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Abstract 

     Over two decades, this study analyzes drought trends in Diyala Province, Iraq, 

and It utilizes remote sensing data and rainfall analysis to evaluate the severity and 

frequency of drought in 2002, 2005, 2010, 2015, 2020, and 2022. The research maps 

drought distributions in Diyala Province using satellite images from Landsat 7, 

Landsat 8, and Landsat 9 and analyzes the vegetation health index (VHI), soil 

moisture index (SMI), and average rainfall data. Results showed increased drought 

intensity: severe drought expanded from 48% in 2005 to 50% in 2022, and arid 

conditions increased from 1.1% in 2002 to 17.1% in 2022, as per SMI. Moreover, 

rainfall analysis reveals varying patterns, with 2022 experiencing lower average 

rainfall (4.215 mm) and higher variability (1.4633 mm standard deviation) compared 

to 2015 (6.735 mm, 1.1227 mm). The discoveries, pivotal for agriculture and water 

management, underscore the necessity of consistent monitoring and adaptable 

strategies for addressing shifting climate patterns. 
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مؤشر صحة الغطاء النباتي لتحديد توزيع الجفاف الزراعي في محافظة ديالى، العراقتطبيق    
 

، بشرى علي احمدرنا حديد  
، كلية العلوم، جامعة بغداد، بغداد، العراق   قسم التحسس النائي ونظم المعلومات الجغرافية  

 

 الخلاصة 
الزمن         من  عقدين  مدى  على  بالعراق  ديالى  محافظة  في  الجفاف  اتجاهات  البحث  هذا  ويستخدم  يحلّل 

و    2005و    2002بيانات الاستشعار عن بعد وتحليل هطول الأمطار لتقييم شدة وتواتر الجفاف في أعوام  
. يقوم البحث بعمل خرائط لتوزيع الجفاف في محافظة ديالى باستخدام  2022و    2020و    2015و    2010

الغطاء    Landsat 9و    Landsat 8و    Landsat 7صور الأقمار الصناعية من   ، ويحلل مؤشر صحة 
. تُظهر النتائج زيادة في شدة  هطول الأمطار.   متوسط  ( و بياناتSMI( ومؤشر رطوبة التربة )VHIالنباتي ) 

الجفاف    شدة  (، وارتفعت 2022% )50( إلى 2005% ) 48الجفاف: حيث اتسعت مساحة الجفاف الشديد من 
يكشف تحليل هطول الأمطار عن أنماط مختلفة،   .SMI ( وفقًا ل ـ2022% ) 17.1( إلى  2002% ) 1.1من  

ملم    1.4633ملم( وزيادة في التباين )   4.215هطولًا أقل من متوسط هطول الأمطار )   2022حيث شهد عام  
بعام   مقارنة  المعياري(  الانحراف  تعتبر    1.1227ملم،    6.735)   2015من  التي  النتائج،  هذه  تسلط  ملم(. 

تكيفية   استراتيجيات  ووضع  المستمر  الرصد  إلى  الحاجة  على  الضوء  المياه،  وإدارة  الزراعة  لقطاعي  حاسمة 
 .استجابةً لنماذج مناخية متغيرة
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1. Introduction 

    Drought is a natural climatological phenomenon that occurs due to a shortage of rainfall in 

an area. The manifestation of this in agriculture is a shortage of water supply to meet crop 

water requirements, whether from rainfall or irrigation [1]. Drought can be classified into four 

types: meteorological, agricultural, hydrological, and socio-economic [2]. Meteorological 

drought occurs when there is a deficit between precipitation and evaporation; agricultural 

drought is determined by soil moisture and plant characteristics, while hydrological drought 

occurs when river flow or aquifer water levels drop below average. Socio-economic drought 

refers to the relationship between the water supply and demand. Vegetation is sensitive to the 

effects of drought, which can lead to a decrease in water availability and a deterioration in its 

condition [3]. Agricultural drought is a highly complex natural hazard that challenges 

monitoring and prediction. It has far-reaching effects, impacting vast areas and substantially 

reducing food production. Monitoring and predicting agricultural drought accurately is crucial 

for implementing timely mitigation measures and ensuring food security [4]. 

 

     Iraq is located in the driest region in the world, with limited water resources shared with 

neighboring countries. Water is vital for the stability and development of the agricultural 

sector and the economy, which relies heavily on surface and groundwater resources; despite 

this, Iraq has experienced repeated droughts over the past two decades [5]. 

