

ISSN: 0067-2904

Synthesis, Characterization, Thermal Studies, and Antioxidant Activities of Azo Dye[2-[(3-Hydroxyphenyl)diazinyl]-1,2-Benzothiazol-3(2H)-one-1,1-Dioxide]and Metal Ion Complexes

Fatimah Al-zahraa SH. H. and Abbas Ali Salih Al-Hamdani

Department of Chemistry, College of Science for Women, University of Baghdad ,Iraq

Abstract

The new azo dye was synthesized via the reaction of the diazonium salt form of 3aminophenol with 2-hydroxyquinoline. This dye was then used to access a series of complexes with the chlorides of manganese, iron, zinc, cadmium, and vanadium sulfate. The prepared ligand and its complexes were characterized by FT-IR spectroscopy, UV-visible spectroscopy, mass spectrometry, thermogravimetric analysis, differential scanning calorimeter, and microelemental analysis. Conductivity, magnetic susceptibility, metal content, and chlorine content of the complexes were also measured. The ligand and cadmium complex were identified using H NMR and 13C NMR spectroscopy. The results showed that the shape of the ligand is a trigonal planner, and the complex shapes are tetrahedral, except for vanadium, which is a square-based pyramid. Additionally, the findings demonstrated that the complexes include water inside the coordination field and that each and every one of them is a non-electrolyte. The dye used the complexes prepared from it to determine their ability to inhibit free radicals by measuring their ability as antioxidants using DPPH as a free radical.D-ascorbic acid was employed as a standard substance in determining the value of IC₅₀, as it was found that the ligand had a high ability to inhibit free radicals. The ability to inhibit the complexes varied according to the value of IC₅₀, and the results are as follows: H₂L > D-ascorbic acid >Zn-complex >Fecomplex > V-complex > Cd-complex > Mn-complex.

Keywords: 3-Aminophenol, Antioxidant, Azodye complexes, 2-Hydroxyquinoline, Thermodynamic parameter.

تحضير،تشخيص،دراسة التحلل الحراري وانشطة مضادات الاكسدة لصبغة ازو (2-(3-8)هايدروكسي فنيل) دايازنيل(2-1.2-1.1)بنزوثايزول(2-1.1-1.1)ون (2-1.1-1.1)

فاطمة الزهراء شاكر حاتم و عباس علي صالح الحمداني

قسم الكيمياء, كلية العلوم للبنات, جامعة بغداد, بغداد, العراق

الخلاصة

حضرت صبغة الازو الجديدة من تفاعل ملح الديازونيوم من 3-امينو فينول مع 2-هايدروكسي كوينولين استخدمة الصبغة لتحضير سلسلة من المعقدات مع كلوريدات كل من المنغنيز والحديد والخارصين والكادميوم وكبريتات الفناديوم، شخص الليكاند والمعقدات المحضرة بطيف الاشعة تحت الحمراء وطيف الاشعة فوق البنفسجة-المرئية وطيف الكتلة والتحاليل الحراربة الوزنية والمسعر التفاضلي والتحليل الدقيق للعناصر وقياس

*Email: abbasas chem@csw.uobaghdad.edu.iq

التوصيلية والحساسية المغناطيسية ومحتوى الفلز ومحتوى الكلور للمعقدات. تم التحقق من الليكاند ومعقد الكادميوم بطيف الرئين النووي المغناطيسي للبروتون والكاربون. أظهرت النتائج ان الليكاند ثلاثي السن والمعقدات رباعية السطوح عدا الفناديوم كان هرم مربع القاعدة. فضلاً عن احتواء المعقدات على الماء داخل مجال التناسق وان جميعها غير الكتروليتية. استخدم الصبغة المعقدات المحضرة منها لتحدد قابليتها على كبح الجذور الحرة من خلال قياس قابليتها كمضادات اكمدة باستخدام مادة DPPH كجذر حر وحامض الاسكوربك كمادة قياسية وتحديد قيمة والحيث وجد ان الليكاند يمتلك قابلية عالية على كبح الجذور الحرة والمعقدات تفاوتت قابليتها على الكبح حسب قيمة والرءات النتائج كما يلى:

 $\label{eq:hamiltonian} $$ (H_2L > Ascorbic acid > Zn-complex > Fe-complex > V-complex > Cd-complex > Mn-complex) $$$

الكلمات المفتاحية:مضاداتا لاكسدة, 3-امينو فينول, معقدات اصباغ الازو, الثوابت الثرموديناميكية و2- هيدروكسيكوبنولين.

1.Introduction

Azo dyes are among the most widely used, useful, and important types of chemical compounds, with diverse applications in science and technology[1-2]. The presence of an azo moiety (-N=N-) coupled with two monocyclic or polycyclic moieties identifies azo compounds[3]. Aromatic or heterogeneous systems are either unique or homologous[4]. Because of their distinctive physical and chemical characteristics and biological activities, they have a broad variety of uses in the pharmaceutical, cosmetic, food, dyeing, and textile industries [5]. However, their coloring job remains their most popular and favorite tool. The medicinal significance of azo compounds is widely recognized for their antibacterial, antifungal, and anti-HIV properties [6]. The majority of azo dyes are used to color textiles, and it is estimated that 10% of the dyes used in these dyeing procedures are not. They stick to the fibers and end up in wastewater treatment[7]. Some azo dyes are carcinogenic, and this is due to degradation products such as benzidine, which activate various tumors in humans and animals. Aromatic amines found in many azo dyes affect human health, cause allergic reactions, and cause other diseases. Different metal quinoline complexes have been shown to be more effective than the parent quinoline because of their interesting bioactivity. Many studies have been performed on heterocyclic azo dyes and their metal chelators. Dyed azo metal chelates are of interest for use in molecular memory storage, nonlinear visualizations, and printing systems[8-10]. This research aims to prepare novel complexes of the metal ions (Cd⁺², Zn⁺²,Fe⁺³,Mn⁺², and V⁺⁴) using the azo ligand H₂L. Thereafter, characterization by spectroscopic analysis, thermal stability, and thermal decomposition will be studied using DSC and TGA curves, and the antioxidant activity of these compounds will be assessed against the DPPH radical and compared with D-ascorbic acidas a reference.

2.Experimental

2.1.Material and Methods

All the materials used in this work were provided by SigmaAldrich, Merck, and other companies. The Urovector model EA/3000 singleV3O analyzer was used to record elemental microanalyses for carbon, hydrogen, nitrogen, and sulfur (C.H.N.S.). Through a gravimetric approach, mineralions were identified as M-O. Using DMSO as a solvent, a conductometer W-T-W estimated molar conductivities (1×10⁻³ M) at 25 °C. Mass spectrometry data were recorded using a Q-P-50-A-D-I Analysis Shimadzu QP(E170Ev)-2010-Pluss spectrometer. The UV-1800 Shimadzu Spectrophotometer was used to record the UV-visible absorption. The H and Hand 13 CNMR spectra were measured using aBruker (400MHz) spectrometer. The Fourier Transform Infrared (FT-IR) spectra were recorded using an IR Prestige-21, and the instruments

employed were the Braker 4000-500 cm⁻¹ and the Shimadzu 4000-200 cm⁻¹.Metals were identified using a Shimadzu (F.A.A.) 680 G atomic clock. Magnetic properties were used with the balancing susceptibility model MSR-MKI. All earlier types of thermal analysis employed Perkin-Elmer Pyris Diamond DSC/TGA.

