Nadir et al.

Iraqi Journal of Science, 2019, Vol.60, No.11, pp: 2478-2485 DOI: 10.24996/ijs.2019.60.11.19

ISSN: 0067-2904

Sum Ideal Graphs Associated to a Given Ideal of a Commutative Ring

A. H. Nadir^{1*}, F. H. Abdulqadr², N. H. Shuker²

¹Department of Mathematics, College of Education, University of Salahaddin, Erbil, Iraq ²Department of Mathematics, College of Computer Science and Mathematics, Mosul University, Mosul, Iraq

Received: 15/4/2019 Accepted: 17/7/2019

Abstract

The aim of this paper is to introduce and study a new kind of graphs associated to an ideal of a commutative ring. Let \mathcal{R} be a commutative ring with identity, and $I(\mathcal{R})$ be the set of all non-trivial ideals of \mathcal{R} with $S \in I(\mathcal{R})$. The sum ideal graph associated to S, denoted by $\Psi(\mathcal{R}, S)$, is the undirected graph with vertex set $\{A \in I(\mathcal{R}):$ $S \subset A+B$, for some $B \in I(\mathcal{R})\}$ where two ideal vertices A and B are adjacent if and only if $A \neq B$ and $S \subset A+B$. In this paper we establish some of characterizations and results of this kind of graph with providing some examples.

Keywords: Sum ideal graphs, Maximal ideals, Connected graphs.

بيانات جمع المثاليات المقارنة بمثالية معلومة في الحلقات الابدالية أمل هادي نادر¹*، فرياد حسين عبدالقادر²، نزار حمدون شكر² ¹قسم الرياضيات، كلية التربية، جامعة صلاح الدين، اربيل ، العراق. ²قسم الرياضيات، كلية علوم الحاسوب والرياضيات ، جامعة موصل ، موصل ، العراق.

الخلاصة

الهدف في هذا البحث هو تعريف ودراسة نوع جديد من البيانات المرتبطة بمثالية معلومة للحلقة الابدالية. لتكن \mathcal{R} حلقة ابدالية مع العنصر المحايد ، وان (\mathcal{R}) ا مجموعة مثاليات غير تافهة للحلقة \mathcal{R} . يعرف بيان جمع المثاليات المقارنة بمثالية غير تافهة S على انه البيان الذي مجموعة رؤوسه هي $A \in I(\mathcal{R})$: SCA+B, for some $B \in I(\mathcal{R})$ } في for some $B \in I(\mathcal{R})$. هذاالبحث سوف نعطي بعض النتائج والمميزات لهذا النوع من البيان مع اعطاء بعض الأمثلة.

1. Introduction

A graph consists of two sets , vertex set and edge set , such that each edge assigned as unordered pair of two distinct vertices. Recently, some kinds of graphs were introduced and studied whose vertex set are elements or ideals of a given ring, and the binary operations of the ring makes the adjacency of the graph. The zero divisor graph was first introduced by Beck I. in [3]. The annihilating-ideal graph of a commutative ring \mathcal{R} was introduced by Behboodi M. in [4]. This kind of graph has been studied, see [1, 2, 7, 8].

In this paper, we introduce and study the notion of sum ideal graph associated to an ideal of a commutative ring with identity in which the set of maximal ideal has a main role to obtain most of its results and characterizations.

Throughout this paper all rings will be finite and commutative with identity, and some basic definitions in [5, 6] will be used. Also we use \mathcal{R} , S, M(\mathcal{R}), J(\mathcal{R}), V(Ψ) and E(Ψ) to denote a

commutative ring, a non-trivial ideal of \mathcal{R} , the set of maximal ideals, the Jacobson radical of \mathcal{R} , the vertex set and the edge set of $\Psi(\mathcal{R}, S)$ respectively.

2. The sum ideal graph associated to a given ideal of $\boldsymbol{\mathcal{R}}$

In this section, we introduce the notion of sum ideal graph associated to a given ideal, we give some of its basic properties.

Definition2.1: Let \mathcal{R} be a commutative ring with identity, and $I(\mathcal{R})$ be the set of all non-trivial ideals of \mathcal{R} with $S \in I(\mathcal{R})$. The sum ideal graph associated to S, denoted by $\Psi(\mathcal{R}, S)$, is an undirected graph with vertex set $\{A \in I(\mathcal{R}): S \subset A+B, \text{ for some } B \in I(\mathcal{R})\}$ where distinct ideal vertices A and B are adjacent if and only if S is a proper subset of A+B.