 

     The climate is classified based on the climatic elements of rainfall, temperature, humidity, 

and wind, which determine the characteristics of each climate type. Climate classification 

groups the world's climates based on different climate factors, such as rainfall, temperature, 

humidity, and wind. It is used to identify the characteristics of each climate type and to 

correlate them with biomes, which are areas with similar plant and animal life. One of the 

most widely used climate classification systems is the Köppen climate classification scheme, 

which divides climates into five main groups: A (tropical), B (arid): Low precipitation, with 

less than 10 inches per year, C (temperate), D (continental), E (polar), in the study area is 

climate classified to BWh: Hot desert climate, and BSh: Hot semi-arid climate. The study area 

is experiencing the effects of global climate change, as evidenced by rising temperatures, 

evaporation, declining rainfall, and relative humidity from 2001 to 2025 (Figure 1 [6], [7] ). 
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Figure 1: Köppen climate classification map for Diyala province during 2001-2025, [6], [7]. 

 

      Decision-makers in many countries are currently utilizing remote sensing technology to 

bridge the information gap in drought monitoring. Remote sensing data from satellite sensors 

offers continuous datasets valuable for detecting the onset, duration, and severity of drought 

events. Compared to traditional methods, remote sensing is a superior tool for monitoring and 

issuing early warnings regarding drought. However, a challenge in utilizing remote sensing 

data for drought monitoring lies in validating and calibrating different indices to suit the 

specific ecological conditions and regions of interest [8]. 

 

      Several drought indices have been developed and applied using remote sensing, including 

duration, intensity, severity, and spatial extent. The Normalized Difference Vegetation Index 

(NDVI) is a widely used approach for monitoring drought events by examining vegetation 

health. Combining NDVI with temperature has proven to be an effective way to improve the 

approach. The combination of NDVI and LST provides a strong correlation and valuable 

information for the early detection of agricultural drought as an early warning system [9]. The 

Vegetation Health Index (VHI) is an index that combines NDVI and LST to assess the impact 

of moisture and temperature on vegetation. It has been used to monitor and analyze conditions 

during drought events [10]. Drought significantly affects plants and wildlife, as water scarcity 

leads to a decline in plant health and growth capacity. Moreover, drought results in water 

resource depletion and affects the ecological balance.  

   

      Numerous researchers have conducted extensive research on drought and vegetation 

indices in different regions of Iraq. Previous studies have focused on comprehending drought 

using various indicators, including drought duration, intensity, spatial impact, and temporal 
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patterns. Recent findings propose combining indicators such as the NDVI with temperature 

data can contribute to early drought detection. For example, A  study by A. M. Saleh 2015 

[11] developed an algorithm for obtaining LST and Land Surface Emissivity (LSE) in Mosul 

City, Iraq, using Landsat-8 data. The algorithm used the Split-Window (SW) approach, 

utilizing brightness temperature values from bands 10 and 11. The NDVI threshold was used 

to differentiate between bare soil and vegetated areas, and fractional vegetation cover (FVC) 

was derived. The study found that 30.66% of the total area is under vegetation land cover, 

while 28.97% is under hilly regions. The SW algorithm proved a suitable and robust method 

for obtaining LST maps from Landsat-8 satellite data. 

Another study by H.A.A. Gaznyee et al. 2021[3] analyzed drought severity in ten districts of 

Erbil governorate, Iraq, over 20 years (1998-2017). Their results showed frequent droughts, 

with extreme VCI-based drought areas recorded in 1999, 2000, 2008, and 2011, respectively. 

The highest crop yield reduction occurred in 2000, 2008, and 2012 due to low precipitation 

rates. The study highlights the VCI's ability to predict drought characteristics and its 

relationships with ecological variables, providing crucial information for decision-makers in 

environmental and economic sectors. 

R.S. Hameed et al.2021 [12] proposed a new vegetation index called the normalized 

difference vegetation shortwave index (NDVSI). The NDVSI was less sensitive to 

atmospheric effects than the NDVI. It is calculated by dividing the difference between the 

sum of the NIR and SWIR cubic bands. SAVI and NDVSI (R2 = 0.809) and NDVI and 

NDVSI (R2 = 0.917) showed strong correlations in the study, indicating that NDVSI can be 

used as a stand-alone vegetation index for vegetation identification. 