2.2.Synthesis of azo dye ligand: [2-[(3-hydroxyphenyl)diazenyl]-1,2-benzothiazol-3(2H)-one 1,1-dioxide]

To a solution of 3-aminophenol(1g,0.008mmol) inHCl (2 mL, xx N),ethanol (15mL), and distilled water (10 mL)at 0 to 5 °C,a solution of NaNO₂(1 g, 14.49mmol) in H₂O (10 mL)was added gradually. The reaction mixture was stirred for 45 minutes before adding a solution of 2-hydroxyquinoline (1.16 g, 0.008 mmol) in ethanol (15 mL). A change to a dark-colored solution was observed after 30 minutes of stirring. The solid crude material formed wasfiltrated and dried to give a brown precipitate with an 87% yield that melts at 253-255 °C.

2.3.General approach for metal complexes synthesis

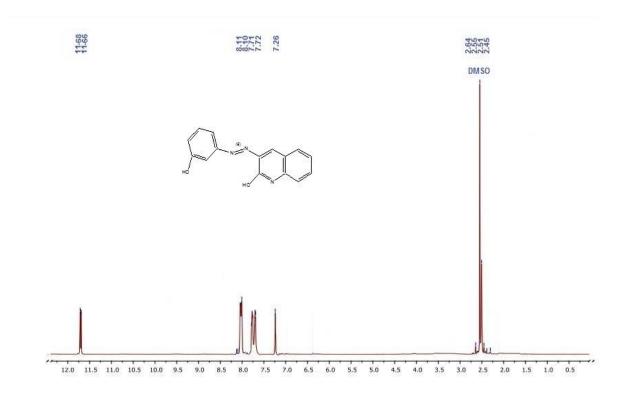
A solution of metal salt [VOSO₄.5H₂O (0.1 g, 1 mmol), FeCl₃ (0.058g, 1 mmol), MnCl₂.4H₂O (0.08g,1 mmol), ZnCl₂(0.05g, 1 mmol), or CdCl₂(0.07g, 1 mmol)] in water (10 mL). Azo ligand H₂L (0.1g, 1 mmol) was added drop by drop to the solution before heating at 40 °C for 2 hours. By briefly submerging the solid complexes in hot ethanol, any unreached components were separated from them and eliminated. The complexes were gathered, dried, and weighed.

3. Results and discussion

3.1. Physical and analytical data for the ligand (H_2L) and the complexes synthesized

The reaction of metal salts and ligandafforded the desired complexes as shown in Scheme 1. The findings of the elemental analysis show that all compounds have a 1:1 ratio of M:L.The results of the microelemental analysis were consistent with the theoretical calculations, as shown in Table 1.

Scheme1- Formation for ligand (H₂L) and their metal complexes


Table 1: Some elemental physical characteristics investigations of ligand and complexes

Compound no.	Formula Molecular weight	m.p.(°C)	Ratio	C (%)	H (%)	N (%)	M (%)	Cl (%)	Conductivity In DMSO cm ² Ω ⁻¹ mol ⁻¹
1	$C_{15}H_{11}N_3O_2$	253-255	found	67.92	4.18	15.84		1	
1	265.27	233-233	Calculated	67.09	3.72	16.81			
2	$C_{15}H_{11}N_3O_4V$	290 201	found	51.74	3.18	12.07	14.63	-	12
2	348.21	289-291	Calculated	50.62	3.83	12.28	14.88		12
3	C ₁₅ H ₁₁ N ₃ O ₃ Mn	277, 279	found	53.59	3.35	12.50	16.34	-	16
3	336.20	276-278	Calculated	52.69	3.09	13.16	13.02		10
4	C ₁₅ H ₁₃ N ₃ O ₄ ClFe	202 204	found	46.13	3.35	10.76	14.30	9.08	10
4	390.58	292-294	Calculated	46.89	3.97	11.89	13.54	9.57	19
5	$C_{15}H_{11}N_3O_3Zn$	277 200	found	51.97	3.20	12.12	18.86	-	1.1
5 346.66	277-280	Calculated	50.99	4.11	13.10	18.55		11	
(C ₁₅ H ₁₁ N ₃ O ₃ Cd	207.200	found	45.76	2.82	10.67	28.55	-	10
6	393.68	296-299	Calculated	44.89	3.55	11.89	28.22		10

3.2.¹H NMR and ¹³C NMR data of theazo ligandand Cd complex

The 1 HNMR and 13 CNMR spectra of azo ligand are displayed in Figure 1. The 1 HNMR data in DMSO- d_{6} (ppm) are 2.45 (2H, s,N-H),7.26(1H, s,Ar-H), 7.72-7.71(1H, d, Ar-H), 11.68-11.66(1H, s, 2OH)[11]. 13 CNMR data in DMSO- d_{6} (ppm) are 127.5 (C1) 149.0 (C2),118.2 (C3) 145.0 (C4), 157.2 (C5), 169.8 (C6), 132.2 (C7) 165.3 (C8), 137.3 (C9), 166.9 (C10) 155.2 (C11), 122.2 (C12), 178.1 (C13), 182.0 (C14), 189.75 (C15)[12].

The 1 H NMR and 13 C NMR spectra of Cd-complex are displayed in Figure 2. The 1 H NMR data of Cd complex in DMSO- d_6 (ppm) are 3.34 (DHO impurities),8.46-7.36 (9H, m, Ar-H). 13 C NMR data in DMSO- d_6 (ppm) are 106.6 (C1), 189.8 (C2), 145.5 (C3) 181.7 (C4), 190.2 (C5), 118.6 (C6) 137.6 (C7), 127.8 (C8), 132.5 (C9),155.4 (C10), 172.6 (C11), 158.0 (C12),178.7 (C13), 165.8 (C14), 196.2 (C15)[11].