Example1: Let $\mathcal{R}=\mathbb{Z}_{48}$ and S=(6). The graph $\Psi(\mathbb{Z}_{48}, (6))$ is:

Figure 1- The graph $\Psi(\mathbb{Z}_{48}, (6))$

Before starting our main results, we give the following lemma.

Lemma 2.2: Let {I, J} be an edge in $\Psi(\mathcal{R}, S)$. If $K \in I(\mathcal{R})$ such that $I \subset K$, then K is adjacent to J in $\Psi(\mathcal{R}, S)$.

Proof: Suppose that {I, J} is an edge in $\Psi(\mathcal{R}, S)$. Then $S \subset I+J$. Since $I \subset K$, we have $S \subset K+J$. This means that, K is adjacent to J in $\Psi(\mathcal{R}, S)$.

We start this section with the following main result.

Proposition2.3:

1. If $E(\Psi) \neq \emptyset$, then $M(\mathcal{R}) \cap V(\Psi) \neq \emptyset$. Furthermore, for every I, $J \in M(\mathcal{R})$ with $I \neq J$, I and J are adjacent in $\Psi(\mathcal{R},S)$.

2. For every I, $J \in M(\mathcal{R})$ with $I \neq J$, $\Psi(\mathcal{R}, I)$ and $\Psi(\mathcal{R}, J)$ are identical.

Proof:

1. Assume that $E(\Psi)\neq \emptyset$. Let $I \in V(\Psi)$, then there exists a vertex J of Ψ (\mathcal{R} ,S) such that $S \subset I+J$. If either $I \in M(\mathcal{R})$ or $J \in M(\mathcal{R})$, then the prove terminates. Now, assume that $I \notin M(\mathcal{R})$. Then there exists $M \in M(\mathcal{R})$ such that $I \subset M$. If J=M, then the prove completed. Suppose that $J\neq M$. Then by Lemma 2.2, M is adjacent to J in $\Psi(\mathcal{R}, S)$. Thus M is a maximal ideal vertex in $M(\mathcal{R})$. Assume that I, $J \in M(\mathcal{R})$. Then $S \subset I+J=\mathcal{R}$. Thus {I, J} is an edge in $\Psi(\mathcal{R}, S)$.

2. Let I, $J \in M(\mathcal{R})$ with $I \neq J$. If {A, B} is an edge in $\Psi(\mathcal{R}, I)$, then $I \subset A+B$. Then the maximally of I gives that $A+B=\mathcal{R}$. Obviously, $J \subset A+B$. Thus {A, B} is an edge in $\Psi(\mathcal{R}, J)$. Similarly, we can show that every edge of $\Psi(\mathcal{R}, J)$ is an edge of $\Psi(\mathcal{R}, I)$. Hence $\Psi(\mathcal{R}, I)$ and $\Psi(\mathcal{R}, J)$ are identical.

The next result shows that $\Psi(\mathcal{R}, S)$ is a null graph under certain conditions.

Proposition2.4: Let $S \in M(\mathcal{R})$. Then $\Psi(\mathcal{R}, S)$ is a null graph if and only if \mathcal{R} is a local ring.

Proof: Suppose that \mathcal{R} is a local ring. Then $M(\mathcal{R}) = \{S\}$. Since every non-trivial ideal contained in S, we have $S \not\subset I+J$, for every I, $J \in I(\mathcal{R})$. Thus $\Psi(\mathcal{R}, S)$ is a null graph.

Conversely, suppose that $\Psi(\mathcal{R}, S)$ is a null graph. Then by Proposition2.3, \mathcal{R} has exactly one maximal ideal. This means that \mathcal{R} is a local ring.

Remark2.5: Let $K \in V(\Psi)$ -{S}. Then {K, S} is an edge in $\Psi(\mathcal{R},S)$ if and only if $S \subseteq S+K$, this means that $S+K\neq S$. Equivalently, $K \notin S$.