M. F. Allawai et al. 2020 [13] focused on the changes in land cover in Mosul Province, Iraq, 

from 2014 to 2018 using Geographic Information Systems (GIS) and remote sensing 

techniques. Satellite images from Landsat 8 were used to measure the NDVI and the Green 

Normalized Difference Vegetation Index (GNDVI). The results show a decrease in vegetation 

cover from 4.98% in 2014 to 4.39% in 2018. Water levels decreased by 0.4%, 0.38%, 0.27%, 

0.48%, and 0.28% for the same period. Urban area decreased by 16.02–10.92% between 2014 

and 2016, but reconstruction increased. NDVI and GNDVI are good indicators for vegetation 

and land use/cover changes, with NDVI showing a more significant increase in vegetation due 

to increased water use. Their study highlights the importance of NDVI as an indicator of 

vegetation-moisture conditions in Mosul Province. 

H. A. Atiyah et al. 2023 [14] conducted a study investigating drought and vegetation indices 

using remote sensing data in Babel Province. The results indicated similar drought conditions 

in 2015 and 2018 based on NDVI analysis. However, in 2021, the SPI values suggest a more 

severe drought. Additionally, there was a 9% decrease in the vegetation area in 2021 

compared to previous years. These findings hold importance for government planners in 

effectively managing the impacts of drought in the region. 

The study aimed to identify the distribution of agricultural drought in Diyala Province using 

the VHI. The research used a long-term sequence of dry and wet season Landsat data from 

2002, 2005, 2010, 2015,2020, and 2022 to derive VHI. Landsat data was selected due to its 

open-access policy and acceptable temporal and spatial resolution for drought monitoring. 

The Google Earth Engine (GEE) [15], an open-source platform for time-series analysis and 

large-scale application, is adopted to design the Vegetation index-based approach and release 

the spatiotemporal products. The Google Earth Engine offers georeferenced and 

atmospherically corrected real-time remote; it combines remote sensing data, including 

satellite imagery from various sources, with high-performance computer service, making 

satellite imagery processing quicker and simpler. The GEE  uses JavaScript for client libraries 

and Python for code modification. It employs Map reduce architecture for parallel processing, 

dividing large volumes of data into smaller sets and assembling output datasets after 
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processing them as individual components [16]. The study's results showed the region's 

spatial and temporal distribution of agricultural drought, providing valuable information for 

drought management and mitigation efforts.  

 

2.  Materials and Methods 

     Understanding the distribution of agricultural drought in Diyala Province, Iraq, is crucial 

for informing water management strategies and ensuring the long-term sustainability of the 

region's agricultural sector. This study leverages remote sensing data and rainfall analysis to 

assess drought severity and frequency over twenty years, providing intervals (2002, 2005, 

2010, 2015,2020, and 2022), Figure 2. Through the calculation of various vegetation indices, 

including NDVI, LST, VCI (Vegetation Condition Index), TCI (Temperature Condition 

Index), SMI (Soil Moisture Index), and VHI (Vegetation Health Index), alongside the 

analysis of precipitation patterns, this study sheds light on the temporal and spatial dynamics 

of agricultural drought in Diyala Province. 

Figure 2: Methodology flowchart for VHI and Rainfall calculation with Google Earth 

Engine. 

 

2.1. Study Area   

       Diyala province is situated in the northeastern region of Iraq, at 33° latitudes and 35° N 

and longitudes 45° and 46° E. It spans approximately 17.685 km2 [17] (Figure 3). The study 

area has a unique transitional climate due to its location within two distinct regions: semi-

mountainous and sedimentary. This combination results in a climate that blends 

characteristics of arid and semi-arid regions. The province experiences high summer 

temperatures surpassing 40°C and low winter temperatures with limited rainfall [18]. The 

climatic variations pose challenges for the agricultural sector, emphasizing the importance of 

implementing effective drought monitoring and management strategies in Diyala Province. 
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Figure 3: The study area is located in Diyala Province, Iraq 

 

2.2. Remote Sensing Data 

     The study utilized two types of remote sensing data: Landsat images and rainfall data. 