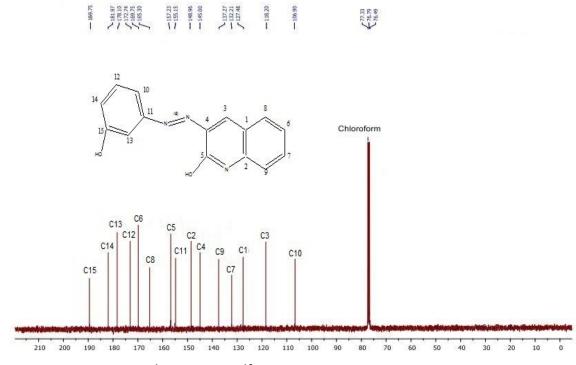


Figure1: ¹H NMR and ¹³C NMR spectra of azo ligand (H₂L)

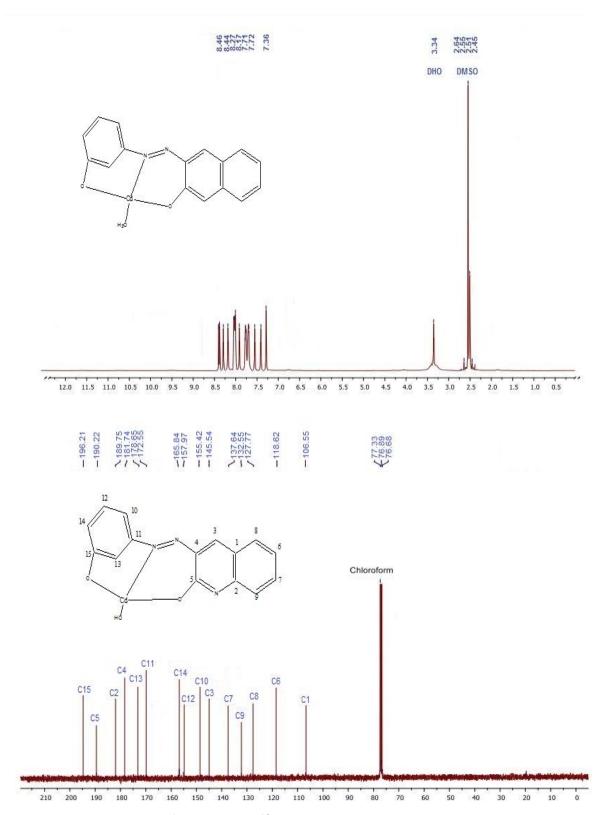


Figure 2: ¹H NMR and ¹³C NMR spectra of the Cdcomplex

3.3. LC-mass spectra for ligand and its complexes

One of the most crucial methods for characterizing the ligand (H_2L) and some products is LC-Mass spectrum testing. This method is supplementary to the other methods that estimate

the molecular weight of the chemical using the relationship (m/z)[13]. The fragmentation pattern and the extract mass for each pattern are shown in Scheme 2. The fragment's molecular ion peak $[M]^+$ of $C_{15}H_{10}N_3O^+$ is easily visible, and its relative abundance is about 67% in Figure 3.Other peaks observed at 45, 32, and 88% belong to the $C_{15}H_{10}N_3^+$, $C_9H_6N^+$, and $C_6H_5N_2^+$ ions, respectively[8]. For the [Cd(L)H₂O] (Figure 4 and Scheme 2),we can observe the molecular ion peak (M⁺) at 392.33m/z with a relative abundance of 10%, and the next patterns are $C_{15}H_7CdN_3O_2^{+\bullet}, C_{15}H_8CdN_3O^{+\bullet}, C_{15}H_8CdN_2O^{+\bullet}, C_9H_4CdN_2O^{+\bullet}$ and $C_6H_5^{+}$, which correspond to m/z,267.69m/z,and 77.84 m/z, respectively. In the 374.58 m/z, 358.78 m/z, 344.64 [Mn(L)H₂O]complex (Scheme 2), the fragments (M⁺) at336.42m/z with a relative abundance of 10%, and the next patterns are $C_{15}H_8N_3O_2Mn^+, C_9H_4N_3OMn^+,$ C₉H₄N₂OMn⁺,C₉H₄NOMn⁺ and C₆H₄O⁺, which corresponded to 317.42m/z, 255.02 m/z, 211.35m/z, 197.42m/z, and 92.33m/z. For[Fe(L)(H₂O)₂Cl] complex(Scheme5), the fragments (M⁺) at 390.44 m/z with a relative abundance of 15% and the next patterns are C₁₅H₉ClFeN₃O₂⁺, $C_{15}H_9FeN_3O_2^+, C_{15}H_9FeN_3O^+, C_9H_5FeNO^+, C_6H_5N_2^+, C_7H_5N_2^{\bullet+}$ and C_2HFeO^+ corresponded to 354.64m/z,319.08 m/z, 303.32m/z, 198.14 m/z, 105.44 m/z,103.21m/z, and 96.89m/z. In the [VO(L)H₂O]complex (Scheme 2), the fragments(M⁺) at 348.34m/z with relative abundance pattern: $C_{15}H_8N_3O_3V^+$, $C_9H_4N_3O_2V^+$, $C_9H_4N_2O_2V^+$, $C_9H_4NO_2V^{+\bullet}$ 20% next corresponded to 329.22 m/z, 237.01 m/z, 223.22 m/z, 209.41 m/z, C₆H₄O⁺•, which 92.36m/z.Forthe [Zn(L)H₂O] complex in Scheme 2, the next fragments (M+) are at345.86m/z with relative abundance of 25% and the next patterns $areC_{15}H_8N_3O_2Zn^+, C_{15}H_8ZnN_3O^{\bullet+}, C_{15}H_8ZnN_2O^{\bullet+}, C_9H_3ZnN_2O^{\bullet+}$ and $C_6H_5^+$ which correspond to 327.63m/z, 311.65 m/z, 297.35m/z, and 220.54m/z, respectively [14].