The next result shows the adjacency between S and all ideal vertices in $\Psi(\mathcal{R},S)$. **Proposition2.6**:

1. If $E(\Psi) \neq \emptyset$, then the ideal vertex S is adjacent to all $I \in M(\mathcal{R})$.

2. If $K \in V(\Psi)$ is adjacent to S, then K is adjacent to at least one maximal ideal in $\Psi(\mathcal{R},S)$.

3. If S is a minimal ideal vertex of \mathcal{R} , then S is adjacent to all ideal vertex K in $\Psi(\mathcal{R}, S)$.

Proof:

1. Let $I \in M(\mathcal{R})$ -{S}. It is clear that $S \subseteq S+I$ and $I \not\subset S$. Thus $S \subseteq S+I$. Hence S adjacent to I in $\Psi(\mathcal{R}, S)$ for every ideal vertices $I \neq S$.

2. Since K and S are adjacent, $S \subset S+K$. If $S \in M(\mathcal{R})$, then the prove terminates. If $K \in M(\mathcal{R})$, then by Proposition 2.3, K is adjacent to all elements of $M(\mathcal{R})$. Assume that S, $K \notin M(\mathcal{R})$. Then S contained properly in a maximal ideal say M. It follows from $S \subset S+K$ that $S \subset M+K$. Thus K is adjacent to a maximal ideal M.

The proof of the third part follows from Remark 2.5.

Next, we turn to the following result.

Proposition2.7: Let I, $J \in M(\mathcal{R})$ with $I \neq J$. If K is an ideal vertex of $\Psi(\mathcal{R}, S)$ which is not contain in J, then K and J are adjacent ideal vertex in $\Psi(\mathcal{R}, S)$.

Proof: By Proposition 2.3 S \subset I+J. Since K $\not\subset$ J, we have J \subset K+J. Then the maximally of J gives K+J= \mathcal{R} . Thus S \subset K+J. Hence {K, J} is an edge in $\Psi(\mathcal{R}, S)$.

In the next result we demonstrate the partite of $\Psi(\mathcal{R}, I)$.

Theorem 2.8: If \mathcal{R} has exactly two maximal ideals I and J, then:

1. K $\not\subseteq$ I+J, for all K \in V(Ψ)-{I, J}.

2. $\Psi(\mathcal{R}, I)$ and $\Psi(\mathcal{R}, J)$ are complete bipartite graphs.

Proof:

1. Since I, $J \in M(\mathcal{R})$, we have {I, J} is an edge of $\Psi(\mathcal{R},I)$. Let K be any non-maximal ideal vertex in $\Psi(\mathcal{R},I)$. Then there exists an ideal vertex L in $\Psi(\mathcal{R},I)$ such that $I \subset K+L$ and $L \neq K$. Now we have the following cases for L:

Case1: If L=I, then I \subset K+L follows that I \subset K+I. Since I \in M(\mathcal{R}), I+K= $\mathcal{R}\neq$ I. Therefore K $\not\subset$ I. Thus K \subset J. Similarly, we can verify that K \subset I, but K $\not\subset$ J when L=J.

Case2: If $L \neq I,J$, then there exists $I \in M(\mathcal{R})$ such that $L \subset I$. Since $I \subset K+L$, we have $I \subset K+I$. It follows that $K+I=\mathcal{R}$. Thus $K \not\subset I$ and $K \subset J$. Similarly, if L contained properly in J we get $K \not\subset J$ and $K \subset I$.

2. From Proposition 2.3, $\Psi(\mathcal{R},I)$ and $\Psi(\mathcal{R},J)$ are identical. It is enough to show that $\Psi(\mathcal{R},I)$ is a bipartite graph. If K⊂I and K⊄J, for all K∈V(Ψ)-{I,J}, then by Proposition2.7, J is adjacent to every ideal vertex K in $\Psi(\mathcal{R},I)$ and we take $V_1 = \{I\} \cup \{K \in V(\Psi); K \notin J\}$, $V_2 = \{J\}$. Similarly, if K⊂J and K⊄I for all K∈V(Ψ)-{I,J}, we can choose $V_1 = \{I\}, V_2 = \{J\} \cup \{K \in V(\Psi); K \notin I\}$. In both cases, the graph is star. Assume that some of ideal vertices T, M∈V(Ψ)-{I, J} contained properly in I and J, respectively. Now, we can take $V_1 = \{I\} \cup \{T \in V(\Psi); T \notin J\}$ and $V_2 = \{J\} \cup \{M \in V(\Psi); M \notin I\}$. Since T $\notin J$ and M $\notin I$, I⊂T+M it means that {T, M} is an edge in $\Psi(\mathcal{R},I)$, in this case the graph is a complete bipartite graph.