 

2.2.1.  Landsat images 

     The study mapped drought distributions in Diyala Province in 2002, 2005, 2010, 2015, 

2020, and 2022. The satellite images were acquired by Landsat 7, Landsat 8, and Landsat 9, 

which are more than 20 years. The sensors used to acquire the images were the Enhanced 

Thematic Mapper Plus (ETM+), the Operational Land Imager (OLI), the Thermal Infrared 

Sensor (TIRS), OLI-2, and TIRS-2. New for Collection 2 is the processing and distribution of 

Level-2 surface reflectance and surface temperature science products for Landsat 7 ETM+ 

and Landsat 8 OLI/TIRS. Level-2 products are generated from Collection 2 Level-1 inputs 

that meet the Smaller than  76 degrees Solar Zenith Angle constraint and include the required 

auxiliary data. NDVI, LST was calculated using GEE, representing the data of (Path/row: 

168/36, 168/37). Landsat images were obtained from January to December in 2002, 2005, 

2010, 2015, 2020, and 2022 to estimate annual plant productivity in the study area.  

 

2.2.2.  Rainfall Data 

     Precipitation data were obtained from the Climate Hazards Infrared Precipitation with 

Stations (CHIRPS) dataset provided by the GEE.  The study used monthly CHIRPS 

precipitation with a spatial resolution of 0.05◦ from 2002 to 2022. CHIRPS has the advantages 

of a long recording period from 1981 to the present, high spatial resolution, low spatial bias, 
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and low time delay [10], and has been recently applied in various fields in drought monitoring 

CHIRPS is a 30+ year quasi-global rainfall dataset. CHIRPS incorporates 0.05° resolution 

satellite imagery with in-situ station data to create gridded rainfall time series for trend 

analysis and seasonal drought monitoring [19]. The study area's rainfall data were interpolated 

using Interpolation Distance Weighting (IDW) using rainfall values derived from CHIRPS 

data. Initially, the precipitation data from weather stations were transformed into shapefiles 

(point data). Subsequently, these shapefiles were interpolated into raster layers on 

ArcMap10.8 employing the IDW tool[20].  

 

2.3. Drought index calculation 

     The study uses Landsat data to analyze the Vegetation Health Index using long-term 

sequence data for 2002, 2005, 2010, 2015, 2020, and 2022 mean annual. The satellite data is 

being used in the analysis to precisely measure how changes in the drought analysis affect 

NDVI, LST, and the VHI. 

 

2.3.1. Normalized Difference Vegetation Index (NDVI) is an early vegetation index used to 

monitor drought, distinguish vegetation cover, and determine density, enabling accurate 

monitoring of land cover types [21]. Using the Red and NIR bands, the vegetation index 

determines how much energy is received and given off by objects on the earth, where Red is 

the visible red band and NIR [22]. To calculate NDVI, a digital number (DN) and different 

band values were used; these pixel bands produced a digital number value [23] (Figure 4. 

NDVI can be expressed by equation (1) [24]: 

NDVI =
NIR − RED

NIR + RED
                                                              (1) 

 

     Theoretically, NDVI values range from -1.0 to +1.0, but the typical range is -0.1 for non-

vegetated surfaces and 0.9 for dense vegetation. NDVI values increase with green biomass, 

positive seasonal changes, and favorable factors like abundant precipitation [24]. 

 

 
Figure 4: A Healthy plant (left) absorbs much visible light and reflects a large portion of 

near-infrared light. Unhealthy or sparse vegetation (right) absorbs more visible light and 

reflects less near-infrared light [23]. 
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2.3.2. Land Surface Temperature (LST) can be measured when the instrument touches the 

surface [25]. LST information reveals temporal and spatial variations of the surface 

equilibrium state, crucial in various fields like evapotranspiration, climate change, 

hydrological cycles, vegetation monitoring, and environmental studies [11]. Landsat 4-7 and 

Landsat 8-9 use a single-channel algorithm to generate Surface Temperature (ST) products. 

The algorithm is derived from the RIT ST code. Collection 2 ST is obtained from thermal 

infrared bands, utilizing TOA Reflectance, TOA BT, ASTER GED data, ASTER NDVI data, 

and atmospheric profiles. For Landsat 7, Band 6 TOA BT combines 6H and 6L, replacing 

saturated 6H pixels with 6L [26]. Similarly, Landsat 8-9 ST product is derived from TIRS 

band 10, with the same algorithm and incorporating TOA Reflectance, TOA BT, ASTER 

GED data, ASTER NDVI data, and atmospheric profiles [27]. 