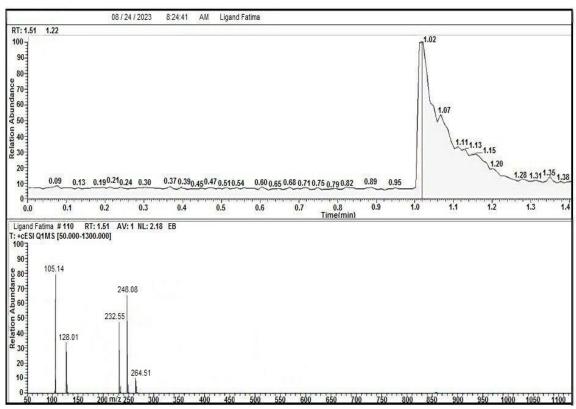


Figure 3: Mass spectrum of ligand H₂L

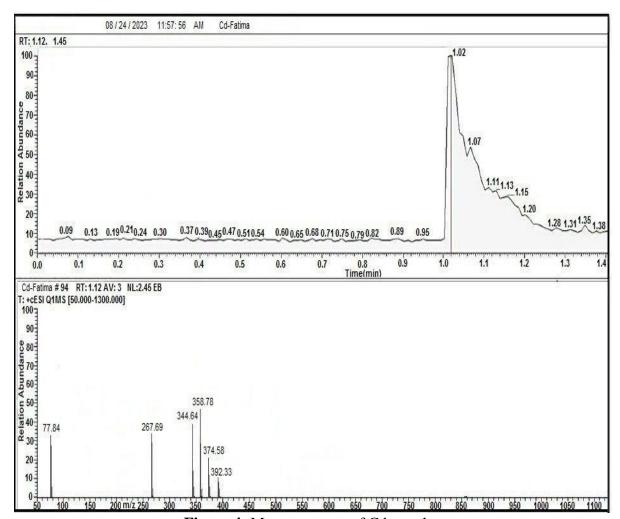
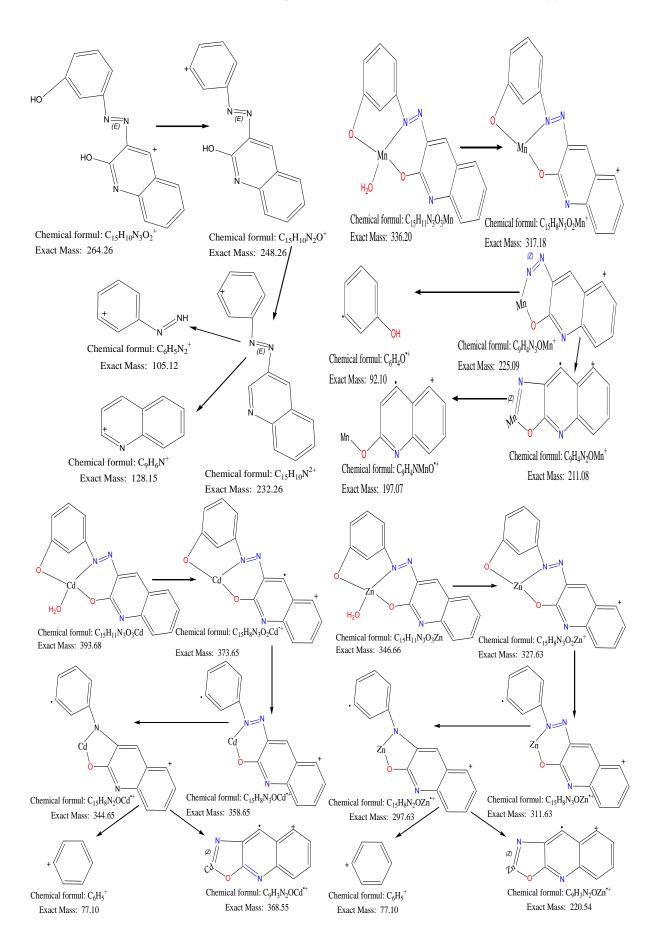
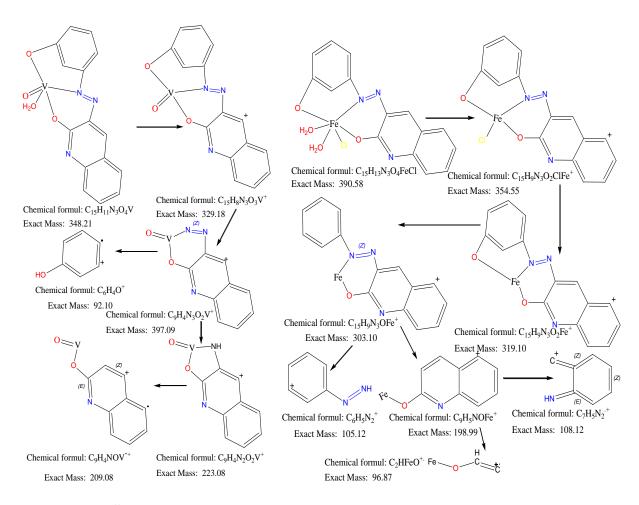




Figure 4: Mass spectrum of Cdcomplex

Scheme 2: Pattern of fragmentation of ligand and their complexes

3.4.The ligand (H_2L) and its complexes are studied by UV-Vis

The electronic spectrum for ligand (H₂L) in Figure 5 exhibits strong absorptions at 275nm and 36363.64cm⁻¹ ascribed to the $\pi \rightarrow \pi^*$ transition and a peak at350nm and 28571.43cm⁻¹ ¹attributed to the $n \rightarrow \pi^*$ transition, a peak with a high intensity band formed with absorption maxima[15]. The electronic transition of the V⁺⁴complex depicts peaks of 280,345,390,620, and 780 nm assigned to $\pi \to \pi^*$, $n \to \pi^*$, $^2B_2g \to ^2Eg$, and $^2B_2g \to ^2B_1g$, respectively, which is indicative of a square pyramidal geometry. The electronic spectrum of the divalent zinc compound was studied, and it was found that it does not give d-d transitions because it contains (d¹⁰) in the valence shell. However, it gave two peaks, each belonging to the ligand spectrum: peaksat 290nm and 470 nm assigned to $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$, respectively, which is indicative of a tetrahedral. The electronic spectrum of the Cd⁺² compound was studied, and it was found that it does not give d-d transitions because it contains (d¹⁰) in the valence shell, but it gave three peaks, each belonging to the ligand spectrum, peaks in 255, 340, and 390 nm assigned to $\pi \rightarrow \pi^*$, and C.T. M \rightarrow L, respectively, which is indicative of a tetrahedral. The electronic absorption of Mn²⁺complex exhibited peaks of 235, 295, 325, 595, and 785 nm ascribed to the $n \to \pi^*, C.TML, {}^6A_1g \to {}^4Eg_{(G)}, {}^6A_1g \to {}^4T_2g_{(G)}, {}^6A_1g \to {}^4T_1g_{(G)}, and$ respectively, which is indicative of a tetrahedral. The electronic transition of Fe⁺³ complex show in Figure 6 exhibited peaks of 270,310,545, and 720 nm assigned to $\pi \to \pi^*$, $n \to \pi^*$, C.T M \to L, ${}^{6}A_{1}g \rightarrow {}^{4}T_{2}g_{(G)}, {}^{6}A_{1}g \rightarrow {}^{4}T_{1}g_{(G)}, \text{ and } {}^{6}A_{1}g \rightarrow {}^{4}E_{g(D)},$ respectively, which is indicative of anoctahedral geometry.Table2 displays the electronic assignment complexes[16,17]. All complexes are non-electrolytes.

