ON T-HOLLOW-LIFITING MODULES

Sahira M. Yaseen*, Alaa A. Elewi
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 17/4/2019 Accepted: 17/7/2019

Abstract
Let M be an R-module, and let T be a submodule of M. A submodule K is called T-Small submodule $(K \ll_{T} M)$ if for every submodule X of M such that $T \subseteq K + X$ implies that $T \subseteq X$. In our work we give the definition of T-coclosed submodule and T-hollow-lifiting modules with many properties.

Keywords: T-small submodule, T-coessential submodule, T-coclosed submodule, T-hollow, T-lifiting module.

Introduction
Throughout this paper R is commutative ring with identity and unitary R-modules, a submodule N of M is small denoted by $N \ll M$ if for any submodule X of M, $N + X = M$ implies that $X = M$. Small submodule were generalized by many researchers [1, 2, 3]. In a previous work [4], the authors introduced the concept of T-small submodule, that a submodule K of M is T=small, $T \subseteq K + X$ implies that $T \subseteq X$.

In another article [5], H. Al Redeeni introduced the concept of T-hollow module and T-lifiting module. Also, T-coessential submodule was given the if A, B submodule of M such that $A \subseteq B$, A is T-coessential of B ($A \subseteq_{T-ce} B$) if $\frac{B}{A} \ll_{T+} \frac{M}{A}$. In the present work, we develop the properties of this concept.

In section one we introduce the T-coclosed submodule of M and we investigate the basic properties of it.

In section two we introduce T-hollow-lifiting module: an R-module M is called T-hollow- lifiting if for every submodule N of M with $\frac{M}{N}$ is T-hollow, then there exists a direct summand K of M such that $T \subseteq_{T-ce} N$. We give the basic properties and the relation between these modules with other concepts.

*Email: Sahira.mohmeod@gmail.com
S, T-coclosed submodule:
Let R be a ring and T be a submodule of an R-module M and A, B submodules of M such that $A \subseteq B$, A is called T-coessential of B in M, briefly $(A \subseteq_{T-ce} B)$ if $\frac{B}{A} \ll_{T,A} M$ A $[3]$.

Lemma 1.1:[3]
(1) If T and A are two submodules of a module M, then $A \ll T$ if and only if $O \subseteq_{T-ce} B$ in M.
(2) If A, B and T are submodules of a module M such that $A \subseteq B$. Then $A \subseteq_{T-ce} B$ if whenever $T \subseteq B + X$ implies that $T \subseteq A + X$, for every submodule X of M.
(3) If A, B, C and T are submodules of an R-module M such that $A \subseteq B \subseteq C \subseteq M$. Then $B \subseteq_{T-ce} C$ in M if $\frac{B}{A} \ll_{T,A} C \subseteq M$ A A.
(4) Let M and N be two R-modules such that $T \subseteq M$ and $f: M \rightarrow N$ be an epimorphism. If $A \subseteq_{T-ce} B$ in M, then $f(A) \subseteq_{f(T)-ce} f(B)$ in N.

Now, we prove the following proposition:

Proposition (1.2):
Let N and M be R-modules such that $T \subseteq N$ and let $f: M \rightarrow N$ be an epimorphism. If $C \subseteq D \subseteq N$, then $C \subseteq_{T-ce} D$ iff $f^{-1}(C) \subseteq f^{-1}(T)-ce f^{-1}(D)$.