The equations to convert the thermal bands of Landsat 5-7 and Landsat 8-9 Surface 

Reflectance (L8SR) images to surface temperature and then convert from Kelvin to Celsius 

are as follows [28]: 

 

1. Conversion equation for thermal bands: 

LST = (Thermal band value ∗ 0.00341802) + 149                                             (2) 

2. Conversion equation from Kelvin to Celsius: 

LST(Celsius) = LST(Kelvin) − 273.15                                                                    (3) 

 

2.3.3. Soil Moisture Index (SMI) 

The study uses the LST approach and NDVI to estimate soil moisture by reducing the soil 

moisture index and extracting vegetation density information. Vegetation cover significantly 

impacts soil moisture, with increasing cover depleting moisture content. Surface temperature 

is indicative of soil moisture levels [29]. 

The calculation for the SMI is as given by equation (4)  [30][31] : 

SMI =
LSTmax − LST

LSTmax − LSTmin
                                                                                                       (4) 

 

        LSTmax and LSTmin represent the highest and lowest surface temperature values 

corresponding to a specific NDVI value. LST refers to Land Surface Temperature, which is 

obtained from remote sensing data and represents the temperature of a pixel on the Earth's 

surface [30]. 

 

2.3.4. Vegetation and Temperature Condition Indcis and Vegetation Health Index  

      In order to estimate the thermal and humidity conditions of vegetation for each 

overlapping pixel, the following equations [32] can be used to calculate the temperature 

condition index (TCI) and vegetation condition index (VCI); the following Equations (5) and 

(6) [32]: 

VCI =
(NDVIα − NDVImin)

(NDVImax − NDVImin)
× 100                                                    (5) 

𝑇𝐶𝐼 =
(LSTmax − LSTα)

(LSTmax + LSTmin)
× 100                                                            (6) 

 

      The VCI and TCI values range from 0-100 and indicate the vegetation and temperature 

environmental conditions. They are inversely related, meaning a higher VCI value 

corresponds to a lower TCI value. Combining the VCI and TCI values equally allows for 

calculating the VHI using Equation (7) [32]. 

VHI = αVCI + (1 − α) × TCI                                                                   (7) 

where a=0.5 (contribution of VCI and TCI). 
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3.3.5. Drought Intensity Classification 

Drought intensity was assessed by analyzing VHI values, where values below 40 represented 

drought areas and values above 40 indicated healthy vegetation. Drought regions below 40 

were divided into mild, moderate, severe, and extreme categories based on specific VHI value 

ranges, Table 1[33]. Area estimations determine the extent of these drought categories and 

non-drought areas, such as forests, agriculture regions, and water bodies. VHI values are 

lower for water bodies, resembling drought areas, because NDVI and LST values are typically 

low in water-covered regions [1]. 

 

Table 1: Classification scheme for drought mapping 

Drought classes VHI Values 

Extreme drought <10 

Severe drought 10-20 

Moderate drought 20-30 

Mild drought 30-40 

No drought >40 

 

3. Results and Discussions 

     The NDVI theoretically ranges from -1 to 1, where negative values indicate water, values 

around zero represent bare soil, and values closer to 1 reflect denser green vegetation. Figure 

5 depicts the spatial distribution of NDVI in Diyala province for 2002, 2005, 2010, 2015, 

2020, and 2022. 

 

 
Figure 5: Spatial variation of NDVI for the years (a) 2002, (b) 2005, (c) 2010 and (d) 2015, 

(e)2020, (f)2022. 
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        The LST of the study area reveals the spatial distribution of hot spots based on data from 

2002, 2005, 2010, 2015, 2020, and 2022 (Figure 6). The LST was classified into two classes, 

low (ranging from 17°C to 23°C in 2002 and 2022, respectively) and high (ranging from 45°C 

to 66°C in 2005 and 2015, respectively). 