Table 2. The ligand (H	(2L) and its complexes are	studied by HV-Vis
Table 2: The ligand (II	obtaind its comblexes are	Studied DV U V - V IS

Compound	λ nm	ύcm ⁻¹	Abs	ε _{max} Lmol ⁻¹ cm ⁻¹	Assignment	μ _{eff} (B.M) found (calculate)	Hybridizati on	Distributio n
Ligand	275	36363.64	1.89	1890	$\pi \rightarrow \pi^*$			
H_2L	350	28571.43	2.13	2130	$n \rightarrow \pi^*$			
[VO(L)H ₂	280	35714.29	1.200	1200	$\pi \rightarrow \pi^*$			
O]	345	28985.51	1.120	1120	$n \rightarrow \pi^*$	1.81	_	
Square	390	25641.03	0.400	400	C.T	(1.73)	dsp^3	$t_2g^1eg^0$
pyramidal	620	16129.03	0.260	260	${}^{2}\mathrm{B}_{2}\mathrm{g}{\rightarrow}{}^{2}\mathrm{E}\mathrm{g}$	(1.73)		
pyraiiiidai	780	12820.51	0.250	250	${}^{2}\mathrm{B}_{2}\mathrm{g} \rightarrow {}^{2}\mathrm{B}_{1}\mathrm{g}$			
					$\pi \rightarrow \pi^*$			
DM:-(I)II	235	42553.19	2.125	2125	$n \rightarrow \pi^*$			
$[Mn(L)H_2]$	295	33898.31	1.895	1895	$C.TM \rightarrow L$	5 44		
O]	325	30769.23	0.890	890	$^{6}A_{1}g \rightarrow ^{4}Eg(G$	5.44	SP^3	$e^{2}t_{2}^{3}$
Tetrahedra	595	16806.72	0.625	625)	(5.91)		_
I	785	12738.85	0.595	595	$^{6}A_{1}g \rightarrow ^{4}T_{2}g($			
					G)			
					$\pi \rightarrow \pi^*$			
FE (7.)** 0	270	37037.04	2.115	2115	$n \rightarrow \pi^*$			
[Fe(L)H ₂ O	310	32258.06	1.998	1998	$^{6}A_{1}g \rightarrow ^{4}Eg(G$	5.17	a=2.42	- 2 2
Cl]Octahe	545	18348.62	0.250	250)	(5.91)	SP^3d^2	$T_2g^3eg^2$
dral	720	13888.89	0.125	125	$^{6}\text{A1g} \rightarrow ^{4}\text{T}_{2}\text{g}($	(= 12)		
			******		G)			
[Zn(L)H ₂ O					- /			
]	290	34482.76	2.315	2315	$\pi \rightarrow \pi^*$	Diamagneti	a=2	4 6
Tetrahedra	470	2127.66	0.525	525	$n \rightarrow \pi^*$	c	SP^3	$e^4 t_2^6$
1	., 0	2127.00	0.020	020		(0)		
[Cd(L)H ₂	255	20215.60	2.120	2120	Ψ	D:		
O)	255	39215.69	2.120	2120	$\pi \rightarrow \pi^*$	Diamagneti	an ³	4.6
Tetrahedra	340	29411.76	1.980	1980	$n \rightarrow \pi^*$	c	SP^3	$e^4 t^6_2$
1	390	25641.03	0.890	890	C.T M→L	(0)		

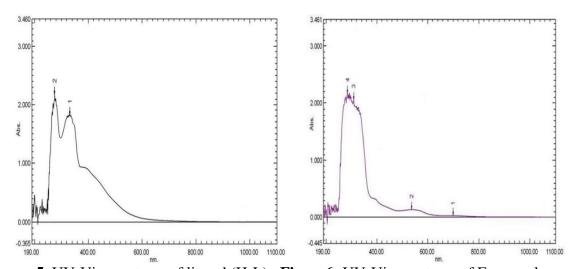


Figure 5 UV-Vis spectrum of ligand (H₂L) Figure 6- UV-Vis spectrum of Fe-complex

3.5.Thermal analysis

The results of the thermal analysis can be seen in Tables 4 and 5 and in Figures 7 and 8 for the ligand (H2L) and the complexes that were made [18]. Scheme 8 outlines the potential breakdown response of metal complexes. Based on the thermograms, computations of the decomposition phases, temperature ranges, decomposition products, and weight loss complex percentages indicated consistency. That verifies the elemental analysis findings and recommended equations between their thermal decomposition results and computed

values[10].In this work, it was noted that in the ligand and metal complexes of V^{+4} , Fe^{+3} , Zn^{+2} , Cd^{+2} , and Mn^{+2} , the remaining ligand was carbon and the remaining metal oxide. Based on the results of the thermogravimetric studies, it can be shown that the complexes and the ligand form one to three distinct phases. Using the DCS curve, the thermodynamic parameters enthalpy ΔH , entropy ΔS and Gibbs free energy (ΔG)were calculated[19].

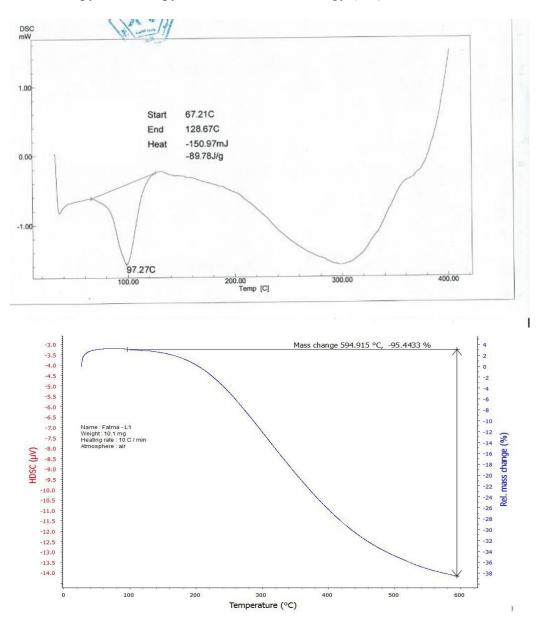


Figure 7: TGA&DSC curve of Ligand (H₂L)

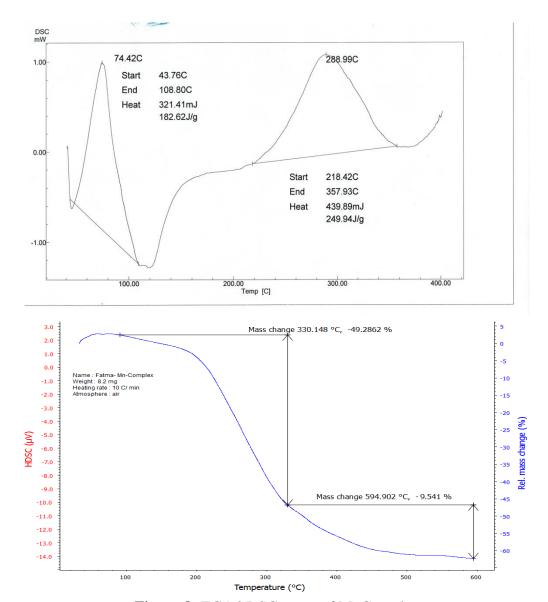
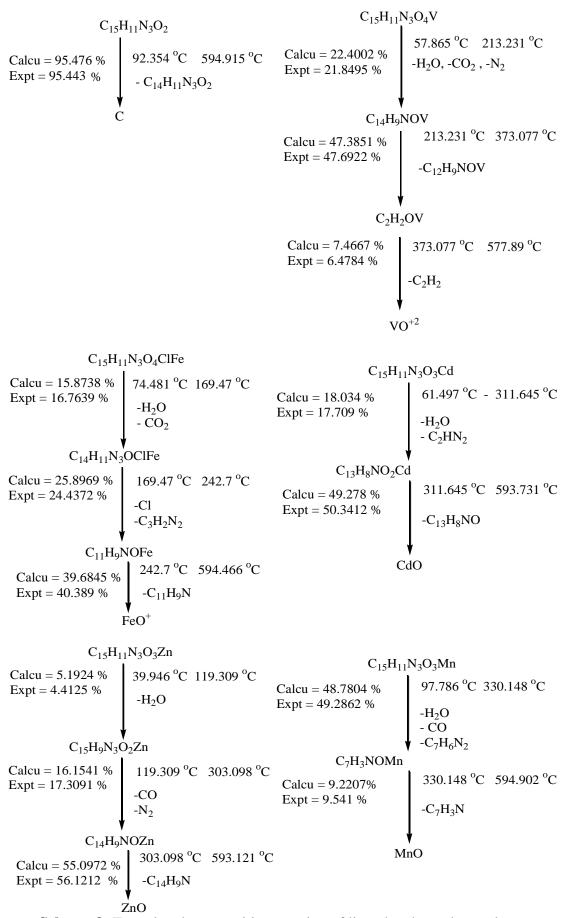