Example2: Consider the ring of integers modulo 30, \mathbb{Z}_{36} .

Figure 2-The graph $\Psi(\mathbb{Z}_{36}, (3))$

Obviously, $\Psi(\mathbb{Z}_{36}, (3))$ is a complete bipartite graph. **Corollary 2.9:** If $M(\mathcal{R})=\{S, K\}$ with $S \neq K$, then the girth of $\Psi(\mathcal{R}, S)$) is either equal to 4 or ∞ . **Proof:** The prove follows from Proposition 2.3 and Theorem2.8. Next, we shall give the converse of Theorem 2.8. **Proposition2.10:** If $\Psi(\mathcal{R}, S)$ is a bipartite graph, then $|M(\mathcal{R})| \leq 2$ **Proof**: Let $\Psi(\mathcal{R}, S)$ be a bipartite graph with partite sets V_1 and V_2 . Since every two distinct maximal ideal vertex are adjacent, then each of V_1 and V_2 contains at most one maximal ideal vertex. Thus $|M(\mathcal{R})| \leq 2$.

The next main result shows the adjacency between maximal and non-maximal ideals of \mathcal{R} in $\Psi(\mathcal{R}, S)$.

Theorem2.11: Every non-maximal ideal vertex in $\Psi(\mathcal{R}, S)$ is adjacent to at least one maximal ideal vertex.

Proof: Let $K \notin M(\mathcal{R})$ be an ideal vertex in $\Psi(\mathcal{R}, S)$. We have the following cases:

Case1: Let $M(\mathcal{R})=\{I\}$. If S=I, then by Proposition2.4, $\Psi(\mathcal{R}, S)$ is null graph. Suppose that S \neq I. Clearly, S \subset I. Thus S \subset I+S. Let K \neq S be any ideal vertex of $\Psi(\mathcal{R}, S)$. If S \subset K, then by Lemma 2.2, K is adjacent to I in $\Psi(\mathcal{R}, S)$. Assume that S \notin K. Since S \subseteq S+K and S contains properly in I, then I adjacent to K in $\Psi(\mathcal{R}, S)$.

Case2: Let $|M(\mathcal{R})| \ge 2$. From Proposition 2.6, S is adjacent to all maximal ideal vertices. If $S \notin M(\mathcal{R})$, there exists $H \in M(\mathcal{R})$ such that $S \subset H$. It follows from $S \subseteq S + K$ that $S \subset H + K$. Thus K is adjacent to H. Now assume that $S \in M(\mathcal{R})$. Then we have two subcases for K and S:

Subcase1: Let $K \not\subset S$. Then $S \not= S + K$. Thus $S \subset K + S$. Hence K is adjacent to S.

Subcase2: Let $K \subset S$. Since $S \subseteq S+K$ and S is a maximal ideal then S+K=S. Thus we have $S \not\subset S+K$. That means, S and K are not adjacent ideal vertices in the graph $\Psi(\mathcal{R}, S)$. Since K is an ideal vertex in $\Psi(\mathcal{R}, S)$, then there exists $L \in V(\Psi)$ such that $S \subset K+L$. Now, if $L \in M(\mathcal{R})$, then the proof is completed. Otherwise, there exists $W \in M(\mathcal{R})$ contains properly L. It follows that $S \subset K+L \subset K+W$. Thus K is adjacent to W in $\Psi(\mathcal{R}, S)$.

Example3: The following graph shows that every non-maximal ideal vertex is adjacent to a maximal ideal vertex.

Figure 3-The graph $\Psi(\mathbb{Z}_{42}, (7))$

The next result shows that $\Psi(\mathcal{R}, S)$ contains a star with the same vertex set of $\Psi(\mathcal{R}, S)$.

Proposition2.12: If $S \in V(\Psi)$ - $M(\mathcal{R})$, then $M(\mathcal{R})$ contains an element that adjacent to all ideal vertices of $\Psi(\mathcal{R}, S)$. Moreover, $\Psi(\mathcal{R}, S)$ and $I(\mathcal{R})$ has the same cardinality.

Proof: Since $S \notin M(\mathcal{R})$, there exists $M \in M(\mathcal{R})$ such that $S \subset M$ Thus $S \subset I+M$, for any $I \in I(\mathcal{R}) - \{S,M\}$. This means that, M is adjacent to all ideal vertices of $\Psi(\mathcal{R}, S)$. Consequently, the order of the graph $\Psi(\mathcal{R}, S)$ is equal to the number of all non-trivial ideals of \mathcal{R} .

