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Abstract 

     Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules. 

     The main purpose of this paper is to develop the properties of Rickart modules . 

We prove that each injective and prime module is a Rickart module. And we give 

characterizations of some kind of rings in term of Rickart modules. 
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مقاسات الريكارتيةحول   
 

 بهار حمد البحراني ,ان*محمد قادر رحم
 قسم الرياضيات ، كلية العلهم ، جامعه بغداد ، بغداد ، العراق

 
 الخلاصه

Gangyong Lee, S.Tariq Rizvi  ,  and Cosmin S.Roman 
اولي اغماري و ا ان كل مقاس. برهنا  درسها المقاسات الريكارتية. الهدف الرئيسي من هذا البحث هه تطهير خهاص المقاسات الريكارتية       

 .  المقاسات الريكارتية لبعض انهاع الحلقات بهاسطة  يكهن مقاسا ريكارتيا وايضا اعطينا تعاريف مكافئه

1  INTRODUCTION 

      A module   is called a Rickart module if for every             , then  

         for some       .Equivalently a module  is a Rickart module if and only if for every 

            then      is a direct summand of  , See [1], [2] . 

     In this paper, we give some results on the Rickart modules . 

 In §2 ,we give characterization of the Rickart modules. Also we study the direct sum of  Rickart 

modules. For example we prove that an  -module   is Rickart if and only if            , 

for every endomorphism      , see Theorem (2.2).  

     In section 3, we give characterizations of certain classes of rings in term of the Rickart modules. 

For example we prove that a ring   is semisimple if and only if all injective  -module is Rickart , see 

Theorem (3.12). 

     Throughout this article,   is a ring with identity and   is a unital left  -module. For a left module 

 ,           will denote the endomorphism ring of  . The notations          mean that 

  is a submodule, a direct summand of  .  

2   CHARACTERIZATIONS OF RICKART MODULES 

       In this section , we give a characterizations for the Rickart modules. Following [1] , A module   

is called a Rickart module if for every          ),         , for some        . It’s 

known that every direct summand of a Rickart module is a Rickart module. 

Remark 2.1: Let   be an  -module and        be an  -homomorphism. 
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Let        ,        and   ̅       be a map defined by  

 ̅      (      ), for every    . It is clear that           ,   ̅ is an  -

homomorphism and     ̅        . Let    {   ̅        }.Clearly that    is a submodule 

of      . 

     In this paper by          ̅     we mean the same  concepts in the previous above Remark. 

Theorem 2.2: An  - module   is Rickart module  if and only if for every  - homomorphism 

             is a direct summand of     . 

Proof: Let   is Rickart module  and       be an  -homomorphism. Then     is a direct 

summand of   and hence     ̅         is a direct summand of     . Claim that     ̅  
     . To show that ,let           .̅ Then 

              ̅           . Now let            . So there exists      such that 

              ̅              (       )  (        ). Hence      and       

 . Thus           .̅ 

For the converse, since           ̅       and     ̅    ,Then 

     ̅             . So          Thus   is a Rickart module. 

       Recall that An  -module   is called a prime  -module if ann(x)=ann(y), for every non zero 

elements x and y in   [3]. 

       In the following proposition we give conditions under which an  -module   can be Rickart. 

Propositions 2.3: Let   be an injective and prime  -module, then   is a Rickart module 

Proof: Let       be an  -homomorphism. Since   is injective and prime. Then      is 

injective and prime. Since         , Then    is injective. 

First claim that          . To show that let            Hence 

            (      )  (      )       . It is clear that       (      )     and 

 (      )          . So             

Now let        ̅           . (      )         and hence m=0. Thus     

       Thus     is injective . 

Let   be an ideal of   and           be a non zero homomorphism. 

Let             and             be the inclusion homomorphisms. 

Thus           and          . By Baer’s Criterion [4,Th(5.7.1)P.13] there exists   

            , such that                                   . Thus         . 

Assume that      Since                M is prime, then         .Thus    , which is a 

contradiction, therefore            and hence       is injectiv 

Now consider the short exact sequence 

       

 
    

 
 

   

     
   

     Where   is the inclusion map and   be the natural epimorphism. The sequence splits, as shown by 

[4]. Hence              By theorem (2.2),   is a Rickart module. 

     The converse of the above proposition is not always true. For example. 

Consider    as Z-module.   is semismple and hence    is Rickart. But    is neither injective nor 

prime. 

Propositions 2.4: Let   be an  -module such that for every homomorphism      ,       is 

projective, then   is Rickart module. 

