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Abstract 

     The aim of this paper is to introduce and study a new kind of graphs associated to 

an ideal of a commutative ring. Let ℛ be a commutative ring with identity, and I(ℛ) 

be the set of all non-trivial ideals of ℛ with S I(ℛ). The sum ideal graph associated 

to S, denoted by       Ψ(ℛ, S), is the undirected graph with vertex set {A I(ℛ): 

S⊂A+B, for some B I(ℛ)} where two ideal vertices A and B are adjacent if and 

only if A B and S⊂A+B. In this paper we establish some of characterizations and 

results of this kind of graph with providing some examples. 

 

Keywords: Sum ideal graphs, Maximal ideals, Connected graphs.  
 

 بيانات جمع المثاليات المقارنة بمثالية معلومة في الحلقات الابدالية
 

 2نزار حمدون شكر ،2فرياد حدين عبدالقادر ،*1أمل هادي نادر

 .العراق اربيل ،  صلاح الدين، جامعة التربية، كمية الرياضيات، قدم1
 .العراق مهصل ،  مهصل ، جامعة ، عمهم الحاسهب والرياضيات كمية الرياضيات، قدم2

 

 الخلاصة
 بمثالية معمهمة لمحمقة الابدالية. الهدف في هذا البحث هه تعريف ودراسة نهع جديد من البيانات المرتبطة     
. يعرف بيان ℛغير تافهة لمحمقة  مجمهعة مثاليات I(ℛ) وان ، المحايدمع العنصر  حمقة ابدالية  ℛلتكن 

 ,A I(ℛ): S⊂A+B}هي رؤوسه  مجمهعة عمى انه البيان الذي Sغير تافهة جمع المثاليات المقارنة بمثالية 
for some B I(ℛ)} وان أي رأسين مثاليين مختمفين ،A و B متجاورين اذا وفقط اذاS⊂A+B .  في

 النهع من البيان مع اعطاء بعض الأمثمة. لهذا يزات والمم بعض النتائج نعطي هذاالبحث سهف
1. Introduction 
     A graph consists of two sets , vertex set and edge set , such that each edge  assigned as unordered 

pair of two distinct vertices. Recently, some kinds of graphs were introduced and studied whose vertex 

set are elements or ideals of a given ring, and the binary operations of the ring makes the adjacency of 

the graph. The zero divisor graph was first introduced by Beck I. in [3]. The annihilating-ideal graph 

of  a commutative ring ℛ was introduced by Behboodi M. in [4]. This kind of graph has been studied, 

see [1, 2, 7, 8].  

     In this paper, we introduce and study the notion of sum ideal graph associated to an ideal of a 

commutative ring with identity in which the set of maximal ideal has a main role to obtain most of its 

results and characterizations. 

     Throughout this paper all rings will be finite and commutative with identity, and some basic 

definitions in [5, 6] will be used. Also we use ℛ, S, M(ℛ), J(ℛ), V(Ψ ) and E(Ψ ) to denote a 
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commutative ring, a non-trivial ideal of ℛ, the set of maximal ideals, the Jacobson radical of ℛ, the 

vertex set  and the edge set of  Ψ(ℛ, S) respectively. 

2. The sum ideal graph associated to a given ideal of ℛ 
     In this section, we introduce the notion of sum ideal graph associated to a given ideal, we give 

some of its basic properties. 

Definition2.1: Let ℛ be a commutative ring with identity, and I(ℛ) be the set of all non-trivial ideals 

of ℛ with S I(ℛ). The sum ideal graph associated to S, denoted by Ψ(ℛ, S), is an undirected graph 

with vertex set {A I(ℛ): S⊂A+B, for some B I(ℛ)} where distinct ideal vertices A and B are 

adjacent if and only if S is a proper subset of A+B. 

Example1: Let ℛ= 48 and S= (6). The graph Ψ)   48, (6)) is: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- The graph Ψ)   48, (6)) 

 

Before starting our main results, we give the following lemma. 