In the next result we give the necessary and sufficient condition for an ideal of \mathcal{R} to be ideal vertex of $\Psi(\mathcal{R}, S)$.

Theorem2.13: Let $S \in M(\mathcal{R})$. Then $K \in V(\Psi)$ if and only if $K \not\subseteq J(\mathcal{R})$.

Proof: Let $K \in V(\Psi)$ assume that $K \subseteq J(\mathcal{R})$. Then K+M=M, for every $M \in M(\mathcal{R})$. Therefore, $S \not\subset K+M$ for every $M \in M(\mathcal{R})$. This means that K is not adjacent to every $I \in M(\mathcal{R})$. This contradicts Theorem2.11. Therefore, $K \not\subseteq J(\mathcal{R})$.

Conversely, assume that $K \not\subseteq J(\mathcal{R})$, then there exists $I \in M(\mathcal{R})$ such that $K \not\subset I$. Since $I \subset K+I$, then $S \subset \mathcal{R}=K+I$. This means that $K \in V(\Psi)$.

Example 4: Consider the ring \mathbb{Z}_{54} .

Figure 4-The graph $\Psi(\mathbb{Z}_{54}, (3))$

Clearly, the ideals (6) and (18) are not vertices of $\Psi(\mathbb{Z}_{54}, (3))$, since (6), (18) $\subseteq J(\mathcal{R})=(6)$

In the next result we find the upper bound of the girth of $\Psi(\mathcal{R},S)$.

Theorem2.14: If $\Psi(\mathcal{R}, S)$ contains a cycle, then the girth of $\Psi(\mathcal{R}, S)$ is less than or equal to four.

Proof: If \mathcal{R} is a local ring and $\Psi(\mathcal{R},S)$ is a null graph, then $S \notin M(\mathcal{R})$ by Proposition2.4. Let $I \in M(\mathcal{R})$ and $K \in V(\Psi)$ such that $K \notin S$. Then by Remark 2.5, S is adjacent to K in $\Psi(\mathcal{R}, S)$. Furthermore, we have I adjacent to both S and K. Thus $C_3:I$, S, K, I is a cycle in $\Psi(\mathcal{R}, S)$. If $|M(\mathcal{R})| > 2$, then by Proposition2.3 we can easily find a cycle of length three. Suppose that $M(\mathcal{R})=\{I, J\}$ with $I \neq J$. Obviously, I and J are adjacent ideal vertices because $I+J=\mathcal{R}$. If either S=I or S=J, then by Corollary2.9, the girth of $\Psi(\mathcal{R},S)$) is equal to 4. Assume that neither S=I nor S=J. This yields that $S \notin M(\mathcal{R})$. From Proposition2.6, S is adjacent to both I and J. Thus C₃: I, S, J, I is a cycle in $\Psi(\mathcal{R}, S)$.

In the following result, we find the value of girth of $\Psi(\mathcal{R},S)$.

Proposition2.15: If $\Psi(\mathcal{R}, S)$ contains an edge {I,J}such that I, J \notin M(\mathcal{R}) and neither I \subseteq J nor I \subseteq J. Then the girth of $\Psi(\mathcal{R}, S)$ is equal to three.

Proof: Suppose that $\{I,J\}$ is an edge in $\Psi(\mathcal{R}, S)$ such that I, $J \notin M(\mathcal{R})$ and neither $I \subseteq J$ nor $I \subseteq J$. Then we have $I+J\neq I$ and $I+J\neq J$. Thus I, $J \subseteq I+J$. Since I, $J \notin M(\mathcal{R})$, then $I+J\neq \mathcal{R}$. By Lemma 2.2, I+J is adjacent to both I and J. Thus C_3 : I, (I+J), J, I is a cycle in $\Psi(\mathcal{R}, S)$. Hence the girth of $\Psi(\mathcal{R}, S)$ is equal to three. **3. Connectivity of \Psi(\mathcal{R}, S)**

In this section we investigate the connectivity of $\Psi(\mathcal{R},S)$ and some basic concepts related to connectivity.

We start this section with the following main result.

Theorem 3.1: The graph $\Psi(\mathcal{R}, S)$ is connected with diam($\Psi(\mathcal{R}, S)$) ≤ 3 .