Proof: Let       be an  -homomorphism, consider the following short exact sequences 

       

  
   

  
 

  

     
   

    

  
      

  
 

     

  
   

     Where        are the inclusion homomorphisms and       are the natural epimorphisms. 

By the second isomorphism theorem
  

     
 

     

  
. Since    is a direct summand of    and 

        , then    is a summand of      . Thus the second squence splits. But        is 
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projective, thus 
  

     
 

     

  
 is projective. Hence the first squence splits. Thus        is a 

summand of    . Since    is a summand of    , then        is a summand of    . By the 

same argument of the prove of theorem 2.2,            ̅       , therefor        is a 

summand of    . Since          , Then        is a summand of    and hence      is 

a summad of  . Thus   is a Rickart module 

The converse is not true as the following example shows: 

     consider    as Z-module,    is semisimple and hence is a Rickart. It’s is known that    is not 

projective. Let       be an  -homomorphism. One can easily show that 

    
       

    ̅. 

Now assume that    
    is projective, then    

    is projective which is a contradiction. 

However, we have the following 

Theorem 2.5: Let   be a projective  -module, Then   is a Rickart module if and only if for every  - 

homomorphism      ,       is a projective  -module. 

Proof: Suppose that   is a Rickart module and let        be an  -homomorphism. Now consider 

the following short exact sequences 

       

  
   

  
→ 

  

     
   

    

  
      

  
→ 

     

  
   

Where       are the inclusion homomorphisms and      are the natural epimorphisms. Since   is a 

Rickart module, then      is a summand of  . By the same argument of the prove of theorem 2.2 

          ̅         , hence       is a summand of   . Thus the first squence splits. But 

  =       and    is projective , there for    is projective. Then 
  

     
 is projective. By the 

second isomorphism theorem   
  

     
 

     

  
 .Thus 

     

  
 is projective. Hence the second squence splits. But  

          , therefor    is projective. Thus        is projective,  

(where          
     

  
). 

     Let   and   be two  -modules. Recall that   is called  -Rickart (or relatively Rickart to  ) if, 

for every  -homomorphism      ,      is a summand of   [1]. 

    Before giving our next resulte, we need the following. 

Propositions 2.6.[1]: The following are equivalent for a module   

(1)   is a Rickart module ; 

(2) For every submodule   of     every direct summand   of    is  -Rickart. 

Propositions 2.7: Let   ba an indecomposable  -module and let   be any  -module if   is  -

Rickart, then either 

(1)         =0   or 

(2) Every nonzero  -homomorphism from   to   is a monomorphism 

Proof: Assume that          ≠ 0  and let       be a nonzero   –homomorphism, Since   is 

 -Rickart, then       is a summand of  . But   is indecomposable. So          and   is a 

monomorphism. 

      Recall that an  -module   is called a Quasi-Dedekind  -module if every nonzero endomorphism 

of   is a monomorphism [6 , Th(1.5) , CH2]. 

Corollary 2.8: Let   be an indecomposable  -module and let   be any  -module such that 

        ≠ 0 .If   is  -Rickart ,then   is Quasi-Dededkind. In particular if   is Rickart, then   is 

Quasi-Dedekind 

Proof: By Prop.2.7, there is a monomorphism      . Assume   is not Quasi-Dedekind  -

module, therefore there exists a nonzero endomorphism       such that       . Since   is a 

monomorphism ,then                 . Since   is  -Rickart, then          and hence 

        where   indecomposable. Thus 

      which is a contradiction. Thus    is a Quasi-Dedekind  -module. 
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3 CHARACTERIZATIONS OF RINGS BY MEANS OF RICKART MODULES 

     It’s known The direct sum of the Rickart modules need not be a Rickart module, see[1], [2]. 

     In this section, we give a conditions under which a direct sum of Rickart modules is a Rickart 

module. 

Proposition3.1: Let   be an  -module, If   is  -Rickart, then every cyclic submodule of   is 

projective. In particular if   is an  -Rickart module, then every Principale ideal is projective ideal, i.e. 

,   is a p.p.ring 

Proof: Let    , consider the following short exact sequence 

      
 
  

 
      

     where i is the inclusion homomorphism and   is defined as follows             . 

Let         be the inclusion homomorphism. Now consider         . Since   is  -Rickart. 

Then               a summand of R. But    is a monomorphism, therefore                . 

Thus  the sequence is split and hence    is summad of    since   is a projective R-module. Then    

is projective. 