 
Figure 6:  Spatial variation of LST for the years (a) 2002, (b) 2005, (c) 2010 and (d) 2015, 

(e)2020, (f)2022 

 

     The VCI and TCI range from 0 to 100, with higher values indicating more favorable 

environmental conditions for vegetation and lower temperatures, respectively. These indices 

exhibit an inverse relationship, meaning that as VCI increases, TCI decreases. Combining 

VCI and TCI values with equal weight results in the VHI. Figures 7 and 8 depict the spatial 

distribution of  VCI  and TCI in Diyala province for 2002, 2005, 2010, 2015, 2020, and 2022. 
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Figure 7: Variation in vegetation conditions index for the year (a) 2002, (b) 2005, (c) 2010 

and (d) 2015, (e)2020, (f)2022 

 
Figure  8: Variation in temperature conditions index for the year (a) 2002, (b) 2005, (c) 2010 

and (d) 2015, (e)2020, (f)2022 
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3.1. Outcomes of the Vegetation Health Index (VHI)  

Drought intensity was evaluated through VHI analysis, where values below 40 indicated 

drought-affected areas and values above 40 denoted healthy vegetation within drought-

affected regions (VHI < 40). Further classifications were made based on specific VHI ranges 

for the years 2002 (20-70), 2005 (22-67), 2010 (19-68), 2015 (24-71), 2020 (17-65), and 2022 

(18-66), Figure 9. 

 
Figure 9: Spatial variation of VHI at (a) 2002, (b) 2005, (c) 2010 and (d) 2015, (e)2020, 

(f)2022 

 

     The study revealed changes in drought intensity in Diyala province over time, Table 2 and 

Figure 10. Moderate drought affected the most significant area, 134.266 ha (66%), in 2002, 

followed by mild drought, 51.680 ha  (26%), and no drought in the remaining area16.533 ha  

(8%). In 2005, severe drought decreased to 97.794 ha (48%), with moderate drought covering 

65,647 ha (32%), mild drought covering 30,705 ha (15%), and the area without drought being 

8,334 ha (4%). By 2010, severe drought covered 70,254 ha (35%), while moderate drought 

increased to 106,194 ha (52%), mild drought decreased to 20,172 ha (10%), and the area 

without drought was 5,860 ha (3%). In 2015, severe drought affected 73,858 ha (36%), 

followed by moderate drought with 78,956 ha (39%). In 2020, severe drought increased again, 

covering about 97,794 ha (48%), while moderate drought decreased to 65,647 ha (32%). Mild 

drought remained at 30,705 ha (15%), and the area without drought was 8,334 ha (4%). The 

most recent data in 2022 showed a similar pattern, with severe drought covering 100,760 ha 
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(50%), moderate drought affecting 73,956 ha (37%), mild drought covering 21,504 ha (11%), 

and the area without drought being 6,260 ha (3%). 

 

Table 2: Extent of agricultural drought in 2002, 2005, 2010, 2015, 2020, and 2022 
 2002 2005 2010 

Level of Drought Area(ha) Percent Area(ha) Percent Area(ha) Percent 

Severe drought ------- -------- 97.794 48 70.254 35 

Moderate drought 134.266 66 65.647 32 106.194 52 

Mild drought 51.680 26 30.705 15 20.172 10 

No drought 16.533 8 8.334 4 5.860 3 

 2015 2020 2022 

Level of Drought Area (ha) Percent Area(ha) Percent Area(ha) Percent 

Severe drought 73.858 36 97.794 48 100.760 50 

Moderate drought 78.956 39 65.647 32 73.956 37 

Mild drought 21.277 11 30.705 15 21.504 11 

No drought 28.388 14 8.334 4 6.260 3 

 

 
Figure10  :Drought Intensity in Diyala Province in 2002, 2005, 2010, 2015, 2020, and 2022 

 

3.2. Outcomes of the Soil Moisture Index (SMI)  

     In Diyala Province, there has been an overall shift towards drier conditions over the last 

two decades, Table 3. The proportion of arid areas rose from 1.1% in 2002 to 17.1% in 2022, 

while the percentage of wet areas declined from 2.4% in 2002 to 0.8% in 2022, Figures 11 

and 12. 

 

Table 3 : Soil Moisture Index values for each year in Diyala Province 

Year 2002 2005 2010 2015 2020 2022 

SMI values % % % % % % 

Arid conditions 1.1 2.1 0.4 5.9 12.9 17.1 

Dry conditions 66.7 49.7 43.1 76.0 65.9 41.2 

Moderate conditions 28.5 45.0 40.5 14.8 18.3 31.7 

Wet conditions 2.4 2.3 14.4 2.5 1.8 9.2 

Very wet conditions 1.3 1.0 1.6 0.8 1.0 0.8 
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     These trends in soil moisture conditions indicate the varying levels of moisture availability 

over the years. The increase in arid conditions and the decrease in dry conditions in recent 

years highlight the potential impact of changing climate patterns on soil moisture availability. 

