

ISSN: 0067-2904

Sum Ideal Graphs Associated to a Given Ideal of a Commutative Ring

A. H. Nadir ${ }^{\text {* }}$, F. H. Abdulqadr ${ }^{2}$, N. H. Shuker ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Education, University of Salahaddin, Erbil, Iraq
${ }^{2}$ Department of Mathematics, College of Computer Science and Mathematics, Mosul University, Mosul, Iraq

Received: 15/4/2019 Accepted: 17/ 7/2019

Abstract

The aim of this paper is to introduce and study a new kind of graphs associated to an ideal of a commutative ring. Let \mathcal{R} be a commutative ring with identity, and $\mathrm{I}(\mathcal{R})$ be the set of all non-trivial ideals of \mathcal{R} with $\operatorname{S} \in \mathrm{I}(\mathcal{R})$. The sum ideal graph associated to S , denoted by $\quad \Psi(\mathcal{R}, \mathrm{S})$, is the undirected graph with vertex set $\{\mathrm{A} \in \mathrm{I}(\mathcal{R})$: $\mathrm{S} \subset \mathrm{A}+\mathrm{B}$, for some $\mathrm{B} \in \mathrm{I}(\mathcal{R})\}$ where two ideal vertices A and B are adjacent if and only if $A \neq B$ and $S \subset A+B$. In this paper we establish some of characterizations and results of this kind of graph with providing some examples.

Keywords: Sum ideal graphs, Maximal ideals, Connected graphs.

الخلاصة
الهـف في هذا البحث هو تعريف ودراسة نوع جديد من البيانات المرتبطة بمثالية معلومة للحقة الابدالية.
لتكن \mathcal{R} حلقة ابدالية مع العنصر الححايد ، وان (1 (مجموعة مثاليات غير تافهة للحقة R.
\{A

هذالالبحث سوف نعطي بعض النتائج والمميزات لهذا النوع من البيان مع اعطاء بعض الأمثلة.

1. Introduction

A graph consists of two sets, vertex set and edge set, such that each edge assigned as unordered pair of two distinct vertices. Recently, some kinds of graphs were introduced and studied whose vertex set are elements or ideals of a given ring, and the binary operations of the ring makes the adjacency of the graph. The zero divisor graph was first introduced by Beck I. in [3]. The annihilating-ideal graph of a commutative ring \mathcal{R} was introduced by Behboodi M. in [4]. This kind of graph has been studied, see $[1,2,7,8]$.

In this paper, we introduce and study the notion of sum ideal graph associated to an ideal of a commutative ring with identity in which the set of maximal ideal has a main role to obtain most of its results and characterizations.

Throughout this paper all rings will be finite and commutative with identity, and some basic definitions in [5, 6] will be used. Also we use $\mathcal{R}, \mathrm{S}, \mathrm{M}(\mathcal{R}), \mathrm{J}(\mathcal{R}), \mathrm{V}(\Psi)$ and $\mathrm{E}(\Psi)$ to denote a

[^0]commutative ring, a non-trivial ideal of \mathcal{R}, the set of maximal ideals, the Jacobson radical of \mathcal{R}, the vertex set and the edge set of $\Psi(\mathcal{R}, S)$ respectively.

2. The sum ideal graph associated to a given ideal of \mathcal{R}

In this section, we introduce the notion of sum ideal graph associated to a given ideal, we give some of its basic properties.
Definition2.1: Let \mathcal{R} be a commutative ring with identity, and $\mathrm{I}(\mathcal{R})$ be the set of all non-trivial ideals of \mathcal{R} with $\mathrm{S} \in \mathrm{I}(\mathcal{R})$. The sum ideal graph associated to S , denoted by $\Psi(\mathcal{R}, \mathrm{S})$, is an undirected graph with vertex set $\{\mathrm{A} \in \mathrm{I}(\mathcal{R})$: $\mathrm{S} \subset \mathrm{A}+\mathrm{B}$, for some $\mathrm{B} \in \mathrm{I}(\mathcal{R})\}$ where distinct ideal vertices A and B are adjacent if and only if S is a proper subset of $A+B$.
Example1: Let $\mathcal{R}=\mathbb{Z}_{48}$ and $S=(6)$. The graph $\Psi\left(\mathbb{Z}_{48},(6)\right)$ is:

Figure 1- The graph $\Psi\left(\mathbb{Z}_{48}\right.$, (6))
Before starting our main results, we give the following lemma.
Lemma 2.2: Let $\{\mathrm{I}, \mathrm{J}\}$ be an edge in $\Psi(\mathcal{R}, \mathrm{S})$. If $\mathrm{K} \in \mathrm{I}(\mathcal{R})$ such that $\mathrm{I} \subset \mathrm{K}$, then K is adjacent to J in $\Psi(\mathcal{R}, \mathrm{S})$.
Proof: Suppose that $\{\mathrm{I}, \mathrm{J}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{S})$. Then $\mathrm{S} \subset \mathrm{I}+\mathrm{J}$. Since $\mathrm{I} \subset \mathrm{K}$, we have $\mathrm{S} \subset \mathrm{K}+\mathrm{J}$. This means that, K is adjacent to J in $\Psi(\mathcal{R}, S)$.

We start this section with the following main result.

Proposition2.3:

1. If $\mathrm{E}(\Psi) \neq \emptyset$, then $\mathrm{M}(\mathcal{R}) \cap \mathrm{V}(\Psi) \neq \emptyset$. Furthermore, for every $\mathrm{I}, \mathrm{J} \in \mathrm{M}(\mathcal{R})$ with $\mathrm{I} \neq \mathrm{J}, \mathrm{I}$ and J are adjacent in $\Psi(\mathcal{R}, S)$.
2. For every $\mathrm{I}, \mathrm{J} \in \mathrm{M}(\mathcal{R})$ with $\mathrm{I} \neq \mathrm{J}, \Psi(\mathcal{R}, \mathrm{I})$ and $\Psi(\mathcal{R}, \mathrm{J})$ are identical.