Lemma 2.2: Let {I, J} be an edge in Ψ(ℛ, S). If K   I(ℛ) such that I⊂K, then K is adjacent to J in 

Ψ(ℛ, S). 

Proof: Suppose that {I, J} is an edge in Ψ)ℛ, S). Then S⊂I+J. Since I⊂K, we have S⊂K+J. This 

means that, K is adjacent to J in Ψ(ℛ, S). 

      We start this section with the following main result. 

Proposition2.3:  

1. If E(Ψ) ≠ , then M(ℛ) V(Ψ) ≠ . Furthermore, for every I, J  M(ℛ) with I≠J, I and J are adjacent 

in Ψ)ℛ,S). 

2. For every I, J  M(ℛ) with I≠J, Ψ)ℛ, I) and Ψ)ℛ, J) are identical. 

Proof:  

1. Assume that E(Ψ)≠ . Let I  V(Ψ), then there exists a vertex J of Ψ )ℛ,S) such that S⊂I+J. If  

either I M(ℛ) or J M(ℛ), then the prove terminates. Now, assume that I M(ℛ). Then there exists 

M M(ℛ) such that I⊂M. If J=M, then the prove completed. Suppose that J≠M. Then by Lemma 2.2, 

M is adjacent to J in Ψ)ℛ, S). Thus M is a maximal ideal vertex in M(ℛ). Assume that I, J M(ℛ). 

Then S⊂I+J=ℛ. Thus {I, J}  is an edge in Ψ)ℛ, S). 

2. Let I, J  M(ℛ) with I≠J. If {A, B} is an edge in Ψ)ℛ, I), then I⊂A+B. Then the maximally of I  

gives that A+B=ℛ.  Obviously, J⊂A+B. Thus {A, B} is an edge in Ψ)ℛ, J). Similarly, we can show 

that every edge of Ψ)ℛ, J) is an edge of Ψ)ℛ, I). Hence Ψ)ℛ, I) and Ψ)ℛ, J) are identical.  

    The next result shows that Ψ)ℛ, S) is a null graph under certain conditions. 

Proposition2.4: Let S M(ℛ). Then Ψ)ℛ, S) is a null graph if and only if ℛ is a local ring . 
Proof: Suppose that ℛ is a local ring. Then M(ℛ) ={S}. Since every non-trivial ideal contained in S, 

we have S I+J, for every I, J  I(ℛ). Thus Ψ)ℛ, S) is a null graph. 

Conversely, suppose that Ψ)ℛ, S) is a null graph. Then by Proposition2.3, ℛ has exactly one maximal 

ideal. This means that ℛ is a local ring.  

Remark2.5: Let K V(Ψ)-{S}. Then {K, S} is an edge in Ψ )ℛ,S) if and only if S⊂S+K, this means 

that S+K≠S. Equivalently, K S. 

    The next result shows the adjacency between S and all ideal vertices in Ψ)ℛ,S). 

Proposition2.6:  

1. If E(Ψ)    , then the ideal vertex S is adjacent to all I M(ℛ). 

(2) 

(24) 

(16) 

(12) 

(3) 

(8) 

(6) 

(4) 
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2. If K V(Ψ) is adjacent to S, then K is adjacent to at least one maximal ideal in Ψ)ℛ,S). 

3. If S is a minimal ideal vertex of ℛ, then S is adjacent to all ideal vertex K in Ψ)ℛ, S). 

Proof: 

1. Let I M(ℛ)-{S}. It is clear that S⊆S+I and I S. Thus S⊂S+I. Hence S adjacent to I in Ψ(ℛ, S) for 

every ideal vertices I≠S. 

2. Since K and S are adjacent, S⊂S+K. If S  M(ℛ), then the prove terminates. If K  M(ℛ), then by 

Proposition 2.3, K is adjacent to all elements of M(ℛ). Assume that S, K  M(ℛ). Then S contained 

properly in a maximal ideal say M. It follows from S⊂S+K that S⊂M+K. Thus K is adjacent to a 

maximal ideal M. 