Proof: Let I, $J \in V(\Psi)$ with $I \neq J$. If $I+J=\mathcal{R}$, then by Proposition 2.3 I is adjacent to J in $\Psi(\mathcal{R}, S)$. Assume that $I+J\neq\mathcal{R}$. We have the following cases for I and J:

Case1: If $I \in M(\mathcal{R})$ and $J \notin M(\mathcal{R})$, then by Theorem2.11, there exists $M \in M(\mathcal{R})$ adjacent to J in $\Psi(\mathcal{R}, S)$. If M=I, then P₁: I, J is a path in $\Psi(\mathcal{R}, S)$. Suppose that M≠I. From Proposition2.3, M is also adjacent to I. Thus P₂: J, M, I is a path in $\Psi(\mathcal{R}, S)$. Similarly, we can find a path between I and J of length at most two, when $J \in M(\mathcal{R})$ and $I \notin M(\mathcal{R})$.

Case 2: If I, J \notin M(\mathcal{R}), then by Theorem2.11, there exist H, L \in M(\mathcal{R}) such that I and J are adjacent to H and L respectively. If H=L, then we have a path P₂: I, H, J in $\Psi(\mathcal{R}, S)$. Suppose that H \neq L. By Proposition2.3, H and L are adjacent ideal vertices in $\Psi(\mathcal{R}, S)$. Thus P₃:I, H, L, J is a path in $\Psi(\mathcal{R}, S)$. From each case, we have shown that the graph $\Psi(\mathcal{R}, S)$ is connected and diam($\Psi(\mathcal{R}, S)$) \leq 3.

In the next result we show that the central vertex set of $\Psi(\mathcal{R}, S)$ contains a maximal ideal of \mathcal{R} .

Theorem 3.2: There exists at least one maximal ideal of \mathcal{R} which is a central vertex of $\Psi(\mathcal{R}, S)$.

Proof: If \mathcal{R} is a local ring and $\Psi(\mathcal{R}, S) \neq \emptyset$, then by Theorem2.12, $\Psi(\mathcal{R}, S)$ contains a maximal ideal which is a central vertex of $\Psi(\mathcal{R}, S)$. Now, suppose that \mathcal{R} is not a local ring and $S \notin M(\mathcal{R})$. Again by Theorem2.12, there exists $I \in M(\mathcal{R})$ such that I is adjacent to all ideal vertex of $\Psi(\mathcal{R}, S)$. Thus rad($\Psi(\mathcal{R}, S)$) = e(I)=1. Thus I is a central vertex of $\Psi(\mathcal{R}, S)$. Suppose that $S \in M(\mathcal{R})$. From Proposition2.4, $|M(\mathcal{R})| > 1$. We have the following cases:

Case1: If $M(\mathcal{R})=\{S, I\}$ with $S\neq I$, then by Theorem2.8, the graph $\Psi(\mathcal{R}, S)$ is a bi-partite graph with partite sets V_1 and V_2 . If $\Psi(\mathcal{R}, S)$ is a star, then either S or I is a central vertex. Assume that $\Psi(\mathcal{R}, S)$ is

not a star. Then by the same theorem the partition V_1 and V_2 are $V_1 = \{I\} \cup \{K \in V(\Psi); K \notin S\}$ and $V_2 = \{S\} \cup \{K \in V(\Psi); K \notin I\}$. Thus rad $(\Psi(\mathcal{R}, S)) = 2 = e(I)$. This means that I is a central of $\Psi(\mathcal{R}, S)$.

Case2: Suppose that $|M(\mathcal{R})| \ge 2$. If $V(\Psi) = M(\mathcal{R})$, then the prove is done. Assume that $\Psi(\mathcal{R}, S)$ has a non-maximal ideal vertex K. By Theorem 2.13, $K \not\subseteq J(\mathcal{R})$, then there exists $I \in M(\mathcal{R})$ which does not contain K. Hence $S \subset K+I=\mathcal{R}$. Clearly, if there exists $M \in M(\mathcal{R})$ such that $K \subset M$, then $S \not\subset K+M=M$. It follows that $\Psi(\mathcal{R},S)$ is not complete. From Theorem 2.11 and Proposition 2.3, $rad(\Psi(\mathcal{R},S))=e(P)$, for some $P \in M(\mathcal{R})$ adjacent to K in $\Psi(\mathcal{R},S)$.