     Recall that an  -module   is called dualizable if         ≠ 0, [5] 

Corollary3.2: Let   be a dualizable indecomposable  -module and   is  -Rickart, then   is 

isomorphic to an ideal of  . Hence if   has no nonzero nilpotent elements, then      is commutative 

,where      is the ring of  - endomorphism of  . 

Proof: Since         ≠ 0, then by Prop (2.7)   is isomorphic to an ideal   of   and hence 

         . For the second part, since   has no nilpotent elements and   is an ideal in  , Then      

is commutative[7,prop (2.1)CH1]. Thus      is commutative 

Corollary3.3: Let   be a projective indecomposable  -module and   has no nonzero nilpoten 

element. If    is an  -Rickart module and           , then   is a multiplication module. 

Proof: By the same argument of the proof of Cor(3.2) ,      is a commutative and hence   is 

multipliction [8] 

      Recall that an  -module   is called an SIP module if the intersection of any two direct summands 

of   is also a direct summand of   [9]. It is known that every Rickart module is an SIP module [1]. 

     Before we give our next result , we need the following 

Theorem 3.4.[9]: Let   be a Noetherian domain and let   be an injective  -module .If   has the SIP, 

then either 

(1)   is torsion free      or  

(2)   is torsion and for any two distinct indecomposable summands   and   of  ,         =0 

Now, we prove that 

Theorem 3.5: Let   be a Noetherian domain and let   be an injective  -module, then the following 

are equivalent 

(1)      is a Rickart module . 

(2)   is torsion free .  

(3)     is Rickart module, for every index set  . 

Proof: (1)⇒(2) Since    is a summand of    , then   is Rickart and hence   has the      By Th 

(3.4)   is either torsion or torsion free. Suppose   is torsion, so     is torsion. Since   is 

noetherian domain, then by [4,Th(6.6.2),p.162],          where    is an indecomposable 

submodule of  , now let      and hence   

            

 
 
 
 
[
    

       

   

 
]
 
 
[
    

       

   

 
 

] 

mmmmmNow         is Rickart and injective ,thus by Cor (2.8)    is Quasi-Dedekind and hence  

    is prime by [6,prop (1.7),p.26] which is a contradiction.To verify this suppose      is prime. 

Since M is torsion ,then     is torsion. But      is injective over integral domain ,therefor     is 

divisible. Now let 0         and let 0≠r   annx . Since      is divisible , then x=ry for some  

       Thus      is not prime. 

(2)⇒(1) since   is torsion free, then      is torsion free. Hence       is prime and injective. 

Thus      is a Rickart module ,by Prop (2.3). 
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(2)⇒ (3) Since   is torsion free, then   is prime and hence     is prime for every index set  .But 

    is injective, then by Prop (2.3),     is a Rickart module. 

Recall that  A ring   is a left semihereditary if every finitely generated left ideal is projective[10]. 

Befor we give our next result, we need the following 

Theorem 3.6.[2]: A ring   is a left semihereditary if and only if every finitely generated projective 

(free)  -module is a Rickart module. 

Theorem 3.7: The following statements are equivalent for a commutative ring   

(1)   is a semiheredatary ring. 

(2)       s Rickart for every finite index set I. 

(3)       is a Rickart R-module 

Proof:(1) (2) Clear by Th 3.6 

(2)⇒     Clear 

(3)⇒(1) Let         be two generated ideal in  . 

Define              by                   It is clear that   is an epimorphism. Let 

          be the inclusion map. Since           and       is Rickart, then 

          is a summand by Prop(2.6) .It is clear that i is a monomorphism, therefore           
     is a summand of R, Thus       is a projective  -module. One can show that   is 

semihereditary[11]. 

We end this section by the following 

Theorem 3.8: The following conditions are equivalent for a ring   

(1)  is semisimple. 

(2)All  -modules are Rickart. 

(3)All injective  -modules are are Rickart. 

Proof: (1) (2) (3) It is clear. 

(3)     Let  be any  -module, there is an injective  -module    and a monomorphism        , 

by [4] Likewise, there is an a monomorphism    
  

    
     for some injective  -module   . Let 

     
  

    
 be the natural epimorphism. Now consider           . Note that        is 

injective and hence by assumption       is Rickart, then by Prop(2.6)         -Rickart.Thus 

        is a summand of   . But    is a monomorphism, then                      is 

summand of    , Thus      is injective. Since       . Then   is injective. Then by 

[4.cor(8.2.2)P.196]   is semisimple. 
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