The proof of the third part follows from Remark 2.5. 

Next, we turn to the following result.  

Proposition2.7: Let I, J M(ℛ) with I≠J. If K is an ideal vertex of Ψ)ℛ, S) which is not contain in J, 

then K and J are adjacent ideal vertex in Ψ)ℛ, S). 

Proof: By Proposition 2.3 S⊂I+J. Since K J, we have J⊂K+J. Then the maximally of J gives K+J=ℛ. 

Thus S ⊂K+J. Hence {K, J} is an edge in Ψ)ℛ, S). 

In the next result we demonstrate the partite of Ψ)ℛ, I). 

Theorem2.8: If ℛ has exactly two maximal ideals I and J, then: 

1. K I+J, for all K V(Ψ)-{I, J}.  

2. Ψ)ℛ, I) and Ψ)ℛ,J) are complete bipartite graphs. 

Proof:  

1. Since I, J   M(ℛ), we have {I, J} is an edge of Ψ)ℛ,I). Let K be any non-maximal ideal vertex in 

Ψ)ℛ,I). Then there exists an ideal vertex L in Ψ)ℛ,I) such that I⊂K+L and L≠K. Now we have the 

following cases for L: 

Case1: If L=I, then I⊂K+L follows that I⊂K+I. Since I  M(ℛ), I+K=ℛ≠I. Therefore K  I. Thus 

K⊂J. Similarly, we can verify that K⊂ I, but  K  J when L=J. 

Case2: If L≠I,J, then there exists I  M(ℛ) such that L⊂I. Since I⊂K+L, we have I⊂K+I. It follows 

that K+I=ℛ. Thus K I and K⊂J. Similarly, if L contained properly in J we get K J and K⊂I. 

2. From Proposition 2.3, Ψ)ℛ,I) and Ψ)ℛ,J) are identical. It is enough to show that Ψ)ℛ,I) is a bi-

partite graph. If K⊂I and K J, for all K V(Ψ)-{I,J}, then by Proposition2.7, J is adjacent to every 

ideal vertex K in Ψ)ℛ,I) and we take V1 ={I} {K V(Ψ); K  } , V2 ={J}. Similarly, if K⊂J and K I 

for all K V(Ψ)-{I,J}, we can choose V1 ={I}, V2 ={J} {K V(Ψ); K  }. In both cases, the graph is 

star. Assume that some of ideal vertices T, M V(Ψ)-{I, J} contained properly in I and J, respectively. 

Now, we can take V1={I} {T V(Ψ); T  } and V2={J} {M V(Ψ); M  }. Since T   and M  , 
I⊂T+M it means that {T, M} is an edge in Ψ)ℛ,I), in this case the graph is a complete bipartite graph. 

Similarly, we can prove that Ψ)ℛ,J) is a complete bipartite graph. 

Example2: Consider the ring of integers modulo 30,   36. 

 

 

 

                                                                                     

 

 

 

 

 

 

Figure 2-The graph Ψ) 36, (3)) 

 

Obviously, Ψ)   36, (3)) is a complete bipartite graph. 

Corollary 2.9: If M(ℛ)={S, K}with S≠K, then the girth of Ψ)ℛ,S)) is either equal to 4 or  . 

Proof: The prove follows from Proposition 2.3 and Theorem2.8.  

Next, we shall give the converse of Theorem 2.8. 

Proposition2.10: If Ψ)ℛ, S) is a bipartite graph, then │M(ℛ)│≤2  

(4) (2) 

(3) (9) 
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Proof: Let Ψ)ℛ, S) be a bipartite graph with partite sets V1and V2. Since every two distinct maximal 

ideal vertex are adjacent, then each of V1  and V2 contains at most one maximal ideal vertex. Thus 

│M(ℛ)│≤2.  

The next main result shows the adjacency between maximal and non-maximal ideals of ℛ in Ψ)ℛ, S). 

Theorem2.11: Every non- maximal ideal vertex in Ψ)ℛ,S) is adjacent to at least one maximal ideal 

vertex. 