Proof:

1. Assume that $\mathrm{E}(\Psi) \neq \emptyset$. Let $\mathrm{I} \in \mathrm{V}(\Psi)$, then there exists a vertex J of $\Psi(\mathcal{R}, \mathrm{S})$ such that $\mathrm{S} \subset \mathrm{I}+\mathrm{J}$. If either $\mathrm{I} \in \mathrm{M}(\mathcal{R})$ or $\mathrm{J} \in \mathrm{M}(\mathcal{R})$, then the prove terminates. Now, assume that $\mathrm{I} \notin \mathrm{M}(\mathcal{R})$. Then there exists $\mathrm{M} \in \mathrm{M}(\mathcal{R})$ such that $\mathrm{I} \subset \mathrm{M}$. If $\mathrm{J}=\mathrm{M}$, then the prove completed. Suppose that $\mathrm{J} \neq \mathrm{M}$. Then by Lemma 2.2, M is adjacent to J in $\Psi(\mathcal{R}, \mathrm{S})$. Thus M is a maximal ideal vertex in $\mathrm{M}(\mathcal{R})$. Assume that $\mathrm{I}, \mathrm{J} \in \mathrm{M}(\mathcal{R})$. Then $\mathrm{S} \subset \mathrm{I}+\mathrm{J}=\mathcal{R}$. Thus $\{\mathrm{I}, \mathrm{J}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{S})$.
2. Let $\mathrm{I}, \mathrm{J} \in \mathrm{M}(\mathcal{R})$ with $\mathrm{I} \neq \mathrm{J}$. If $\{\mathrm{A}, \mathrm{B}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{I})$, then $\mathrm{I} \subset \mathrm{A}+\mathrm{B}$. Then the maximally of I gives that $\mathrm{A}+\mathrm{B}=\mathcal{R}$. Obviously, $\mathrm{J} \subset \mathrm{A}+\mathrm{B}$. Thus $\{\mathrm{A}, \mathrm{B}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{J})$. Similarly, we can show that every edge of $\Psi(\mathcal{R}, \mathrm{J})$ is an edge of $\Psi(\mathcal{R}, \mathrm{I})$. Hence $\Psi(\mathcal{R}, \mathrm{I})$ and $\Psi(\mathcal{R}, \mathrm{J})$ are identical.

The next result shows that $\Psi(\mathcal{R}, \mathrm{S})$ is a null graph under certain conditions.
Proposition2.4: Let $\mathrm{S} \in \mathrm{M}(\mathcal{R})$. Then $\Psi(\mathcal{R}, \mathrm{S})$ is a null graph if and only if \mathcal{R} is a local ring.
Proof: Suppose that \mathcal{R} is a local ring. Then $\mathrm{M}(\mathcal{R})=\{\mathrm{S}\}$. Since every non-trivial ideal contained in S , we have $\mathrm{S} \not \subset \mathrm{I}+\mathrm{J}$, for every $\mathrm{I}, \mathrm{J} \in \mathrm{I}(\mathcal{R})$. Thus $\Psi(\mathcal{R}, \mathrm{S})$ is a null graph.
Conversely, suppose that $\Psi(\mathcal{R}, S)$ is a null graph. Then by Proposition $2.3, \mathcal{R}$ has exactly one maximal ideal. This means that \mathcal{R} is a local ring.
Remark2.5: Let $\mathrm{K} \in \mathrm{V}(\Psi)-\{\mathrm{S}\}$. Then $\{\mathrm{K}, \mathrm{S}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{S})$ if and only if $\mathrm{S} \subset \mathrm{S}+\mathrm{K}$, this means that $\mathrm{S}+\mathrm{K} \neq \mathrm{S}$. Equivalently, $\mathrm{K} \not \subset \mathrm{S}$.

The next result shows the adjacency between S and all ideal vertices in $\Psi(\mathcal{R}, S)$.

Proposition2.6:

1. If $\mathrm{E}(\Psi) \neq \emptyset$, then the ideal vertex S is adjacent to all $\mathrm{I} \in \mathrm{M}(\mathcal{R})$.
2. If $\mathrm{K} \in \mathrm{V}(\Psi)$ is adjacent to S , then K is adjacent to at least one maximal ideal in $\Psi(\mathcal{R}, \mathrm{S})$.
3. If S is a minimal ideal vertex of \mathcal{R}, then S is adjacent to all ideal vertex K in $\Psi(\mathcal{R}, \mathrm{S})$.

Proof:

1. Let $\mathrm{I} \in \mathrm{M}(\mathcal{R})-\{\mathrm{S}\}$. It is clear that $\mathrm{S} \subseteq \mathrm{S}+\mathrm{I}$ and $\mathrm{I} \not \subset \mathrm{S}$. Thus $\mathrm{S} \subset \mathrm{S}+\mathrm{I}$. Hence S adjacent to I in $\Psi(\mathcal{R}, \mathrm{S})$ for every ideal vertices $\mathrm{I} \neq \mathrm{S}$.
2. Since K and S are adjacent, $S \subset S+K$. If $S \in M(\mathcal{R})$, then the prove terminates. If $K \in M(\mathcal{R})$, then by Proposition 2.3, K is adjacent to all elements of $\mathrm{M}(\mathcal{R})$. Assume that $\mathrm{S}, \mathrm{K} \notin \mathrm{M}(\mathcal{R})$. Then S contained properly in a maximal ideal say M. It follows from $S \subset S+K$ that $S \subset M+K$. Thus K is adjacent to a maximal ideal M .
The proof of the third part follows from Remark 2.5.
Next, we turn to the following result.
Proposition2.7: Let $\mathrm{I}, \mathrm{J} \in \mathrm{M}(\mathcal{R})$ with $\mathrm{I} \neq \mathrm{J}$. If K is an ideal vertex of $\Psi(\mathcal{R}, \mathrm{S})$ which is not contain in J , then K and J are adjacent ideal vertex in $\Psi(\mathcal{R}, \mathrm{S})$.
Proof: By Proposition $2.3 \mathrm{~S} \subset \mathrm{I}+\mathrm{J}$. Since $\mathrm{K} \not \subset \mathrm{J}$, we have $\mathrm{J} \subset \mathrm{K}+\mathrm{J}$. Then the maximally of J gives $\mathrm{K}+\mathrm{J}=\mathcal{R}$. Thus $S \subset K+J$. Hence $\{\mathrm{K}, \mathrm{J}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{S})$.
In the next result we demonstrate the partite of $\Psi(\mathcal{R}, \mathrm{I})$.
Theorem2.8: If \mathcal{R} has exactly two maximal ideals I and J, then:
3. $\mathrm{K} \nsubseteq \mathrm{I}+\mathrm{J}$, for all $\mathrm{K} \in \mathrm{V}(\Psi)-\{\mathrm{I}, \mathrm{J}\}$.
4. $\Psi(\mathcal{R}, \mathrm{I})$ and $\Psi(\mathcal{R}, \mathrm{J})$ are complete bipartite graphs.