Figure 8: TGA&DSC curve of MnComplex

Scheme 8: Tentative decomposition reaction of ligand and metal complexes

Table3: Thermal decomposition DSC of Ligand and some complexes

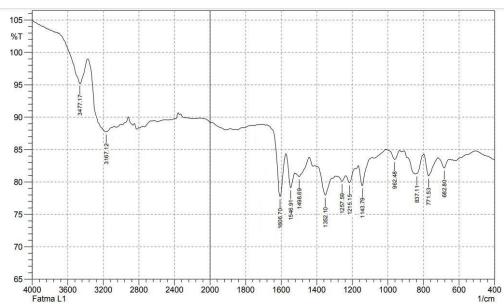

Compound	T _i /°C	$T_{f/^{\circ}C}$	Maximum temperature point (°C)	ΔH (J/g)	ΔS (J)	ΔG (J)	Туре
H_2L	67.21	128.67	97.27	-89.78	-1.4608	52.31	endothermic
[Fe(L)(H ₂ O)Cl]	105.94 156.16 314.05	112.21 159.31 319.44	316.57	-1.19 -0.79 -2.78	-0.178 -0.251 -0.515	55.159 78.669 160.256	endothermic endothermic endothermic
[Zn(L)H ₂ O]	263.32 278.01	276.00 287.47	257.72 270.71 281.09	-36.90 -11.55	-2.910 -1.220	713.065 331.379	endothermic endothermic
[Mn(L)H ₂ O]	43.76 218.42	108.80 357.93	74.42 288.99	182.62 249.94	2.807 1.791	49.512 -267.641	endothermic exothermic
$[Cd(L)H_2O]$	387.65	395.13	392.40	-3.03	-0.405	155.892	endothermic
[VO(L)H ₂ O]	46.17 60.34 172.41 324.45	63.49 98.63 257.74 334.99	56.51 76.54 223.54 332.57	-1.63 -24.35 54.84 -1.75	-0.094 -0.635 0.642 -0.166	5.2179 24.252 -88.673 53.456	endothermic endothermic exothermic endothermic

Table 4: TGA data of the ligand H₂Landsome complexes

Compound	Step	T _i /°C	$T_{f/^{\!\circ}C}$	Weight mass loss%		Reaction		
				Calc	Found			
Ligand	1	92.354°C	594.915°C	95.476%	95.443%	$-C_{14}H_{11}N_3O_2$		
						C		
Calculated: 95.476%, Final= 4.524%, Estimated 95.443% Final= 4.557%								
Cd-complex	1	61.497°C	311.645°C	18.034%	17.709%	$-H_2O-C_2HN_2$		
	2	311.645°C	593.731°C	49.278%	50.3412%	$-C_{13}H_8NO$		
						CdO		
Calculated: 67.312% Final= 32.688% Estimated 68.0502% Final 31.9498%								
Mn- complex	1	97.786°C	330.148°C	48.7804%	49.2862%	-H ₂ O, -CO -C ₇ H ₆ N ₂		
	2	330.148°C	594.902°C	9.2207%	9.541%	$-C_7H_3N$		
						MnO		
Calculated:58.0011% Final 41.9989% Estimated 58.8272% Final=41.1728%								
V-complex	1	57.865°C	213.231°C	22.4002%	21.8495%	-H ₂ O-CO ₂ -N ₂		
	2	213.231°C	373.077°C	47.3851%	47.6922%	$-C_{12}H_9NO$		
	3	373.077°C	577.89°C	7.4667%	6.4784%	$-C_2H_2$		
						VO^{+2}		
Calculated: 77.252% Final= 22.748% Estimated 71.8796% Final=28.1204% 28.1204%								
Fe-complex	1	74.481°C	169.47°C	15.8738%	16.7639%	-H ₂ O-CO ₂		
	2	16.47°C	242.7°C	25.8969%	24.4372%	-Cl, -C $_3$ H $_2$ N $_2$		
	3	242.7°C	594.466°C	39.6845%	40.389%	$-C_{11}H_{9}N$		
						FeO ⁺		
	Calculate	ed: 81.4552% l	Final= 18.54489	% Estimated 81.5901% F	inal=18.4099%	6		
Zn-complex	1	39.946°C	119.309°C	5.1924%	4.4125%	-H ₂ O		
	2	119.309°C	303.098°C	16.1541%	17.3091%	-CO -N ₂		
	3	303.098°C	593.121°C	55.0972%	56.1212%	-C ₁₄ H ₉ N		
						ZnO		
	Calculate	ed: 76.4437%]	Final=23.5563%	6 Estimated 77.8428% F	inal=22.15729	6		

3.6.Infrared spectra

The infrared spectra of ligand H₂L and its metal complexes were recorded with Cd⁺²,Zn⁺²,Fe⁺³,Mn⁺², and V⁺⁴, and the data has been organized in Table 5.The ligand showed bands at 3477, 3167,1546-1600, and 1257cm⁻¹ that were ascribed to the stretching vibrations of O-H, C-H aromatic,C=C aromatic,and C-O [20].The infrared spectrum of the ligand showed a medium-intensity stretch band at frequency 1352cm⁻¹, which was attributed to the vibration frequencies of the doublebond N=N (Figure 9). The FT-IR spectra of all the prepared compounds showed that the azo-dye ligand was coupled to metal ions through two sites: the oxygen site *via* deprotonation of the phenolic group and the nitrogen site of the azo group[21]. New bands belonging to M-Nappeared at 611,617, 621, 615, and 619 cm⁻¹ for the V⁴⁺,Mn²⁺, Cd⁺²,Zn⁺², and Fe⁺³complexes, respectively.M-O at 457, 462, 460, and 450 cm⁻¹ for the complexes V⁴⁺,Mn²⁺, Cd⁺²,Zn⁺², and Fe⁺³, respectively. M-Cl at 385 cm⁻¹ for the Fe⁺³complex [22].