Example5: In the following graph, $e((2)) = rad(\Psi(\mathbb{Z}_{56}, (4)))$ and the maximal ideal (2) is a central vertex of $\Psi(\mathbb{Z}_{56}, (4))$. (2)

Figure 5- The graph $\Psi(\mathbb{Z}_{56}, (4))$

In the next result we demonstrate that $M(\mathcal{R})$ includes all cut vertices of $\Psi(\mathcal{R}, S)$.

Theorem3.3: If I is a cut vertex of $\Psi(\mathcal{R}, S)$, then I is a maximal ideal of \mathcal{R} .

Proof: Suppose that I is a cut vertex of $\Psi(\mathcal{R}, S)$. Then the graph $\Psi(\mathcal{R}, S)$ -I is disconnected. Assume that $I \notin M(\mathcal{R})$. Let V_1 and V_2 be any two components of $\Psi(\mathcal{R}, S)$ -I with $N \in V_1$ and $M \in V_2$. If M, $N \notin M(\mathcal{R})$, then by Theorem2.11 there exist K, $L \in M(\mathcal{R})$ such that $\{M, K\}$ and $\{N, L\}$ are edges in V_1 and V_2 respectively. By Proposition 2.3, K and L are adjacent in $\Psi(\mathcal{R}, S)$. Suppose that $M \in M(\mathcal{R})$ and $N \notin M(\mathcal{R})$. Then there exist $H \in M(\mathcal{R}) \cap V_2$ such that N is adjacent to H in V_2 . If M, $N \in M(\mathcal{R})$ we get the same result. In each case we conclude that there exists two adjacent vertices in different component. This is impossible. Therefore $I \in M(\mathcal{R})$.

4. Completeness of $\Psi(\mathcal{R}, S)$

In this section we explain the minimally of S and the completeness of $\Psi(\mathcal{R}, S)$.

We start this section with the following results.

Theorem 4.1: If the graph $\Psi(\mathcal{R}, S)$ is complete, then S is a minimal ideal of \mathcal{R} .

Proof: Suppose that $\Psi(\mathcal{R}, S)$ is complete graph and S is not a minimal ideal. Then there is a non-trivial ideal K of \mathcal{R} such that $K \subset S$. It follows that $S \not\subset S + K$. This means that S and K are not adjacent ideal vertices. This contradicts that $\Psi(\mathcal{R}, S)$ is a complete. Hence S is a minimal ideal of \mathcal{R} .

The converse of Theorem4.1 may not be true, as the following example shows. **Example6**: Consider the ring of integers modulo 54.

Figure 6- The graph $\Psi(\mathbb{Z}_{54}, (27))$

Clearly, S=(27) is a minimal ideal, but $\Psi(\mathbb{Z}_{54},(27))$ is not a complete graph. The converse of Theorem4.1 will be true, if we determine the number of ideals of \mathcal{R} . **Proposition4.2:** Suppose that \mathcal{R} has four-non-trivial ideals I, J, K and S with $M(\mathcal{R})=\{I, J\}$ and S=I.J \neq (0). Then the graph $\Psi(\mathcal{R}, S)$ is complete if and only if S is a minimal ideal of \mathcal{R} .

Proof: It is obvious from Theorem4.1 that S is a minimal ideal of \mathcal{R} when $\Psi(\mathcal{R}, S)$ is complete.

Conversely, let S be a minimal ideal of \mathcal{R} . Since I and J are maximal ideals, then S is adjacent to I, J and K by Theorem2.6. Since $K \notin M(\mathcal{R})$, K contained in at least one maximal ideal of \mathcal{R} , let be I. Then $S \subset I+K$ and $S \subset J+K=\mathcal{R}$. This means that, both I and J are adjacent to K. Hence any two distinct ideal vertices of I, J, K and S are adjacent in $\Psi(\mathcal{R}, S)$.

Example7: The graph $\Psi(\mathbb{Z}_{18}, (6))$ is a complete graph.

Figure 7- The graph $\Psi(\mathbb{Z}_{18}, (6))$

The next result investigate the completeness of $\Psi(\mathcal{R}, S)$.

Theorem 4.3: If $I(\mathcal{R})$ consists of the chain $S = I_1 \subset I_2 \subset ... \subset I_n = I$, then $\Psi(\mathcal{R}, S)$ is complete graph. **Proof:** Obviously, I is adjacent to all $J \in I(\mathcal{R})$ in $\Psi(\mathcal{R}, S)$.