Proof:

1. Since $I, J \in M(\mathcal{R})$, we have $\{I, J\}$ is an edge of $\Psi(\mathcal{R}, I)$. Let K be any non-maximal ideal vertex in $\Psi(\mathcal{R}, \mathrm{I})$. Then there exists an ideal vertex L in $\Psi(\mathcal{R}, \mathrm{I})$ such that $\mathrm{I} \subset \mathrm{K}+\mathrm{L}$ and $\mathrm{L} \neq \mathrm{K}$. Now we have the following cases for L :
Case1: If $\mathrm{L}=\mathrm{I}$, then $\mathrm{I} \subset \mathrm{K}+\mathrm{L}$ follows that $\mathrm{I} \subset \mathrm{K}+\mathrm{I}$. Since $\mathrm{I} \in \mathrm{M}(\mathcal{R}), \mathrm{I}+\mathrm{K}=\mathcal{R} \neq \mathrm{I}$. Therefore $\mathrm{K} \not \subset \mathrm{I}$. Thus $\mathrm{K} \subset \mathrm{J}$. Similarly, we can verify that $\mathrm{K} \subset \mathrm{I}$, but $\mathrm{K} \not \subset \mathrm{J}$ when $\mathrm{L}=\mathrm{J}$.
Case2: If $L \neq I, J$, then there exists $I \in M(\mathcal{R})$ such that $L \subset I$. Since $I \subset K+L$, we have $I \subset K+I$. It follows that $\mathrm{K}+\mathrm{I}=\mathcal{R}$. Thus $\mathrm{K} \not \subset \mathrm{I}$ and $\mathrm{K} \subset \mathrm{J}$. Similarly, if L contained properly in J we get $\mathrm{K} \not \subset \mathrm{J}$ and $\mathrm{K} \subset \mathrm{I}$.
2. From Proposition $2.3, \Psi(\mathcal{R}, \mathrm{I})$ and $\Psi(\mathcal{R}, \mathrm{J})$ are identical. It is enough to show that $\Psi(\mathcal{R}, \mathrm{I})$ is a bipartite graph. If $\mathrm{K} \subset \mathrm{I}$ and $\mathrm{K} \not \subset \mathrm{J}$, for all $\mathrm{K} \in \mathrm{V}(\Psi)-\{\mathrm{I}, \mathrm{J}\}$, then by Proposition2.7, J is adjacent to every ideal vertex K in $\Psi(\mathcal{R}, \mathrm{I})$ and we take $\mathrm{V}_{1}=\{\mathrm{I}\} \cup\{\mathrm{K} \in \mathrm{V}(\Psi) ; \mathrm{K} \not \subset \mathrm{J}\}, \mathrm{V}_{2}=\{\mathrm{J}\}$. Similarly, if $\mathrm{K} \subset \mathrm{J}$ and $\mathrm{K} \not \subset \mathrm{I}$ for all $K \in V(\Psi)-\{I, J\}$, we can choose $V_{1}=\{I\}, V_{2}=\{J\} \cup\{K \in V(\Psi) ; K \not \subset I\}$. In both cases, the graph is star. Assume that some of ideal vertices $\mathrm{T}, \mathrm{M} \in \mathrm{V}(\Psi)-\{\mathrm{I}, \mathrm{J}\}$ contained properly in I and J, respectively. Now, we can take $\mathrm{V}_{1}=\{\mathrm{I}\} \cup\{\mathrm{T} \in \mathrm{V}(\Psi) ; \mathrm{T} \not \subset \mathrm{J}\}$ and $\mathrm{V}_{2}=\{\mathrm{J}\} \cup\{\mathrm{M} \in \mathrm{V}(\Psi) ; \mathrm{M} \not \subset \mathrm{I}\}$. Since $\mathrm{T} \not \subset \mathrm{J}$ and $\mathrm{M} \not \subset \mathrm{I}$, $\mathrm{I} \subset \mathrm{T}+\mathrm{M}$ it means that $\{\mathrm{T}, \mathrm{M}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{I})$, in this case the graph is a complete bipartite graph. Similarly, we can prove that $\Psi(\mathcal{R}, \mathrm{J})$ is a complete bipartite graph.
Example2: Consider the ring of integers modulo $30, \mathbb{Z}_{36}$.
(2)
(3)

Figure 2-The graph $\Psi\left(\mathbb{Z}_{36}\right.$, (3))
Obviously, $\Psi\left(\mathbb{Z}_{36},(3)\right)$ is a complete bipartite graph.
Corollary 2.9: If $\mathrm{M}(\mathcal{R})=\{\mathrm{S}, \mathrm{K}\}$ with $\mathrm{S} \neq \mathrm{K}$, then the girth of $\Psi(\mathcal{R}, \mathrm{S})$) is either equal to 4 or ∞.
Proof: The prove follows from Proposition 2.3 and Theorem2.8.
Next, we shall give the converse of Theorem 2.8.
Proposition2.10: If $\Psi(\mathcal{R}, S)$ is a bipartite graph, then $|\mathrm{M}(\mathcal{R})| \leq 2$