Proof: Let K M(ℛ) be an ideal vertex in Ψ)ℛ, S). We have the following cases: 

Case1: Let M(ℛ)={I}. If S=I, then by Proposition2.4, Ψ)ℛ, S) is null graph. Suppose that S≠I. 

Clearly, S⊂I. Thus S⊂I+S. Let K≠S be any ideal vertex of Ψ)ℛ, S). If S⊂K, then by Lemma 2.2, K is 

adjacent to I in Ψ)ℛ, S). Assume that S K. Since S ⊆S+K and S contains properly in I, then I 

adjacent to K in Ψ)ℛ, S). 

Case2: Let │M(ℛ)│≥ 2. From Proposition2.6, S is adjacent to all maximal ideal vertices. If S  M(ℛ), 

there exists H M(ℛ) such that S⊂H. It follows from S ⊆S+K that S⊂H+K. Thus K is adjacent to H. 

Now assume that S M(ℛ). Then we have two subcases for K and S: 

Subcase1: Let K S. Then S≠ S+ K. Thus S⊂K+S. Hence K is adjacent to S. 

Subcase2: Let K⊂S. Since S ⊆S+K and S is a maximal ideal then S+K=S. Thus we have    S  S+K. 

That means, S and K are not adjacent ideal vertices in the graph Ψ)ℛ, S). Since K is an ideal vertex in 

Ψ)ℛ, S), then there exists L  V(Ψ) such that S⊂ K+L. Now, if L M(ℛ), then the proof is completed. 

Otherwise, there exists W M(ℛ)contains properly L. It follows that S⊂K+L⊂K+W. Thus K is 

adjacent to W in Ψ)ℛ, S). 

Example3: The following graph shows that every non-maximal ideal vertex is adjacent to a maximal 

ideal vertex. 

 

 

 

 

 

 

 

 

 

 

                          

Figure 3-The graph Ψ) 42, (7)) 

 

     The next result shows that Ψ)ℛ, S) contains a star with the same vertex set of Ψ)ℛ, S).  

Proposition2.12: If S V(Ψ)- M(ℛ), then M(ℛ) contains an element that adjacent to all ideal vertices 

of Ψ)ℛ, S). Moreover, Ψ)ℛ, S) and I(ℛ) has the same cardinality. 

Proof: Since S M(ℛ), there exists M M(ℛ) such that S⊂M Thus S⊂I+M, for any       I I(ℛ)-{S,M}. 

This means that, M is adjacent to all ideal vertices of Ψ)ℛ, S). Consequently, the order of the graph 

Ψ)ℛ, S) is equal to the number of all non-trivial  ideals of ℛ. 

     In the next result we give the necessary and sufficient condition for an ideal of ℛ to be ideal vertex 

of Ψ)ℛ, S). 

Theorem2.13: Let S  M(ℛ). Then K V( ) if and only if K J(ℛ).  

Proof: Let K V(Ψ) assume that K⊆J(ℛ). Then K+M=M, for every M  M(ℛ). Therefore, S K+M for 

every M M(ℛ). This means that K is not adjacent to every I  M(ℛ). This contradicts Theorem2.11. 

Therefore, K J(ℛ). 

Conversely, assume that K J(ℛ), then there exists I  M(ℛ) such that K I. Since I⊂K+I, then 

S⊂ℛ=K+I. This means that K V(Ψ). 

Example 4: Consider the ring   54. 

 

 

 

 

(2) (3) 

(21) 

(7) 

(6) 

(14) 



Nadir et al.                                      Iraqi Journal of Science, 2019, Vol. 60, No.11, pp: 2478-2485 

 

2482 

 

 

   

 

 

 

 

 

 

 

          

Figure 4-The graph Ψ(  54 , (3)) 

 

Clearly, the ideals (6) and (18) are not vertices of Ψ(  54 , (3)), since (6), (18) ⊆J(ℛ)=(6)                                           

In the next result we find the upper bound of the girth of Ψ)ℛ,S). 

