحيث ان $T \longrightarrow T \longrightarrow T$ يؤدي الى ان $T \longrightarrow T \longrightarrow T$. في هذا العمل سنعطي تعريف المقاس الجزئي المغلق المضاد من النمط -T ومقاسات الرفع المجوفه من النمط -T مع العديد من الخصائص.

Introduction

Throughout this paper *R* is commutative ring with identity and unitary *R*-modules, a submodule *N* of *M* is small denoted by $N \ll M$ if for any submodule *X* of *M*, N + X = M implies that X = M. Small submodule were generalized by many researchers [1, 2, 3]. In a previous work [4], the authors introduced the concept of *T*-small submodule, that a submodule *K* of *M* is *T*=small, $T \subseteq K + X$ implies that $T \subseteq X$.

In another article [5], H. Al Redeeni introduced the concept of *T*-hollow module and *T*-lifting module. Also, *T*-coessential submodule was given the if *A*, *B* submodule of *M* such that $A \subseteq B$, *A* is *T*-coessential of *B* ($A \subseteq_{T-ce} B$) if $\frac{B}{A} \ll_{\frac{T+A}{A}} \frac{M}{A}$. In the present work, we develop the properties of this concept.

In section one we introduce the T-coclosed submodule of M and we investigate the basic properties of it.

In section two we introduce *T*-hollow-lifting module: an *R*-module *M* is called *T*-hollow-lifting if for every submodule *N* of *M* with $\frac{M}{N}$ is $\frac{T}{N}$ -hollow, then there exists a direct summand *K* of *M* such that $T \subseteq_{T-ce} N$. We give the basic properties and the relation between these modules with other concepts.

^{*}Email: Sahira.mohmeod@gmail.com

S_{1.}*T*-coclosed submodule:

Let *R* be a ring and *T* be a submodule of an *R*-module *M* and *A*, *B* submodules of *M* such that $A \subseteq B$, *A* is called *T*-coessential of *B* in *M*, brifly $(A \subseteq_{T-ce} B)$ if $\frac{B}{A} \ll_{\underline{T+A}} \frac{M}{A}$ [3].

Lemma 1.1:[3]

(1) If T and A are two submoduls of a module M, then $A \ll_T M$ if and only if $O \subseteq_{T-ce} B$ in M.

(2) If A, B and T are submodules of a module M such that $A \subseteq B$. Then $A \subseteq_{T-ce} B$ if whenever $T \subseteq B + X$ implies that $T \subseteq A + X$, for every submodule X of M.

(3) If A, B, C and T are submodules of on R-module M such that $A \subseteq B \subseteq C \subseteq M$. Then $B \subseteq_{T-ce} C$ in M iff $\frac{B}{A} \ll_{\underline{T+A}} ce \frac{C}{A} in \frac{M}{A}$.

(4) Let M and N be two R-modules such that $T \le M$ and $f: M \to N$ be an epimorphism. If $A \subseteq_{T-ce} B$ in M, then $f(A) \subseteq_{f(T)-ce} f(B)$ in N.

Now, we prove the following propositions:-

Proposition (1.2):

Let *N* and *M* be *R*-modules such that $T \leq N$ and let $f: M \to N$ be an epimorphism. If $C \subseteq D \subseteq N$, then $C \subseteq_{T-ce} D$ iff $f^{-1}(C) \subseteq_{f^{-1}(T)-ce} f^{-1}(D)$.

Proof:

 $\Rightarrow) \text{ Assume that } C \subseteq_{T-ce} D \text{ and let } \frac{k}{f^{-1}(C)} \text{ be a submodule of } \frac{M}{f^{-1}(C)} \text{ such that } \frac{f^{-1}(T)+f^{-1}(C)}{f^{-1}(C)} \subseteq \frac{f^{-1}(D)}{f^{-1}(C)} + \frac{K}{f^{-1}(C)}.$ Then $f^{-1}(T) \subseteq f^{-1}(T) + f^{-1}(C) \subseteq f^{-1}(D) + K$ and hence $T \subseteq D + f(K)$. Therefore $\frac{T+C}{C} \subseteq \frac{D+f(K)}{C}$. Thus $\frac{T+C}{C} \subseteq \frac{D}{C} \subseteq \frac{f(K)}{C}$ and then $\frac{T+C}{C} \subseteq \frac{f(K)}{C}$ therefore $T \subseteq f(k)$, so $f^{-1}(K) \subseteq K$. Hence $\frac{f^{-1}(T)+f^{-1}(C)}{f^{-1}(C)} \subseteq \frac{K}{f^{-1}(C)}$, then $\frac{f^{-1}(D)}{f^{-1}(C)} \ll \frac{f^{-1}(T)+f^{-1}(C)}{f^{-1}(C)} \frac{N}{f^{-1}(C)}$ thus $f^{-1}(C) = f^{-1}(D) = f^{-1}(D)$.

 $f^{-1}(\mathcal{C}) \subseteq_{f(T)-ce} f^{-1}(D). \iff$ Clear by (Lemma 1.1).