Proof: Let $\Psi(\mathcal{R}, S)$ be a bipartite graph with partite sets V_{1} and V_{2}. Since every two distinct maximal ideal vertex are adjacent, then each of V_{1} and V_{2} contains at most one maximal ideal vertex. Thus $|\mathrm{M}(\mathcal{R})| \leq 2$.
The next main result shows the adjacency between maximal and non-maximal ideals of \mathcal{R} in $\Psi(\mathcal{R}, \mathrm{S})$.
Theorem2.11: Every non- maximal ideal vertex in $\Psi(\mathcal{R}, S)$ is adjacent to at least one maximal ideal vertex.
Proof: Let $\mathrm{K} \notin \mathrm{M}(\mathcal{R})$ be an ideal vertex in $\Psi(\mathcal{R}, \mathrm{S})$. We have the following cases:
Case1: Let $\mathrm{M}(\mathcal{R})=\{\mathrm{I}\}$. If $\mathrm{S}=\mathrm{I}$, then by Proposition2.4, $\Psi(\mathcal{R}, \mathrm{S})$ is null graph. Suppose that $\mathrm{S} \neq \mathrm{I}$. Clearly, $\mathrm{S} \subset \mathrm{I}$. Thus $\mathrm{S} \subset \mathrm{I}+\mathrm{S}$. Let $\mathrm{K} \neq \mathrm{S}$ be any ideal vertex of $\Psi(\mathcal{R}, \mathrm{S})$. If $\mathrm{S} \subset \mathrm{K}$, then by Lemma $2.2, \mathrm{~K}$ is adjacent to I in $\Psi(\mathcal{R}, S)$. Assume that $S \not \subset K$. Since $S \subseteq S+K$ and S contains properly in I, then I adjacent to K in $\Psi(\mathcal{R}, S)$.
Case2: Let $|\mathrm{M}(\mathcal{R})| \geq 2$. From Proposition2.6, S is adjacent to all maximal ideal vertices. If $\mathrm{S} \notin \mathrm{M}(\mathcal{R})$, there exists $\mathrm{H} \in \mathrm{M}(\mathcal{R})$ such that $\mathrm{S} \subset \mathrm{H}$. It follows from $\mathrm{S} \subseteq \mathrm{S}+\mathrm{K}$ that $\mathrm{S} \subset \mathrm{H}+\mathrm{K}$. Thus K is adjacent to H . Now assume that $\mathrm{S} \in \mathrm{M}(\mathcal{R})$. Then we have two subcases for K and S :
Subcase1: Let $K \not \subset S$. Then $S \neq S+K$. Thus $S \subset K+S$. Hence K is adjacent to S.
Subcase2: Let $K \subset S$. Since $S \subseteq S+K$ and S is a maximal ideal then $S+K=S$. Thus we have $S \not \subset S+K$. That means, S and K are not adjacent ideal vertices in the graph $\Psi(\mathcal{R}, S)$. Since K is an ideal vertex in $\Psi(\mathcal{R}, S)$, then there exists $L \in V(\Psi)$ such that $S \subset K+L$. Now, if $L \in M(\mathcal{R})$, then the proof is completed. Otherwise, there exists $\mathrm{W} \in \mathrm{M}(\mathcal{R})$ contains properly L . It follows that $\mathrm{S} \subset \mathrm{K}+\mathrm{L} \subset \mathrm{K}+\mathrm{W}$. Thus K is adjacent to W in $\Psi(\mathcal{R}, \mathrm{S})$.
Example3: The following graph shows that every non-maximal ideal vertex is adjacent to a maximal ideal vertex.

(6)

Figure 3-The graph $\Psi\left(\mathbb{Z}_{42},(7)\right)$
The next result shows that $\Psi(\mathcal{R}, \mathrm{S})$ contains a star with the same vertex set of $\Psi(\mathcal{R}, \mathrm{S})$.
Proposition2.12: If $\mathrm{S} \in \mathrm{V}(\Psi)-\mathrm{M}(\mathcal{R})$, then $\mathrm{M}(\mathcal{R})$ contains an element that adjacent to all ideal vertices of $\Psi(\mathcal{R}, \mathrm{S})$. Moreover, $\Psi(\mathcal{R}, \mathrm{S})$ and $\mathrm{I}(\mathcal{R})$ has the same cardinality.
Proof: Since $\mathrm{S} \notin \mathrm{M}(\mathcal{R})$, there exists $\mathrm{M} \in \mathrm{M}(\mathcal{R})$ such that $\mathrm{S} \subset \mathrm{M}$ Thus $\mathrm{S} \subset \mathrm{I}+\mathrm{M}$, for any $\quad \mathrm{I} \in \mathrm{I}(\mathcal{R})-\{\mathrm{S}, \mathrm{M}\}$. This means that, M is adjacent to all ideal vertices of $\Psi(\mathcal{R}, \mathrm{S})$. Consequently, the order of the graph $\Psi(\mathcal{R}, \mathrm{S})$ is equal to the number of all non-trivial ideals of \mathcal{R}.