Theorem2.14: If  Ψ)ℛ, S) contains a cycle, then the girth of Ψ)ℛ,S)) is less than or equal to four. 

Proof: If ℛ is a local ring and Ψ)ℛ,S) is a null graph, then S M(ℛ) by Proposition2.4. Let I M(ℛ) 

and K V(Ψ) such that K S. Then by Remark 2.5, S is  adjacent to K in Ψ)ℛ, S). Furthermore, we 

have I adjacent to both S and K. Thus C3:I, S, K, I is a cycle in Ψ)ℛ, S). If│M(ℛ)│>2, then by 

Proposition2.3 we can easily find a cycle of length three. Suppose that M(ℛ)={I, J} with I≠ J.  

Obviously, I and J are adjacent ideal vertices because I+J= ℛ. If either S=I or S=J, then by 

Corollary2.9, the girth of Ψ)ℛ,S)) is equal to 4. Assume that neither S=I nor S=J. This yields that 

S M(ℛ). From Proposition2.6, S is adjacent to both I and J. Thus C3: I, S, J, I is a cycle in Ψ)ℛ, S).  

     In the following result, we find the value of girth of Ψ)ℛ,S). 

Proposition2.15: If Ψ)ℛ, S) contains an edge {I,J}such that I, J M(ℛ) and neither I⊆J nor I⊆J. Then 

the girth of Ψ)ℛ, S) is equal to three. 

Proof: Suppose that {I,J}is an edge in Ψ)ℛ, S) such that I, J M(ℛ) and neither I⊆J nor I⊆J. Then we 

have I+J≠I and I+J≠J. Thus I, J⊂I+J. Since I, J M(ℛ), then I+J≠ℛ. By Lemma 2.2, I+J is adjacent to 

both I and J. Thus C3: I, (I+J), J, I is a cycle in Ψ)ℛ, S). Hence the girth of Ψ)ℛ, S) is equal to three. 

3. Connectivity of Ψ)ℛ, S) 

    In this section we investigate the connectivity of Ψ)ℛ,S) and some basic concepts related to 

connectivity. 

     We start this section with the following main result.  

Theorem 3.1: The graph Ψ)ℛ, S) is connected with diam(Ψ)ℛ, S))≤3. 

Proof: Let I, J V(Ψ) with I≠J. If I+J=ℛ, then by Proposition2.3 I is adjacent to J in Ψ)ℛ, S). Assume 

that I+J≠ℛ. We have the following cases for I and J: 

Case1: If I M(ℛ) and J M(ℛ), then by Theorem2.11, there exists M M(ℛ) adjacent to J in      Ψ)ℛ, 

S). If M=I, then P1: I, J is a path in Ψ)ℛ, S). Suppose that M≠I. From Proposition2.3, M is also 

adjacent to I. Thus P2: J, M, I is a path in Ψ)ℛ, S). Similarly, we can find a path between I and J of 

length at most two, when J M(ℛ) and I M(ℛ). 

Case 2: If I, J M(ℛ), then by Theorem2.11, there exist H, L  M(ℛ) such that I and J are adjacent to H 

and L respectively. If H=L, then we have a path P2: I, H, J in Ψ)ℛ, S). Suppose that H≠L. By 

Proposition2.3, H and L are adjacent ideal vertices in Ψ)ℛ, S). Thus  P3:I, H, L, J is a path in Ψ)ℛ, S). 

From each case, we have shown that the graph Ψ)ℛ, S) is connected and  diam(Ψ)ℛ,S))≤3.  

    In the next result we show that the central vertex set of Ψ)ℛ,S) contains a maximal ideal of ℛ. 

Theorem3.2: There exists at least one maximal ideal of ℛ which is a central vertex of     Ψ)ℛ, S). 