Since $S = I_1 \subset I_2 \subset ... \subset I_n = I$, we have $S \subset I_i + I_j$, for every i, j = 1, 2, ..., n with $i \neq j$. Thus S is adjacent to I_i for i = 2, ..., n and every two distinct ideals of \mathcal{R} are adjacent in $\Psi(\mathcal{R}, S)$. Hence $\Psi(\mathcal{R}, S)$ is a complete graph. In the next result we find the chromatic number of $\Psi(\mathcal{R}, S)$.

Theorem 4.4: If the ideals of \mathcal{R} consists of the chain $I_1 \subset I_2 \subset ... I_{n-1} \subset I_n$ with $n \ge 3$, then the chromatic number of $\Psi(\mathcal{R}, I_m)$ is $\chi(\Psi(\mathcal{R}, I_m)) = n - (m - 1)$, for every m=1, 2, ..., n-1.

Proof: If m=1, then the graph $\Psi(\mathcal{R}, I_m)$ is complete and the formula is satisfied. Let m=2. Then $I_2 \subset I_i+I_j$, for all i, j=2,...,n with $i \neq j$. Thus there is a complete subgraph K_{n-1} of $\Psi(\mathcal{R}, I_2)$ whose vertices are I_2 , I_3 , ..., I_n . So, we have n-1 different colours of K_{n-1} . On the other hand $I_1 \subset I_2$ and $I_2 \not\subset I_1 + I_2$. This means that I_2 is not adjacent to I_1 . Thus I_1 and I_2 have the same colour. Hence $\chi(\Psi(\mathcal{R}, I_2))=n-1=n-(m-1)$, when m=2. In general, if $1 \leq m \leq n-1$, then $\Psi(\mathcal{R}, I_m)$ contains a complete subgraph whose vertices are I_m , I_{m+1}, \ldots, I_{n-1} . Since $I_1 \subset I_2 \subset \ldots \subset I_m$, every two of vertices I_1, I_2, \ldots, I_m are not adjacent. So, the vertices $I_m, I_{m+1}, \ldots, I_{n-1}$ have n-m different colours but I_1, I_2, \ldots, I_m have the same colour. Thus $\chi(\Psi(\mathcal{R}, I_m)) = n-m+1=n-(m-1)$.

Example8: Consider the following graphs:

Figure 8- The graph $\Psi(\mathbb{Z}_{32}, (4))$

Figure 9- The graph $\Psi(\mathbb{Z}_{32}, (8))$

It is clear from Figure- that $\Psi(\mathbb{Z}_{32},(4))$ is $K_{1,3}$, so we can choose two distinct colours for the sets $\{(2)\}$ and $\{(16), (8), (4)\}$ respectively. Hence $\chi(\Psi(\mathbb{Z}_{32},(4)))=2$.

From Figure-9, we can choose three distinct colours for the sets $\{(2)\}$ and $\{(16), (8)\}$ and $\{(4)\}$ respectively. thus $\chi(\Psi(\mathbb{Z}_{32},(4)))=3$

References

- 1. Beck, I. 1988. Coloring of commutative rings, J. Algebra, 116: 208–226.
- **2.** Behboodi, M. and Rakeei, Z. **2011**. The Annihilating-Ideal Graph of Commutative Rings I, *J. of Algebra and Appl.*, **10**(4): 727-739.
- **3.** Ahrari, M., Safari, S. and Amini, B. **2015**. On the Girth of the Annihilating-Ideal Graph of Commutative Rings, *J. of Linear and Topological Algebra*, **4**(3): 209-216.
- 4. Anderson, D. F. and Livingston, P. S. 1999. The zero divisor graph of a commutative ring, *Journal* of Algebra, 217: 434-447.
- **5.** Lalchandani, T. P. **2017**. Exact Annihilating-Ideal Graph of Commutative Rings, *J. of Algebra and Related Topics*, **5**(1): 27-32.
- 6. Selvakumar, K. and Subbulakshmi, P. 2018. On the Cross-cap of the Annihilating-Ideal Graph of a Commutative Ring, *Palestine Journal of Mathematics*, 7(1): 151-160.
- 7. David, S. and Richard, M. 1991. Abstract Algebra, Prentice-Hall Inc. U. S. A.
- 8. Gary, C. and Linda, L. 1986. *Graphs and Digraphs*, 2nd ed., Wadsworth and Brooks/Cole. California.