In the next result we give the necessary and sufficient condition for an ideal of \mathcal{R} to be ideal vertex of $\Psi(\mathcal{R}, S)$.
Theorem2.13: Let $\mathrm{S} \in \mathrm{M}(\mathcal{R})$. Then $\mathrm{K} \in \mathrm{V}(\Psi)$ if and only if $\mathrm{K} \nsubseteq \mathrm{J}(\mathcal{R})$.
Proof: Let $\mathrm{K} \in \mathrm{V}(\Psi)$ assume that $\mathrm{K} \subseteq \mathrm{J}(\mathcal{R})$. Then $\mathrm{K}+\mathrm{M}=\mathrm{M}$, for every $\mathrm{M} \in \mathrm{M}(\mathcal{R})$. Therefore, $\mathrm{S} \not \subset \mathrm{K}+\mathrm{M}$ for every $\mathrm{M} \in \mathrm{M}(\mathcal{R})$. This means that K is not adjacent to every $\mathrm{I} \in \mathrm{M}(\mathcal{R})$. This contradicts Theorem2.11. Therefore, $\mathrm{K} \nsubseteq \mathrm{J}(\mathcal{R})$.
Conversely, assume that $\mathrm{K} \nsubseteq \mathrm{J}(\mathcal{R})$, then there exists $\mathrm{I} \in \mathrm{M}(\mathcal{R})$ such that $\mathrm{K} \not \subset \mathrm{I}$. Since $\mathrm{I} \subset \mathrm{K}+\mathrm{I}$, then $\mathrm{S} \subset \mathcal{R}=\mathrm{K}+\mathrm{I}$. This means that $\mathrm{K} \in \mathrm{V}(\Psi)$.
Example 4: Consider the ring \mathbb{Z}_{54}.

Figure 4-The graph $\Psi\left(\mathbb{Z}_{54}\right.$, (3))
Clearly, the ideals (6) and (18) are not vertices of $\Psi\left(\mathbb{Z}_{54},(3)\right)$, since (6), (18) $\subseteq \mathrm{J}(\mathcal{R})=(6)$ In the next result we find the upper bound of the girth of $\Psi(\mathcal{R}, \mathrm{S})$.
Theorem2.14: If $\Psi(\mathcal{R}, S)$ contains a cycle, then the girth of $\Psi(\mathcal{R}, S))$ is less than or equal to four.
Proof: If \mathcal{R} is a local ring and $\Psi(\mathcal{R}, \mathrm{S})$ is a null graph, then $\mathrm{S} \notin \mathrm{M}(\mathcal{R})$ by Proposition2.4. Let $\mathrm{I} \in \mathrm{M}(\mathcal{R})$ and $\mathrm{K} \in \mathrm{V}(\Psi)$ such that $\mathrm{K} \not \subset \mathrm{S}$. Then by Remark $2.5, \mathrm{~S}$ is adjacent to K in $\Psi(\mathcal{R}, \mathrm{S})$. Furthermore, we have I adjacent to both S and K . Thus $\mathrm{C}_{3}: \mathrm{I}, \mathrm{S}, \mathrm{K}$, I is a cycle in $\Psi(\mathcal{R}, \mathrm{S})$. If $|\mathrm{M}(\mathcal{R})|>2$, then by Proposition 2.3 we can easily find a cycle of length three. Suppose that $\mathrm{M}(\mathcal{R})=\{\mathrm{I}, \mathrm{J}\}$ with $\mathrm{I} \neq \mathrm{J}$. Obviously, I and J are adjacent ideal vertices because $\mathrm{I}+\mathrm{J}=\mathcal{R}$. If either $\mathrm{S}=\mathrm{I}$ or $\mathrm{S}=\mathrm{J}$, then by Corollary2.9, the girth of $\Psi(\mathcal{R}, S)$) is equal to 4 . Assume that neither $\mathrm{S}=\mathrm{I}$ nor $\mathrm{S}=\mathrm{J}$. This yields that $\mathrm{S} \notin \mathrm{M}(\mathcal{R})$. From Proposition2.6, S is adjacent to both I and J. Thus $\mathrm{C}_{3}: \mathrm{I}, \mathrm{S}, \mathrm{J}, \mathrm{I}$ is a cycle in $\Psi(\mathcal{R}, \mathrm{S})$.

In the following result, we find the value of girth of $\Psi(\mathcal{R}, S)$.
Proposition2.15: If $\Psi(\mathcal{R}, \mathrm{S})$ contains an edge $\{\mathrm{I}, \mathrm{J}\}$ such that $\mathrm{I}, \mathrm{J} \notin \mathrm{M}(\mathcal{R})$ and neither $\mathrm{I} \subseteq \mathrm{J}$ nor $\mathrm{I} \subseteq \mathrm{J}$. Then the girth of $\Psi(\mathcal{R}, S)$ is equal to three.
Proof: Suppose that $\{\mathrm{I}, \mathrm{J}\}$ is an edge in $\Psi(\mathcal{R}, \mathrm{S})$ such that $\mathrm{I}, \mathrm{J} \notin \mathrm{M}(\mathcal{R})$ and neither $\mathrm{I} \subseteq \mathrm{J}$ nor $\mathrm{I} \subseteq \mathrm{J}$. Then we have $\mathrm{I}+\mathrm{J} \neq \mathrm{I}$ and $\mathrm{I}+\mathrm{J} \neq \mathrm{J}$. Thus $\mathrm{I}, \mathrm{J} \subset \mathrm{I}+\mathrm{J}$. Since $\mathrm{I}, \mathrm{J} \notin \mathrm{M}(\mathcal{R})$, then $\mathrm{I}+\mathrm{J} \neq \mathcal{R}$. By Lemma $2.2, \mathrm{I}+\mathrm{J}$ is adjacent to both I and J . Thus $\mathrm{C}_{3}: \mathrm{I},(\mathrm{I}+\mathrm{J})$, J , I is a cycle in $\Psi(\mathcal{R}, \mathrm{S})$. Hence the girth of $\Psi(\mathcal{R}, \mathrm{S})$ is equal to three.

3. Connectivity of $\Psi(\mathcal{R}, S)$

In this section we investigate the connectivity of $\Psi(\mathcal{R}, S)$ and some basic concepts related to connectivity.