Proof: If ℛ is a local ring and Ψ)ℛ, S)≠ , then by Theorem2.12, Ψ)ℛ, S) contains a maximal ideal 

which is a central vertex of Ψ)ℛ, S). Now, suppose that ℛ is not a local ring and S M(ℛ). Again by 

Theorem2.12, there exists I  M(ℛ) such that I is adjacent to all ideal vertex of Ψ)ℛ, S). Thus rad(Ψ)ℛ, 

S))= e(I)=1. Thus I is a central vertex of Ψ)ℛ, S). Suppose that S  M(ℛ). From 

Proposition2.4,│M(ℛ)│>1. We have the following cases: 

Case1: If M(ℛ)={S, I}with S≠I, then by Theorem2.8, the graph Ψ)ℛ, S) is a bi-partite graph with 

partite sets V1 and V2. If Ψ)ℛ, S) is a star, then either S or I is a central vertex. Assume that Ψ)ℛ, S) is 

(2) 

(3) 

(9) 

(27) 
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not a star. Then by the same theorem the partition V1 and V2 are V1={I} {K V(Ψ)    }and 

V2={S} {K V(Ψ)    }. Thus rad(Ψ(ℛ,S))=2=e(I). This means that I is a central of Ψ)ℛ, S). 

Case2: Suppose that│M(ℛ)│>2. If V(Ψ)=M(ℛ), then the prove is done. Assume that       Ψ)ℛ, S) has 

a non-maximal ideal vertex K. By Theorem 2.13, K J(ℛ), then there exists I M(ℛ) which does not 

contain K. Hence S⊂K+I=ℛ. Clearly, if there exists M M(ℛ)  such that K⊂ M, then S K+M=M. It 

follows that Ψ(ℛ,S) is not complete. From Theorem 2.11 and Proposition 2.3, rad(Ψ(ℛ,S))=e(P), for 

some P M(ℛ) adjacent to K in Ψ(ℛ,S).     

Example5: In the following graph, e((2))= rad(Ψ(  56, (4)) and the maximal ideal (2) is a central 

vertex of Ψ(  56, (4)). 

                                                            

 

 

 

 

 

 

 

 

 

Figure 5- The graph Ψ(  56, (4)) 

 

     In the next result we demonstrate that M(ℛ) includes all cut vertices of Ψ)ℛ, S).  

Theorem3.3: If I is a cut vertex of Ψ)ℛ, S), then I is a maximal ideal of ℛ. 

Proof: Suppose that I is a cut vertex of Ψ)ℛ, S). Then the graph Ψ)ℛ, S)-I  is disconnected. Assume 

that I M(ℛ). Let V1 and V2 be any two components of Ψ)ℛ, S)-I with N  V1 and M  V2. If M, 

N M(ℛ), then by Theorem2.11 there exist K, L  M(ℛ) such that {M, K} and {N, L} are edges in V1 

and V2 respectively. By Proposition 2.3, K and L are adjacent in    Ψ)ℛ, S). Suppose that M M(ℛ) 

and N M(ℛ). Then there exist H M(ℛ)  V2 such that N is adjacent to H in V2 . If M, N M(ℛ) we 

get the same result. In each case we conclude that there exists two adjacent vertices in different 

component. This is impossible. Therefore I M(ℛ). 

4. Completeness of Ψ)ℛ, S) 

    In this section we explain the minimally of S and the completeness of Ψ)ℛ, S). 

    We start this section with the following results. 

Theorem 4.1: If the graph Ψ)ℛ, S) is complete, then S is a minimal ideal of ℛ. 

Proof: Suppose that Ψ)ℛ, S) is complete graph and S is not a minimal ideal. Then there is a non-trivial 

ideal K of ℛ such that K⊂S. It follows that S S+K. This means that S and K are not adjacent ideal 

vertices. This contradicts that Ψ)ℛ, S) is a complete. Hence S is a minimal ideal of ℛ.  

     The converse of Theorem4.1 may not be true, as the following example shows. 

Example6: Consider the ring of integers modulo 54.  

 

 

 

 

 

 

 

 

     

 

Figure 6- The graph Ψ)   54, (27)) 

 

Clearly, S=(27) is a minimal ideal, but Ψ)   54,(27)) is not a complete graph.   