Figure 9: FT-IR spectrum of ligand (H₂L)

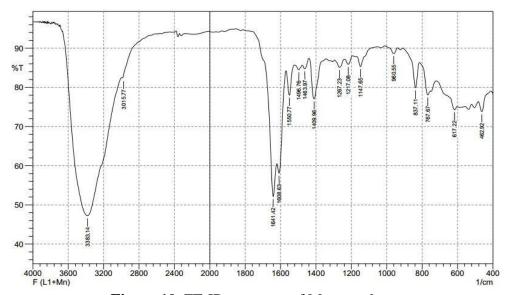


Figure 10 FT-IR spectrum of Mn complex

Table 3. The First specific during (cm. 7 of the figure and its complex	Table 5: The FT-IR	spectra bands (cm ⁻¹) of the	ligand and i	ts complexes
--	---------------------------	-----------------	---------------------------	--------------	--------------

Compound	ν(H ₂ O) aqua	ν(C-H) aromatic	ν(C-O)	ν(N=N)	Other bands
H_2L	-	3167	1257	1352	
[VO(L)H ₂ O]	3410 1643 835	3169	1213	1419	611(V-N) 457(V-O) 979(V=O)
[Mn(L)H ₂ O]	3383 1641 837	3015	1217	1409	462(Mn-O) 617(Mn-N)
[Zn(L)H ₂ O]	3400 1640 834	3100	1220	1400	615(Zn-N) 460(Zn-O)
[Fe(L)(H ₂ O)Cl]	3385 1645 830	3050	1215	1415	619(Fe-N) 450(Fe-O) 385(Fe-CI)
[Cd(L)H ₂ O]	3388 1642 828	3160	1218	1412	621(Cd-N) 458(Cd-O)

3.7.Investigation of antioxidant activity

The antioxidant activity of H_2L and its mineral complexes was measured by ascorbic acid, and the DPPH assay was used to scavenge free radicals. Initially, each sample was diluted with the same volume of methyl alcohol, and then it was mixed with the same volume of a concentrated 0.135 mM DPPH solution. After adding the DPPH solution[23], the samples were kept at room temperature in the dark for 30 minutes. The absorbance of each sample was then determined to be 517 nm. The lower the IC_{50} value of the complexes compared to ascorbic acid, the greater their ability to suppress free radicals. As the ligand was the most effective free radical inhibitor, followed by zinc, which has the same value as ascorbic acid, followed by iron, vanadium, cadmium, and manganese[24,25], the values of IC_{50} are as follows: $H_2L > D$ -ascorbic acid > Zn-complex > Fe-complex > V-complex > Cd-complex > Mn-complex (Figure 11).

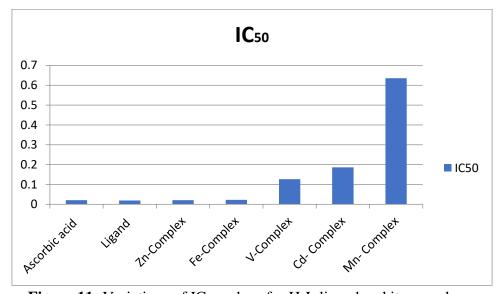


Figure 11: Variations of IC₅₀ values for H₂L ligand and its complexes

Table 6: The antioxidant results (P1%, RSA% and IC₅₀) of H₂L and their metal complexes

Compound	Concentration (mg/mL)	PI (%)	RSA (%)	IC ₅₀ (mg/mL)	
	0.374	12.29	87.80	_	
Ascorbic acid	0.186	36.75	63.25	0.021	
	0.03	58.74	41.26		
	0.375	18.37	81.63		
LicandIII	0.186	42.18	57.82	0.019	
LigandH ₂ L	0.093	64.17	35.83	0.019	
	0.046	77.91	22.09		
	0.113	20.14	79.86		
Zn- complex	0.057	43.95	56.05	0.021	
	0.028	65.94	34.06	0.021	
	0.014	79.68	20.32		
Fe-complex	0.374	15.27	85.19		
	0.186	39.08	62.07	0.022	
	0.093	61.07	40.74	0.022	
	0.046	74.81	27.41		
	0.374	42.86	57.14		
V-complex	0.186	46.72	53.28	0.126	
	0.093	60.48	39.52	0.126	
	0.046	69.36	30.64		
	0.113	67.48	32.52		
Cd. commley	0.057	82.38	17.62	0.106	
Cd- complex	0.028	97.28	2.72	0.186	
	0.014	99.14	0.86		
	2.326	68.49	31.51		
Mn Compley	1.285	87.54	12.46	0.635	
Mn-Complex	0.764	91.98	8.02	0.033	
	0.503	96.14	3.86		

4. Conclusion

A novel azo ligand was prepared via the reaction of the diazonium salt of 3-aminophenol with 2-hydroxyquinoline. This ligand was then employed to access new complexes with different metals. These complexes were identified using a number of analytical techniques, such as elemental microanalysis, metal chloride-containing, electrical conductivity measurement, magnetic susceptibility, 1H and ^{13}C -NMR, FT-IR, and UV-Vis spectroscopy. Calculations of the thermodynamic parameters ΔH , ΔS , and ΔG were made using the DCS curve, and the atomic N,O, and O tridentate coordination sites in the ligand were identified by comparing their FT-IR spectra to those of the metal complexes. The M:L ratio in every compound was 1:1. The dye used the complexes prepared from it to determine their ability to inhibit free radicals by measuring their ability as antioxidants using DPPH as a free radical and D-ascorbic acid as a standard substance and determining the value of IC50. The ligand exhibited a significant capacity to suppress free radicals, and its ability to inhibit the complexes varied depending on the IC50 value. The results are as follows: $H_2L > D$ -ascorbic acid >Zn-complex >Fe-complex > V-complex >Cd-complex > Mn-complex.