We start this section with the following main result.
Theorem 3.1: The graph $\Psi(\mathcal{R}, \mathrm{S})$ is connected with $\operatorname{diam}(\Psi(\mathcal{R}, \mathrm{S})) \leq 3$.
Proof: Let $\mathrm{I}, \mathrm{J} \in \mathrm{V}(\Psi)$ with $\mathrm{I} \neq \mathrm{J}$. If $\mathrm{I}+\mathrm{J}=\mathcal{R}$, then by Proposition2.3 I is adjacent to J in $\Psi(\mathcal{R}, \mathrm{S})$. Assume that $\mathrm{I}+\mathrm{J} \neq \mathcal{R}$. We have the following cases for I and J :
Case1: If $\mathrm{I} \in \mathrm{M}(\mathcal{R})$ and $\mathrm{J} \notin \mathrm{M}(\mathcal{R})$, then by Theorem2.11, there exists $\mathrm{M} \in \mathrm{M}(\mathcal{R})$ adjacent to J in $\Psi(\mathcal{R}$, S). If $\mathrm{M}=\mathrm{I}$, then $\mathrm{P}_{1}: \mathrm{I}$, J is a path in $\Psi(\mathcal{R}, \mathrm{S})$. Suppose that $\mathrm{M} \neq \mathrm{I}$. From Proposition2.3, M is also adjacent to I. Thus $\mathrm{P}_{2}: \mathrm{J}, \mathrm{M}$, I is a path in $\Psi(\mathcal{R}, \mathrm{S})$. Similarly, we can find a path between I and J of length at most two, when $\mathrm{J} \in \mathrm{M}(\mathcal{R})$ and $\mathrm{I} \notin \mathrm{M}(\mathcal{R})$.
Case 2: If $\mathrm{I}, \mathrm{J} \notin \mathrm{M}(\mathcal{R})$, then by Theorem 2.11 , there exist $\mathrm{H}, \mathrm{L} \in \mathrm{M}(\mathcal{R})$ such that I and J are adjacent to H and L respectively. If $\mathrm{H}=\mathrm{L}$, then we have a path $\mathrm{P}_{2}: \mathrm{I}, \mathrm{H}, \mathrm{J}$ in $\Psi(\mathcal{R}, \mathrm{S})$. Suppose that $\mathrm{H} \neq \mathrm{L}$. By Proposition2.3, H and L are adjacent ideal vertices in $\Psi(\mathcal{R}, \mathrm{S})$. Thus $\mathrm{P}_{3}: \mathrm{I}, \mathrm{H}, \mathrm{L}, \mathrm{J}$ is a path in $\Psi(\mathcal{R}, \mathrm{S})$. From each case, we have shown that the graph $\Psi(\mathcal{R}, S)$ is connected and $\operatorname{diam}(\Psi(\mathcal{R}, S)) \leq 3$.

In the next result we show that the central vertex set of $\Psi(\mathcal{R}, S)$ contains a maximal ideal of \mathcal{R}.
Theorem3.2: There exists at least one maximal ideal of \mathcal{R} which is a central vertex of $\Psi(\mathcal{R}, S)$.
Proof: If \mathcal{R} is a local ring and $\Psi(\mathcal{R}, \mathrm{S}) \neq \emptyset$, then by Theorem $2.12, \Psi(\mathcal{R}, \mathrm{~S})$ contains a maximal ideal which is a central vertex of $\Psi(\mathcal{R}, \mathrm{S})$. Now, suppose that \mathcal{R} is not a local ring and $\mathrm{S} \notin \mathrm{M}(\mathcal{R})$. Again by Theorem 2.12 , there exists $I \in M(\mathcal{R})$ such that I is adjacent to all ideal vertex of $\Psi(\mathcal{R}, S)$. Thus $\operatorname{rad}(\Psi(\mathcal{R}$, $\mathrm{S})=\mathrm{e}(\mathrm{I})=1$. Thus I is a central vertex of $\Psi(\mathcal{R}, \mathrm{S})$. Suppose that $\mathrm{S} \in \mathrm{M}(\mathcal{R})$. From Proposition 2.4, $|\mathrm{M}(\mathcal{R})|>1$. We have the following cases:
Case1: If $\mathrm{M}(\mathcal{R})=\{\mathrm{S}, \mathrm{I}\}$ with $\mathrm{S} \neq \mathrm{I}$, then by Theorem2.8, the graph $\Psi(\mathcal{R}, \mathrm{S})$ is a bi-partite graph with partite sets V_{1} and V_{2}. If $\Psi(\mathcal{R}, \mathrm{S})$ is a star, then either S or I is a central vertex. Assume that $\Psi(\mathcal{R}, \mathrm{S})$ is
not a star. Then by the same theorem the partition V_{1} and V_{2} are $\mathrm{V}_{1}=\{\mathrm{I}\} \cup\{\mathrm{K} \in \mathrm{V}(\Psi) ; \mathrm{K} \not \subset \mathrm{S}\}$ and $\mathrm{V}_{2}=\{\mathrm{S}\} \cup\{\mathrm{K} \in \mathrm{V}(\Psi) ; \mathrm{K} \not \subset \mathrm{I}\}$. Thus $\operatorname{rad}(\Psi(\mathcal{R}, \mathrm{S}))=2=\mathrm{e}(\mathrm{I})$. This means that I is a central of $\Psi(\mathcal{R}, \mathrm{S})$.
Case2: Suppose that $|\mathrm{M}(\mathcal{R})|>2$. If $\mathrm{V}(\Psi)=\mathrm{M}(\mathcal{R})$, then the prove is done. Assume that $\quad \Psi(\mathcal{R}, \mathrm{S})$ has a non-maximal ideal vertex K . By Theorem $2.13, \mathrm{~K} \nsubseteq \mathrm{~J}(\mathcal{R})$, then there exists $\mathrm{I} \in \mathrm{M}(\mathcal{R})$ which does not contain K . Hence $\mathrm{S} \subset \mathrm{K}+\mathrm{I}=\mathcal{R}$. Clearly, if there exists $\mathrm{M} \in \mathrm{M}(\mathcal{R})$ such that $\mathrm{K} \subset \mathrm{M}$, then $\mathrm{S} \not \subset \mathrm{K}+\mathrm{M}=\mathrm{M}$. It follows that $\Psi(\mathcal{R}, S)$ is not complete. From Theorem 2.11 and Proposition 2.3, $\operatorname{rad}(\Psi(\mathcal{R}, \mathrm{S}))=\mathrm{e}(\mathrm{P})$, for some $\mathrm{P} \in \mathrm{M}(\mathcal{R})$ adjacent to K in $\Psi(\mathcal{R}, \mathrm{S})$.
Example5: In the following graph, $\mathrm{e}((2))=\operatorname{rad}\left(\Psi\left(\mathbb{Z}_{56},(4)\right)\right.$ and the maximal ideal (2) is a central vertex of $\Psi\left(\mathbb{Z}_{56},(4)\right)$.