Proof:
(1) Assume that $C \subseteq_{T-ce} D$ and let k be a submodule of M such that $f^{-1}(T) + f^{-1}(C) \subseteq f^{-1}(D) + K$ and hence $T \subseteq D + f(K)$. Therefore $\frac{T+C}{C} \subseteq \frac{D+f(K)}{C}$. Thus $\frac{T+C}{C} \subseteq \frac{D}{C} + \frac{f(K)}{C}$ and then $\frac{T+C}{C} \subseteq \frac{f(k)}{C}$ therefore $T \subseteq f(k)$, so $f^{-1}(K) \subseteq K$. Hence $\frac{f^{-1}(T)+f^{-1}(C)}{f^{-1}(C)} \subseteq \frac{K}{f^{-1}(C)}$, then $\frac{f^{-1}(T)+f^{-1}(C)}{f^{-1}(C)} \ll \frac{f^{-1}(T)+f^{-1}(C)}{f^{-1}(C)}$ thus $f^{-1}(C) \subseteq_{f(T)-ce} f^{-1}(D)$. \implies Clear by (Lemma 1.1).

Definition (1.3):
Let A be a submodule of an R-module M. A submodule L of M is called T-coclosed in M (denoted by $L \subseteq_{T-closed}$ M L if L has a proper submodule $K \subseteq_{T-closed} L$ i.e if $K \subseteq_{T-closed} L$ then $K = L$.

Remarks and Examples (1.4):
1- If $T = M$ and $A \subseteq B$ be a submodule of M, then A is T-coessential of B if and only if A is coessential of B. So A is T-coclosed if and only if A is coclosed in M.
2- Consider Z_6 as Z-modules. Let $T = \{0, 3\}$, $A = \{0\}$ and $B = \{0, 2, 4\}$.

\[A \subseteq_{T-closed} B \text{ since } \frac{B}{A} \ll_{T,A} \frac{Z}{A} \text{ [3] but } \{0\} + \{0, 2, 4\}, \text{ thus } B \text{ is not } T- \text{coclosed in } Z_6. \]

But A is coclosed in B.
3- Consider Z_4 as Z-module. Let $T = \{0, 2\}$, $B = \{0, 2\}$. Now, if $A = \{0\}$, then $B = \{0\} \subseteq_{T, Z_4}$ therefore $B \subseteq_{T-closed} Z_4$.

Proposition (1.5):
Let T be a submodule of an R-module M and L be T-coclosed of M. Then $\frac{L}{K} \text{ is } T-coclosed in } \frac{M}{K}$ for every submodule K of M.

Proof:
Suppose that there is a proper submodule N of L such that $\frac{N}{K} \subseteq \frac{L}{K}$ is T-coessential in $\frac{M}{K}$ then $\frac{L/K}{N/K} \ll_{T,A} \frac{M/K}{N/K}$ thus $\frac{L}{N} \ll_{T,A} \frac{M}{N}$, since $N \subseteq L$, hence $N \subseteq L$ and this is a contradiction (N is proper).

Also since L is T-coclosed, therefore $\frac{L}{K} \text{ is } T-K \text{coclosed in } \frac{M}{K}$.

Proposition 1.6: Let K and L be submodules of an R-module M such that $T \subseteq L$. $K \ll \text{ Land } \frac{L}{K} \subseteq_{T-closed} \frac{M}{K}$ Then L is T-coclosed in M.

Proof:
Let $N < L$ such that $N \subseteq_{T-closed} L$ and $N + K \subseteq L$, thus $\frac{N+K}{K} \subseteq \frac{L}{K}$. Hence $\frac{N+K}{K} \subseteq_{T-closed} \frac{L}{K}$ by (Lemma 1.1). But $\frac{L}{K} \text{coclosed then } + K = L$, thus $N = L$ (since $N \ll L$) therefore L is T-coclosed.
Proposition 1.7: Let T be a submodule of an R-module M and $f : M \to N$ be an epimorphism such that $\ker f \ll_T M$. If $L \subseteq_T M$, then $f(L) \subseteq_T f(T)$.

Proof: Let $A \subseteq f(L)$ such that $A \subseteq_T f(T)$, then $K = f^{-1}(A)$. Then by (prop. (1.2)) we have $K \subseteq_T L + \ker f$. But $\ker f \subseteq K = \ker f + K \cap L$ and since $\ker f \ll_T M$, then $L \cap K \subseteq_T \ker f$. Thus $L \subseteq_T K$. Therefore, $L \subseteq_T f^{-1}(A)$. Then $f(L) \subseteq A$, therefore $A = f(L)$.