References

- [1] I. H.Ibraheem, N. S.Mubder, M. M.Abdullah, and H. Al-Neshmi, "Synthesis, characterization and bioactivity Study from azo-ligand derived frommethyl-2-amino benzoate with some metal ions", *Baghdad Science Journal*, vol. 20, no. 1, pp. 0114-0114, 2023.
- [2] N.Nagasundaram, C. Govindhan, S. Sumitha, N. Sedhu, K. Raguvaran, S. Santhosh, and A. Lalitha, "Synthesis, characterization and biological evaluation of novel azo fused 2,3-dihydro-1H-perimidine derivatives: In vitro antibacterial, antibiofilm, anti-quorum sensing, DFT, in silico ADME and Molecular docking studies", *Journal of Molecular Structure*, vol.1248, article no. 131437,2022.
- [3] M.Lashanizadegan, H. A.Ashari, M.Sarkheil, M.Anafcheh, and S.Jahangiry, New Cu(II), Co(II) and Ni(II) azo-Schiff base complexes: Synthesis, characterization, catalytic oxidation of alkenes and DFT study", *Polyhedron*, vol. 200, article no.115148,2021.
- [4] J.Keshavayya, I.Pushpavathi, C. T.Keerthikumar, M. R.Maliyappa, and B. N.Ravi, "Synthesis, characterization, computational and biological studies of nitrothiazole incorporated heterocyclic azo dyes", *Structural Chemistry*, vol. 31, no. 4, pp. 1317-1329, 2020.
- [5] C. Keshava, S. Nicolai, S.V. Vulimiri, A. Cruz, N. Ghoreishi, S. Knueppel, A. Lenzner, P. Tarnow, J. T. Vanselow, B. Schulz, A. Persad, N. Baker, K.A. Thayer, A. J. Williams and R. Pirow, "Application of systematic evidence mapping to identify available data on the potential human health hazards of selected market- relevant azo dyes", *Environment International*, vol.176, article no.107952, pp. 1-12, 2023.
- [6] H. A. K. Kyhoiesh and K. J.Al-Adilee, "Synthesis, spectral characterization, antimicrobial evaluation studies and cytotoxic activity of some transition metal complexes with tridentate (N,N,O) donor azo dye ligand", *Results in Chemistry*,vol. 3,article no. 100245,2021.
- [7] H. S.Mandour, S. A.Abouel-Enein, R. M.Morsi, and L. A.Khorshed," Azo ligand as new corrosion inhibitor for copper metal: Spectral, thermal studies and electrical conductivity of its novel transition metal complexes", *Journal of Molecular Structure*, vol. 1225, article no. 129159, 2021.
- [8] V. T. Suleman, A. A. S. Al-Hamdani, S. D. Ahmed, V. Y. Jirjees, M. E. Khan, A. Dib, W. Al Zoubi, and Y. G. Ko, "Phosphorus Schiff base ligand and its complexes: Experimental and theoretical investigations", *Applied Organometallic Chemistry*, vol. 34 no. 4, pp. 1-16, 2020.
- [9] G. G. Mohamd, W. H. Mahmoud and A. M. Refaat, "Nano-Azo Ligand and Its Superhydrophobic Complexes: Synthesis, Characterization, DFT, Contact Angle, Molecular Docking, and Antimicrobial Studies," *Journal of Chemistry*, vol. 2020, pp. 1-9, 2020
- [10] S. Benkhaya, S. Mrabet and A Elharfi, "Classifications, properties, recent synthesis and applications of azo dyes", *Heliyon*, vol. 6, artcle no.e03271, pp.1-26, 2020
- [11] W. Al Zoubi, A. A. S. Al-Hamdani, S. D. Ahmed, H. M. Basheer, R. S. Al-Luhaibi, A. Dib, and Y. G. Ko, "Synthesis, characterization, and antioxidant activities of imine compounds", *Journal of Physical Organic Chemistry*, vol. 32, no. 3, article no. e3916, 2018.
- [12] S. M. Mahdi and A. K. Ismail, "Preparation and Identification of new azo-schiff base ligand (NASAR) and its divalent transition metal Complexes," *Journal of Pharmaceutical Sciences and Research*, vol. 10, no. 9, pp. 2175-2178, 2018.
- [13] K. Mezgebe and E. Mulugeta, "Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds:a review", *Royal Society of Chemistry*, vol. 12, pp. 25932-25946, 2022.
- [14] N. Sher, N. Fatima, Sh. Perveen, F. A. Siddiqui and A. W. Sial, "Pregabalin and Tranexamic Acid Evaluation by Two Simple and Sensitive Spectrophotometric Methods," *International Journal of Analytical Chemistry*, vol. 2015, no. 24141, pp. 1-7, 2015.
- [15] A. B. P. Lever, *Inorganic Electronic Spectroscopy, Elsevier Publishing Company: Amsterdam, London*, 1968, p. 121, 6th Edition.
- [16] A. G. Prashantha, J. Keshavavayya and R. A. S. Ali, "Synthesis, spectral characterization and biological applications of novel 3-[(4,6-dihdroxy pyrimidin-5-yl) diazenyl]-4-methylbenzoic acid azo dye and their derivatives", *Results in chemistry*, vol. 3, article no. 100110, pp.1-11, 2021.
- [17] M. Q. Abdulridhaand A. A. S.Al-Hamdani, "Synthesis, characterization of new metal complexes of Co(II), Cu(II), Cd(II), and Ru(III) from azo ligand 5-((2-(1H-indol-2-yl)ethyl)diazinyl)-2-amino

- phenol,thermal and antioxidant studies", *Baghdad Science Journal*, vol. 20, no. 5, pp. 1964-1975, 2023.
- [18] A.A.S Al-Hamdani, A. M Al-Alwany, T.A. Mseer, A. M. Fadhel, and A. F. Al- Khafaji, "Synthesis, characterization, spectroscopic, thermal and biological studies for new complexes with N1, N2-bis (3-hydroxyphenyl)oxalamide", *Egyptian Journal of Chemistry*, vol. 66,no.4, pp. 223-235,2022.
- [19] N. M. Mallikarjuna and J. Keshavayya, "Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dye", *Journal of King Saud University- Science*, vol. 32, pp. 251-259, 2020.
- [20] R. K. H. Al-Daffaay, "Preparation, spectroscopic characterization of transition metal complexes with Schiff base 2-[1-(1H-indol-3-yl)ethylimino)methyl]naphthalene-1-ol", *Baghdad Science Journal*, vol. 20 no. 7, pp. 1036-1044, 2022.
- [21] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, WileyInter Science: New York. 1997.
- [22] R. M. Silverstein, G. C. Bassler and T. C. Movril, *Spectroscopic Identification of Organic Compounds*. Wiley: New York, 1981, edn4
- [23] K. J. Al-Adilee, H. A. K. Kyhoiesh and A. M. Taher, "Synthesis, characterization, biological studies, molecular doking and theoretical calculation of some transition metal complexes with new azo dye 2-[2-(6-methoxybenzothiazolyl)azo]-3-methyl-4-nitrophenol", *Results in Chemistry*, vol. 4, articlar no. 100500, pp.1-16, 2022.
- [24] S. Slassi, A. Fix-Tailler, G. Larcher, A. Amine and A. El-Ghayoury, "Imidazole and Azo-Based Schiff Bases Ligands as Highly Active Antifungal and Antioxidant Components," *Heteroatom Chemistry*, vol. 2019, pp. 1-8, 2019.
- [25] I. A. Hussein, "Synthesis, characterization and antioxidant activity of new azo ligand and some metal complexes of tryptamine derivatives", *BaghdadScience Journal*, vol. 20, no.3 pp. 1046-1046,2023.