Figure 5- The graph $\Psi\left(\mathbb{Z}_{56}\right.$, (4))
In the next result we demonstrate that $\mathrm{M}(\mathcal{R})$ includes all cut vertices of $\Psi(\mathcal{R}, \mathrm{S})$.
Theorem3.3: If I is a cut vertex of $\Psi(\mathcal{R}, S)$, then I is a maximal ideal of \mathcal{R}.
Proof: Suppose that I is a cut vertex of $\Psi(\mathcal{R}, \mathrm{S})$. Then the graph $\Psi(\mathcal{R}, \mathrm{S})$-I is disconnected. Assume that $\mathrm{I} \notin \mathrm{M}(\mathcal{R})$. Let V_{1} and V_{2} be any two components of $\Psi(\mathcal{R}, \mathrm{S})-\mathrm{I}$ with $\mathrm{N} \in \mathrm{V}_{1}$ and $\mathrm{M} \in \mathrm{V}_{2}$. If M , $\mathrm{N} \notin \mathrm{M}(\mathcal{R})$, then by Theorem2.11 there exist $\mathrm{K}, \mathrm{L} \in \mathrm{M}(\mathcal{R})$ such that $\{\mathrm{M}, \mathrm{K}\}$ and $\{\mathrm{N}, \mathrm{L}\}$ are edges in V_{1} and V_{2} respectively. By Proposition $2.3, \mathrm{~K}$ and L are adjacent in $\Psi(\mathcal{R}, S)$. Suppose that $\mathrm{M} \in \mathrm{M}(\mathcal{R})$ and $\mathrm{N} \notin \mathrm{M}(\mathcal{R})$. Then there exist $\mathrm{H} \in \mathrm{M}(\mathcal{R}) \cap \mathrm{V}_{2}$ such that N is adjacent to H in V_{2}. If $\mathrm{M}, \mathrm{N} \in \mathrm{M}(\mathcal{R})$ we get the same result. In each case we conclude that there exists two adjacent vertices in different component. This is impossible. Therefore $\operatorname{I} \in \mathrm{M}(\mathcal{R})$.

4. Completeness of $\Psi(\mathcal{R}, S)$

In this section we explain the minimally of S and the completeness of $\Psi(\mathcal{R}, S)$.
We start this section with the following results.
Theorem 4.1: If the graph $\Psi(\mathcal{R}, \mathrm{S})$ is complete, then S is a minimal ideal of \mathcal{R}.
Proof: Suppose that $\Psi(\mathcal{R}, S)$ is complete graph and S is not a minimal ideal. Then there is a non-trivial ideal K of \mathcal{R} such that $\mathrm{K} \subset \mathrm{S}$. It follows that $\mathrm{S} \not \subset \mathrm{S}+\mathrm{K}$. This means that S and K are not adjacent ideal vertices. This contradicts that $\Psi(\mathcal{R}, \mathrm{S})$ is a complete. Hence S is a minimal ideal of \mathcal{R}.

The converse of Theorem4.1 may not be true, as the following example shows.
Example6: Consider the ring of integers modulo 54.
(27)

Figure 6- The graph $\Psi\left(\mathbb{Z}_{54},(27)\right)$
Clearly, $\mathrm{S}=(27)$ is a minimal ideal, but $\Psi\left(\mathbb{Z}_{54},(27)\right)$ is not a complete graph.
The converse of Theorem4.1 will be true, if we determine the number of ideals of \mathcal{R}.

Proposition4.2: Suppose that \mathcal{R} has four-non-trivial ideals I, J, K and S with $\mathrm{M}(\mathcal{R})=\{\mathrm{I}, \mathrm{J}\}$ and $\mathrm{S}=\mathrm{I} . \mathrm{J} \neq(0)$. Then the graph $\Psi(\mathcal{R}, \mathrm{S})$ is complete if and only if S is a minimal ideal of \mathcal{R}.
Proof: It is obvious from Theorem4.1 that S is a minimal ideal of \mathcal{R} when $\Psi(\mathcal{R}, \mathrm{S})$ is complete.
Conversely, let S be a minimal ideal of \mathcal{R}. Since I and J are maximal ideals, then S is adjacent to I, J and K by Theorem2.6. Since $\mathrm{K} \notin \mathrm{M}(\mathcal{R})$, K contained in at least one maximal ideal of \mathcal{R}, let be I . Then $\mathrm{S} \subset \mathrm{I}+\mathrm{K}$ and $\mathrm{S} \subset \mathrm{J}+\mathrm{K}=\mathcal{R}$. This means that, both I and J are adjacent to K . Hence any two distinct ideal vertices of I, J, K and S are adjacent in $\Psi(\mathcal{R}, \mathrm{S})$.
Example7: The graph $\Psi\left(\mathbb{Z}_{18},(6)\right)$ is a complete graph.