Now, we introduce the following definition of T-coclosed submodule.

Definition(1.3):

Let *T* be a submodule of an *R*-module *M*. Asubmodule *L* of *M* is called *T*-coclosed in *M* (denoted by) $L \subseteq_{T-ce} M$ if *L* has a proper submodule $K \subseteq_{T-ce} L$ i.e if $K \subseteq_{T-ce} L$ then K = L. **Remarks and Examples (1.4):**

1- If T = M and $A \subseteq B$ be a submodule of M, then A is T-coessenal of B if and only if A is coessential of B. So A is T-coclosed if and only if A is coclosed in M.

2- Consider Z_6 as Z-modules. Let $T = \{\overline{0}, \overline{3}\}, A = \{0\}$ and $B = \{\overline{0}, \overline{2}, \overline{4}\}.$

 $A \subseteq_{T-ce} B$ since $\frac{B}{A} \ll_T \frac{Z}{A} [3]$ but $\{\overline{0}\} + \{\overline{0}, \overline{2}, \overline{4}\}$, thus B is not T- coclosed in Z_6 , but A is coclosed in B.

3- Consider Z_4 as Z-module. Let $T = \{\overline{0}, \overline{2}\}$, $B = \{\overline{0}, \overline{2}\}$. Now, if $A = \{0\}$, then $\frac{B}{\{0\}} \cong \{\overline{0}, \overline{2}\}$ [] if $A = \{\overline{0}, \overline{2}\} = \frac{B}{B} = \{0\} \ll_T Z_4$, therefore $B \subseteq_{T-ce} Z_4$. **Proposition (1.5):-**

Let T be a submodule of an R-module M and L be T-coclosed of M. Then $\frac{L}{K}$ is $\frac{T}{K}$ -coclosed in $\frac{M}{K}$ for every submodule K of M.

Proof: Suppose that there is a proper submodule N of L such that $\frac{N}{K} \subseteq \frac{L}{K}$ is $\frac{T}{K}$ -coesential in $\frac{M}{K}$ then $\frac{L/K}{N/K} \ll_{\frac{T+N}{N/K}} \frac{M/K}{N/K}$ thus $\frac{L}{N} \ll_{\frac{T+N}{N}} \frac{M}{N}$, since $N \subset L$, hence $N \subseteq L$ and this is a contradiction(N is proper).

Also since *L* is *T*-coclosed, therefore $\frac{L}{K}$ is $\frac{T}{K}$ -coclosed in $\frac{M}{K}$.

Proposition 1.6: Let , K and L be submodules of an R-module M such that $T \le L$, K << Land $\frac{L}{K} \subseteq_{T-ce} \frac{M}{K}$. Then L is T-coclosed in M.

Proof: Let N < L such that $N \subseteq_{T-ce} L$ and $N + K \subseteq L$, thus $\frac{N+K}{K} \subseteq \frac{L}{K}$. Hence $\frac{N+K}{K} \subset_{T-ce} \frac{L}{K}$ by (Lemma 1.1). But $\frac{L}{K}$ is $\frac{T}{K}$ -coclosed then +K = L, thus N = L (since $N \ll L$) therefore L is T-coclosed.

Proposition 1.7: Let *T* be a submodule of an *R*-module *M* and $f: M \to N$ be an epimorphism such that ker $f \ll_T M$. If $L \subset_{T-ce} M$, then $f(L) \subseteq_{f(T)-cc} N$.

Proof: Let $A \subseteq f(L)$ such that $A \subseteq_{f(T)-ce} f(L)$, let $K = f^{-1}(A)$ then by (prop. (1.2)) we have $K \subseteq_{T-ce} L + Ker f$. But $Ker f \subseteq K = \ker f + K \cap L$ and since $\ker f \ll_T M$, then $L \cap K \subseteq_{T-ce} \ker f + L \cap K$ by (lemma 1.1). Therefore $L \cap K \subseteq_{T-ce} L$. But L is T-coclosed in M, thus $L \cap K = L$ and hence L = K and $L \subseteq f^{-1}(A)$. Then $f(L) \subset A$ therefore A = f(L).

*S*_{2.} *T*-(hollow-lifting) module

Recall that a module M is called hollow- lifting for every submodule N of M with $\frac{M}{N}$ is hollow, there exists a direct summand K of M such that $K \subseteq_{ce} N$ [6] we introduce the following concept.

exists a direct summand K of M such that $K \subseteq_{ce} N$ [6] we introduce the following concept. **Definition (2.1):-** Let T be a submodule of an *R*-module M. M is called *T*-(hollow-lifting) if for every N of M with $\frac{M}{N}$ is $\frac{T}{N}$ -hollow; there exists a direct summand K of M such that $K \subseteq_{T-ce} N$.