 

 
Figure 11: Soil moisture in Diyala province in 2002,2005,2010, 2015,2020 and 2022 

 

 
Figure 12: Spatial variation of Soil Moisture Index (SMI) mapping for (a) 2002, (b) 2005, (c) 

2010, (d) 2015, (e)2020, and (f) 2022 

 

3.3. Outcomes of the Average Rainfall 

      The study comprehensively analyzes the average annual rainfall through a time series 

complemented by spatial analysis maps. These maps reveal varying patterns in rainfall 

distribution over different years, showcasing notably low rainfall that suggests potential 
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drought periods, juxtaposed with years marked by higher precipitation levels, Figures 13 and 

14. 

 
Figure13: Annual Average Rainfall chart  for (a)2002-2012, (b) 2012-2022 in Diyala 

Province 

 
Figure  14: Spatial analysis map for Annual average rainfall for (a)2002-2012 and (b) 2012-

2022 in Diyala Province 
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Analyzing the standard deviation (SD) of annual rainfall for 2002, 2005, 2010, 2015, 2020, 

and 2022 helped us understand how drought intensity has changed. Higher (SD) values 

signify increased fluctuations in rainfall, potentially indicating variable drought conditions, as 

outlined in Table 4 and Figures (15- 22). These values offer insights into both the average 

rainfall and rainfall variability (standard deviation) in Diyala province across specific years 

For instance, in 2022, the province witnessed a lower average rainfall of 4.215 mm, 

accompanied by higher rainfall variability, with a standard deviation of 1.4633 mm. 

Conversely, in 2015, the province experienced a higher average rainfall of 6.735 mm, yet the 

rainfall exhibited greater consistency with a standard deviation of 1.1227 mm. 

 

Table 4 Average rainfall and standard deviation for 2002, 2005, 2010, 2015, 2020, and 2022 

Year Average Rainfall (mm) Standard Deviation (mm) 

2002 5.744 0.2536 

2005 6.660 0.9811 

2010 5.334 0.3441 

2015 6.735 1.1227 

2020 5.413 0.1239 

2022 4.215 1.4633 

 

 
Figure 15: Average rainfall and standard deviation for 2002, 2005, 2010, 2015, 2020, and 

2022 
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Figure 16: Average rainfall mapping for (a) 2002, (b) 2005, (c) 2010 and (d) 2015, (e)2020, 

and (f)2022 
 

 
Figure 17: Average Rainfall for years 2002 in Diyala Province 
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Figure 18: Average Rainfall for the years 2005 in Diyala Province 
 

 
Figure 19: Average Rainfall for years 2010 in Diyala Province 

 

 
Figure 20: Average Rainfall for years 2015 in Diyala Province 
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Figure 21: Average Rainfall for the year 2020 in Diyala Province 

 
Figure 22: Average Rainfall for years 2022 in Diyala Province 

 

5. Conclusions 

      This study analyzed drought conditions in Diyala province over twenty years (2002, 2005, 

2010, 2015, 2020, and 2022). The study used remote sensing and environmental data to assess 

drought intensity and soil moisture conditions. VHI results highlight the increasing prevalence 

of moderate and severe drought, with shifting patterns from 2002, 2005, 2010, 2015, 2020, 

and 2022. The SMI findings indicate a persistent movement towards drier conditions, with a 

rise in arid areas and a decrease in wet areas. Average rainfall data emphasizes fluctuating 

rainfall levels and heightened variability. Drought intensity: the province experienced varying 

levels of drought throughout the study period. From 2002 to 2022, the area affected by severe 

drought increased from 66% to 50%, while the area with no drought decreased from 8% to 

3%. Soil moisture: the analysis revealed a general trend towards drier conditions. The area 

classified as "arid" increased from 1.1% in 2002 to 17.1% in 2022. Rainfall: the average 

annual rainfall showed fluctuations, with some years experiencing lower rainfall amounts than 

others. The standard deviation of annual rainfall also varied, indicating changes in rainfall 

variability.  
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6. Recommendations 

These outcomes underscore the pressing need for proactive measures, including sustainable 

water management, resilient agriculture practices, and public awareness campaigns. Urgent 

action is essential to address the mounting challenges posed by changing climate patterns, 

ensuring the resilience and well-being of communities in Diyala Province. 
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