S2: T-(hollow-lifting) module

Recall that a module M is called hollow lifting for every submodule N of M with M_N is hollow, there exists a direct summand K of M such that $K \subseteq_T N$ [5] we introduce the following concept.

Definition (2.1): Let T be a submodule of an R-module M. M is called T-(hollow-lifting) if for every submodule N of M with M_N is hollow, there exists a direct summand K of M such that $K \subseteq_T N$.

Remarks and Examples (2.2):

1. For non-zero module M if $T = M$, then M is T-(hollow-lifting) if and only if M is hollow lifting.
2. Consider Z_4 as Z-module and $T = \{0, 3\}$ then Z_4 as Z-module is T-(hollow-lifting) module.
3. Every nonzero module M is 0-(hollow-lifting) module.
4. It is clear that every module having no T-hollow factor modules is T-(hollow-lifting) module.

Proposition (2.3): Every T-(lifting) module is T-(hollow-lifting).

Proof: Let $T \subseteq M$, then for every submodule N of M, there exists a direct summand D and $H \ll_T M$ such that $N = D + H$. Now if M_N is hollow to show $D \subseteq_T N$ i.e. $N_D \ll_T n + b$, then $T + D_D \subseteq_T N + b$ where $D \subseteq B \subseteq M$. Then $T + D_D = \frac{T + D}{D} \subseteq \frac{N + b}{D}$ thus $T \subseteq H + D$. But $\ll_T M$. Then $T \subseteq B$ and hence $D \subseteq_T N$.

Note: The converse of the above is not true, i.e T-(hollow-lifting) module needs not to be T-lifting.

Let T and N be submodules of M such that $T \subseteq N$ and M is indecomposable R-module which has no hollow factor module then M is T-(hollow-lifting). To show that M is not T-lifting suppose M is T-lifting, and $N < M$, then there exists $K \leq T \oplus M$ such that $K \subseteq_T N$. Thus $M = K \oplus R$ where $R \leq M$. But if K is indecomposable then $K = 0$ therefore $N \ll_T M$ and hence M is T-hollow contradiction.

Proposition (2.4): Let T be submodule of indecomposable R-module M, If M is T-hollow lifting module then M_T is hollow or has no T-hollow factor module.

Proof: Suppose M has T-hollow factor module then there exists a paper submodule N of M such that M_N is hollow, M is T-hollow lifting, then there exists a direct summand K of M such that $K \subseteq_T N$, but M is indecomposable then $K = \{0\}$ hence $N \ll_T M$, thus M is T-hollow [5,2.2.8].

Proposition (2.5): Let M be T-(hollow-lifting) module and N, K be submodules of M such that M_K is T_K hollow and $T \subseteq N + K$ then there exists a direct summand A of M such that $T \subseteq N + A$ and $A \subseteq_T K$ in M.

Proof: Let N, K and T be submodules of M such that M_N is T_N hollow. Since M is T-(hollow-lifting) then there exists a direct summand A of M such that $A \subseteq_T N + K$. Now $T \subseteq N + K$ then $\frac{T + A}{A} \subseteq \frac{N + A}{A}$, but $\frac{K}{A} \ll_T \frac{M}{A}$. Thus $\frac{T + A}{A} \subseteq \frac{N + A}{A}$ and hence $T \subseteq N + A$.

Proposition (2.6): Let M be T-(hollow-lifting) module, then every T-coclosed submodule K of M with M_K is T_K hollow is a direct summand of M.

Proof: Suppose M is T-(hollow-lifting) module and let K be T-coclosed submodule in M such that $N \subseteq_T K$ in M but K is T-coclosed so $K = N$ then K is a direct summand of M.

2488
References