Remarks and Examples (2.2):

1- For non-zero module M if T = M, then M is M-(hollow-lifting) if and only if M is hollow lifting thus Z_4 as Z- module is Z_4 –(hollow-lifting) module

2- Consider Z_6 as Z-module and $T = \{\overline{0}, \overline{3}\}$ then Z_6 as Z-module is T-(hollow-lifting) module.

3- Every nonzero module *M* is 0-(hollow-lifting) module.

4- It is clear that every module having no *T*-hollow factor modules is *T*-(hollow-lifting) module.

An *R* module is called *T*-lifting module if for every submodule *X* of *M*, there exists a direct summand *D* of *M* and $H \ll_T M$ such that X = D + H [5].

Proposition (2.3):- Every *T*-lifting module is *T*-(hollow-lifting).

Proof: Let $T \leq M$, then for every submodule N of M, there exists a direct summand D and $H \ll_T M$ such that N = D + H. Now if $\frac{M}{N}$ is $\frac{T}{N}$ -hollow to show $D \subseteq_{T-ce} N$ i.e. $\frac{N}{D} \ll_{T+D} \frac{M}{D}$, let $\frac{T+D}{D} \subseteq \frac{N}{D} + \frac{B}{D}$, where $D \subseteq B \subseteq M$. Then $\frac{T+D}{D} \subseteq \frac{N}{D} + \frac{B}{D}$ thus $T \subseteq H + D$. But $\ll_T M$, Then $T \subseteq B$ and hence $D \subseteq_{T-ce} N$.

Note: The converse of the above is not true, i.e *T*-(hollow-lifting) module needs not to be *T*-lifting.

Let *T* and *N* be submodules of *M* such that $T \subseteq N$ and *M* be indecomposable *R*-module which has no hollow factor module then *M* is *T*-(hollow-lifting). To show that *M* is not *T*-lifting suppose *M* is *T*lifting, and N < M, then there exists $K \leq \bigoplus M$ such that $K \subseteq_{T-ce} N$, Thus $M = K \bigoplus K$ where $K \leq M$. But is indecomposable thus K = 0 therefore $N \ll_T M$ and hence *M* is *T*-hollow contradaction.

Proposition (2.4): Let T be submodule of indecomposable R-module M, If M is T-hollow lifting module then M is T-hollow or has no T-hollow factor module.

Proof: Suppose *M* has *T*-hollow factor module then there exists a paper submodule *N* of *M* such that $\frac{M}{N}$ is $\frac{T}{N}$ -hollow, *M* is *T*-hollow lifting, then there exists a direct summand *K* of *M* such that $\subseteq_{T-ce} N$. but *M* is indecomposable then $K = \{0\}$ hence $N \ll_T M$, thus *M* is *T*-hollow [5,2.2.8].

Proposition (2.5): Let *M* be *T*-(hollow-lifting) module and *N*, *K* be submodules of *M* such that $\frac{M}{K}$ is $\frac{T}{K}$ -hollow and $T \subseteq N + K$ then there exists a direct summand *A* of *M* such that $T \subseteq N + A$ and $A \subseteq_{T-ce} K$ in *M*.

Proof : Let N, K and T be submodules of M such that $\frac{M}{K}$ is $\frac{T}{K}$ -hollow. Since M is T-(hollow-lifting) then there exists a direct summand A of M such that $A \subseteq_{T-ce} K$ in M. Now $T \subseteq N + K$ then $\frac{T+A}{A} \subseteq \frac{N+K+A}{A} = \frac{K}{A} + \frac{N+A}{A}$, but $\frac{K}{A} \ll \frac{T+A}{A} \frac{M}{A}$. Thus $\frac{T+A}{A} \subseteq \frac{N+A}{A}$ and hence $T \subseteq N + A$.

Proposition (2.6): Let *M* be *T*-(hollow-lifting) module, then every *T*-coclosed submodule *K* of *M* with $\frac{M}{K}$ is $\frac{T}{K}$ -hollow is a direct summand of *M*.

Proof: Suppose *M* is *T*-(hollow-lifting) module and let *K* be *T*-coclosed submodule in *M* such that $N \subseteq_{T-ce} K$ in *M* but *K* is *T*-coclosed so K = N then *K* is a direct summand of *M*.

References

- 1. Kasch, F. 1982. Modules and rings, Acadimic press, London.
- 2. Beyravand, R. and morad F. 2015. Small submodule with respect to an arbitrary submodule, *Journal of Algebra and Related Topcs*. 3(2): 48-51.
- **3.** Hassan Al Redeeni. **2017.** On (G*-) T-lifting modules and T_H-supplemented modules, thesis colloge of science, University of Baghdad.
- 4. Amouzegar, Kalati, and Keskin-Tutincu 2013. Annihiloter small submodule, *Bull, Iran Math Soc.* 39(6): 1053-1063.
- **5.** Talebi, Y. and Hosseimpouv, M. **2013.** Generalization of S-lifting modules, *J. Algebraic*. **1**(1): 67-77.
- 6. Orhan, N. and Tutunca, D.K. 2007. On hollow-lifting modules, *Taiwanse J. Math*; 11(2): 545-568.