(6)

Figure 7- The graph $\Psi\left(\mathbb{Z}_{18}\right.$, (6))
The next result investigate the completeness of $\Psi(\mathcal{R}, \mathrm{S})$.
Theorem 4.3: If $\mathrm{I}(\mathcal{R})$ consists of the chain $\mathrm{S}=\mathrm{I}_{1} \subset \mathrm{I}_{2} \subset \ldots \subset \mathrm{I}_{\mathrm{n}}=\mathrm{I}$, then $\Psi(\mathcal{R}, \mathrm{S})$ is complete graph.
Proof: Obviously, I is adjacent to all $\mathrm{J} \in \mathrm{I}(\mathcal{R})$ in $\Psi(\mathcal{R}, \mathrm{S})$.
Since $S=I_{1} \subset I_{2} \subset \ldots \subset I_{n}=I$, we have $S \subset I_{i}+I_{j}$, for every $i, j=1,2, \ldots, n$ with $i \neq j$. Thus S is adjacent to I_{i} for $\mathrm{i}=2, \ldots, \mathrm{n}$ and every two distinct ideals of \mathcal{R} are adjacent in $\Psi(\mathcal{R}, \mathrm{S})$. Hence $\Psi(\mathcal{R}, \mathrm{S})$ is a complete graph. In the next result we find the chromatic number of $\Psi(\mathcal{R}, \mathrm{S})$.
Theorem 4.4: If the ideals of \mathcal{R} consists of the chain $\mathrm{I}_{1} \subset \mathrm{I}_{2} \subset \ldots \mathrm{I}_{\mathrm{n}-1} \subset \mathrm{I}_{\mathrm{n}}$ with $\mathrm{n} \geq 3$, then the chromatic number of $\Psi\left(\mathcal{R}, \mathrm{I}_{\mathrm{m}}\right)$ is $\chi\left(\Psi\left(\mathcal{R}, \mathrm{I}_{\mathrm{m}}\right)\right)=\mathrm{n}-(\mathrm{m}-1)$, for every $\mathrm{m}=1,2, \ldots, \mathrm{n}-1$.
Proof: If $\mathrm{m}=1$, then the graph $\Psi\left(\mathcal{R}, \mathrm{I}_{\mathrm{m}}\right)$ is complete and the formula is satisfied. Let $\mathrm{m}=2$. Then $\mathrm{I}_{2} \subset$ $\mathrm{I}_{\mathrm{i}}+\mathrm{I}_{\mathrm{j}}$, for all $\mathrm{i}, \mathrm{j}=2, \ldots, \mathrm{n}$ with $\mathrm{i} \neq \mathrm{j}$. Thus there is a complete subgraph $\mathrm{K}_{\mathrm{n}-1}$ of $\Psi\left(\mathcal{R}, \mathrm{I}_{2}\right)$ whose vertices are $\mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{n}}$. So, we have n - 1 different colours of $\mathrm{K}_{\mathrm{n}-1}$. On the other hand $\mathrm{I}_{1} \subset \mathrm{I}_{2}$ and $\mathrm{I}_{2} \not \subset \mathrm{I}_{1}+\mathrm{I}_{2}$. This means that I_{2} is not adjacent to I_{1}. Thus I_{1} and I_{2} have the same colour. Hence $\chi\left(\Psi\left(\mathcal{R}, \mathrm{I}_{2}\right)\right)=\mathrm{n}-1=\mathrm{n}-(\mathrm{m}-$ 1), when $\mathrm{m}=2$. In general, if $1 \leq \mathrm{m} \leq \mathrm{n}-1$, then $\Psi\left(\mathcal{R}, \mathrm{I}_{\mathrm{m}}\right)$ contains a complete subgraph whose vertices are $I_{m}, I_{m+1}, \ldots, I_{n-1}$. Since $I_{1} \subset I_{2} \subset \ldots \subset I_{m}$, every two of vertices $I_{1}, I_{2}, \ldots, I_{m}$ are not adjacent. So, the vertices $\mathrm{I}_{\mathrm{m}}, \mathrm{I}_{\mathrm{m}+1}, \ldots, \mathrm{I}_{\mathrm{n}-1}$ have $\mathrm{n}-\mathrm{m}$ different colours but $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{m}}$ have the same colour. Thus $\chi(\Psi(\mathcal{R}$, $\left.\mathrm{I}_{\mathrm{m}}\right)$) $=\mathrm{n}-\mathrm{m}+1=\mathrm{n}-(\mathrm{m}-1)$.
Example8: Consider the following graphs:

Figure 8- The graph $\Psi\left(\mathbb{Z}_{32},(4)\right)$

It is clear from Figure- that $\Psi\left(\mathbb{Z}_{32},(4)\right)$ is $K_{1,3}$, so we can choose two distinct colours for the sets $\{(2)\}$ and $\{(16),(8),(4)\}$ respectively. Hence $\chi\left(\Psi\left(\mathbb{Z}_{32},(4)\right)\right)=2$.
From Figure-9, we can choose three distinct colours for the sets $\{(2)\}$ and $\{(16),(8)\}$ and $\{(4)\}$ respectively. thus $\chi\left(\Psi\left(\mathbb{Z}_{32},(4)\right)\right)=3$

References

1. Beck, I. 1988. Coloring of commutative rings, J. Algebra, 116: 208-226.
2. Behboodi, M. and Rakeei, Z. 2011. The Annihilating-Ideal Graph of Commutative Rings I, J. of Algebra and Appl., 10(4): 727-739.
3. Ahrari, M., Safari, S. and Amini, B. 2015. On the Girth of the Annihilating-Ideal Graph of Commutative Rings, J. of Linear and Topological Algebra, 4(3): 209-216.
4. Anderson, D. F. and Livingston, P. S. 1999. The zero divisor graph of a commutative ring, Journal of Algebra, 217: 434-447.
5. Lalchandani, T. P. 2017. Exact Annihilating-Ideal Graph of Commutative Rings, J. of Algebra and Related Topics, 5(1): 27-32.
6. Selvakumar, K. and Subbulakshmi, P. 2018. On the Cross-cap of the Annihilating-Ideal Graph of a Commutative Ring, Palestine Journal of Mathematics, 7(1): 151-160.
7. David, S. and Richard, M. 1991. Abstract Algebra, Prentice-Hall Inc. U. S. A.
8. Gary, C. and Linda, L. 1986. Graphs and Digraphs, 2nd ed., Wadsworth and Brooks/Cole. California.

[^0]: *Email: fryad.abdulqadr@su.edu.krd