The converse of Theorem4.1 will be true, if we determine the number of ideals of ℛ. 

(2) 

(28) 

(14) (4) 

(7) (8) 

(2) (3) 

(9) 

(27) 

(18) 

(6) 
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Proposition4.2: Suppose that ℛ has four-non-trivial ideals I, J, K and S with M(ℛ)={I, J} and 

S=I.J≠(0). Then the graph Ψ)ℛ, S) is complete if and only if S is a minimal ideal of ℛ. 

Proof: It is obvious from Theorem4.1 that S is a minimal ideal of ℛ when Ψ)ℛ, S) is complete. 

Conversely, let S be a minimal ideal of  ℛ. Since I and J are maximal ideals, then S is adjacent to I, J 

and K by Theorem2.6. Since K M(ℛ), K contained in at least one maximal ideal of ℛ, let be I. Then 

S⊂I+K and S⊂J+K=ℛ. This means that, both I and J are adjacent to K. Hence any two distinct ideal 

vertices of I, J, K and S are adjacent in Ψ)ℛ, S). 

Example7: The graph Ψ)   18,(6)) is a complete graph. 
 

 

 

 

 

 

 

        

 

 

Figure 7- The graph Ψ)   18, (6)) 

 

     The next result investigate the completeness of Ψ)ℛ, S). 

Theorem 4.3: If I(ℛ) consists of the chain S= I1⊂ I2⊂...⊂In =I, then Ψ)ℛ, S) is complete graph. 

Proof: Obviously, I is adjacent to all J I(ℛ) in Ψ)ℛ, S). 

Since S= I1⊂ I2⊂...⊂In=I, we have S⊂Ii+Ij, for every i, j=1,2,...,n with  i j. Thus S is adjacent to Ii  for 

i=2,...,n and every two distinct ideals of ℛ are adjacent in Ψ)ℛ, S). Hence Ψ)ℛ, S) is a complete graph. 

In the next result we find the chromatic number of Ψ)ℛ, S). 

Theorem 4.4: If the ideals of ℛ consists of the chain I1⊂ I2⊂... In-1 ⊂In with n  3, then the chromatic 

number of Ψ)ℛ, Im) is χ(Ψ)ℛ, Im)) =        , for every m=1, 2, …, n-1. 

Proof: If m=1, then the graph Ψ)ℛ, Im) is complete and the formula is satisfied. Let m=2. Then I2⊂ 

Ii+Ij, for all i, j=2,...,n with i j. Thus there is a complete subgraph Kn-1 of Ψ)ℛ, I2) whose vertices are 

I2, I3, …, In. So, we have n-1 different colours of Kn-1. On the other hand I1⊂ I2 and I2  I1  I2. This 

means that I2 is not adjacent to I1. Thus I1 and I2 have the same colour. Hence χ(Ψ)ℛ, I2))=n-1=n-(m-

1), when m=2. In general, if 1 m n-1, then Ψ)ℛ, Im) contains a complete subgraph whose vertices 

are Im, Im+1,…, In-1. Since I1⊂ I2⊂…⊂ Im , every two of vertices I1, I2,…, Im are not adjacent. So, the 

vertices Im, Im+1,…, In-1 have n-m different colours  but  I1, I2,…, Im have the same colour. Thus χ(Ψ)ℛ, 

Im)) =n-m+1=       .  
Example8: Consider the following graphs: 

 

 

 

            

                                           

 

 

                                         

 

 

 

 

 

 

Figure 8- The graph Ψ)  32, (4))                           Figure 9- The graph Ψ)  32, (8)) 
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It is clear from Figure- that Ψ)  32 ,(4)) is K1,3, so we can choose two distinct colours for the sets  {(2)} 

and {(16), (8), (4)} respectively. Hence χ(Ψ)   32,(4)))=2. 

  From Figure-9, we can choose three distinct colours for the sets {(2)} and {(16), (8)} and {(4)} 

respectively. thus χ(Ψ)   32,(4)))=3 
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