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Abstract
Gangyong Lee, S.Tarig Rizvi, and Cosmin S.Roman studied Rickart modules.
The main purpose of this paper is to develop the properties of Rickart modules .
We prove that each injective and prime module is a Rickart module. And we give
characterizations of some kind of rings in term of Rickart modules.
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1 INTRODUCTION

A module M is called a Rickart module if for every ¢ € S = End(M) , then
kergp = eM for some e? = e € S.Equivalently a module is a Rickart module if and only if for every
@ €S = End(M), then ker¢ is a direct summand of M, See [1], [2] .

In this paper, we give some results on the Rickart modules .

In 82 ,we give characterization of the Rickart modules. Also we study the direct sum of Rickart
modules. For example we prove that an R-module M is Rickart if and only if Ay NTy <g M D M,
for every endomorphism f: M — M, see Theorem (2.2).

In section 3, we give characterizations of certain classes of rings in term of the Rickart modules.
For example we prove that a ring R is semisimple if and only if all injective R-module is Rickart , see
Theorem (3.12).

Throughout this article, R is a ring with identity and M is a unital left R-module. For a left module
M, S = Endgr (M) will denote the endomorphism ring of M. The notations N < M, N <gq M mean that
N is a submodule, a direct summand of M.

2 CHARACTERIZATIONS OF RICKART MODULES

In this section , we give a characterizations for the Rickart modules. Following [1] , A module M
is called a Rickart module if for every ¢ € S = End(M), kerg = eM, for some e? =e €S. It’s
known that every direct summand of a Rickart module is a Rickart module.

Remark 2.1: Let M be an R-module and f: M — M be an R-homomaorphism.
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Let Ayy = M®O0, By, = 0 D M and f: Ay, — By, be a map defined by

f(m,0)=(0,f(m)), for every me M. It is clear that M DM =Ay, @By, f is an R-
homomorphism and kerf = kerf @ 0. Let T = {x + f(x), x € Ay }.Clearly that T; is a submodule
of MP M.

In this paper by Ay , By , f , Tr We mean the same concepts in the previous above Remark.
Theorem 2.2: An R- module M is Rickart module if and only if for every R- homomorphism
f:M - M, AyNT; is adirect summand of M & M.

Proof: Let M is Rickart module and f:M — M be an R-homomorphism. Then ker fis a direct
summand of M and hence kerf = kerf @ 0 is a direct summand of M @ M. Claim that kerf =
Ay NTg. To show that let (m, 0) € kerf. Then
(m,0) = (m,0) + f(m,0) € AyNT;. Now let (m,0) € Ay NT;. So there exists m; € M such that
(m,0) = (my,0) + f(_ml, 0) = (my,0) + (0, f(my)) = (my, f(my)). Hence m = m; and f(m,) =
0. Thus (m, 0) € kerf.
For the converse, since Ay NTy = kerf <g M @ M and kerf < Ay, Then
kerf = kerf @ 0 <g M @ 0. So kerf <g M. Thus M is a Rickart module.
Recall that An R-module M is called a prime R-module if ann(x)=ann(y), for every non zero
elements x and y in M [3].
In the following proposition we give conditions under which an R-module M can be Rickart.
Propositions 2.3: Let M be an injective and prime R-module, then M is a Rickart module
Proof: Let f: M — M be an R-homomorphism. Since M is injective and prime. Then M @ M is
injective and prime. Since Ay <qg M @ M, Then A4, is injective.
First claim that M €@ M = T € By,. To show that let (x,y) € M & M. Hence
(,y) =(x,0) + (O,f(x)) — (O,f(x)) + (0,y). It is clear that (x,0)+ (O,f(x)) €Ty and
—(0,f(x)) 4+ (0,y) € By. SO M @ M =Ty + By.
Now let (m,0) + f(m,0) € TyNBy. (m,f(m)) € By =0@ M and hence m=0. Thus M @ M =
Ty @ By. Thus Ty is injective .
Let I be an ideal of R and g: I — Ay NT be a non zero homomorphism.
Letiy: AyNT; » Ay and iy: Ay NT - T be the inclusion homomorphisms.
Thus iy0g:1 > Ay and iyog:1 > T;. By Baer’s Criterion [4,Th(5.7.1)P.13] there exists a €
Ay and b € T, such that g(w) =wa and g(w) = wb, for eachw € 1. Thus w(a—b) =0.
Assume that a # b. Since w € ann(a — b) and M is prime, then w € ann(a).Thus g = 0, which is a
contradiction, therefore a = b € Ay NT; and hence Ay, NT; is injectiv
Now consider the short exact sequence
i nM@M
OAAMnﬂeM@M%AMnn

Where i is the inclusion map and & be the natural epimorphism. The sequence splits, as shown by
[4]. Hence AyNTr <g M @ M. By theorem (2.2), M is a Rickart module.

The converse of the above proposition is not always true. For example.

Consider Z4 as Z-module.Zg is semismple and hence Zg is Rickart. But Zg is neither injective nor
prime.
Propositions 2.4: Let M be an R-module such that for every homomorphism f:M — M, Ay + Tf is
projective, then M is Rickart module.
Proof: Let f: M — M be an R-homomorphism, consider the following short exact sequences
i A
0—>AMan—1>AM£1>AMfo—>O

i fo Ay + T
OﬁngAM‘FTf—z) M f

-0

-0

f
Where i,, i, are the inclusion homomorphisms and f;, f, are the natural epimorphisms.
Apm - AM+Tf
AMan - Ty
Tr € Ay + T, then Tf is a summand of Ay + Tr. Thus the second squence splits. But Ay + Ty is

By the second isomorphism theorem . Since Ty is a direct summand of M @ Mand
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projective, thus Am_ AT projective. Hence the first squence splits. Thus Ay, NT; is a
AyNTy Tr

summand of A,. Since A is a summand of M @ M, then A, NT; is a summand of M M. By the
same argument of the prove of theorem 2.2, kerf @ 0 = kerf = TrNAy, therefor kerf @0 is a
summand of M @ M. Since kerf @ 0 € Ay, Then kerf @ 0 is a summand of A,, and hence kerf is
a summad of M. Thus M is a Rickart module
The converse is not true as the following example shows:

consider Z, as Z-module, Z, is semisimple and hence is a Rickart. It’s is known that Z, is not
projective. Let f: Z — Z be an R-homomorphism. One can easily show that
Az + Ty = Az, @ Imf.
Now assume that Az + T is projective, then A, = Zg is projective which is a contradiction.
However, we have the following
Theorem 2.5: Let M be a projective R-module, Then M is a Rickart module if and only if for every R-
homomorphism f: M — M, Ay + T is a projective R-module.
Proof: Suppose that M is a Rickart module and let f: M — M be an R-homomorphism. Now consider
the following short exact sequences

i1 T AM
0—>AMr1Tf—>A,\,,—>AMnTf 0
' Ay + T
0> T34+ TS T 59

f
Where i,, i, are the inclusion homomorphisms and m,, ,are the natural epimorphisms. Since M is a
Rickart module, then kerf is a summand of M. By the same argument of the prove of theorem 2.2
erf @ 0 = kerf = AyNT; , hence Ay NTf is a summand of A,. Thus the first squence splits. But

Ay=M @ 0 =M and M is projective , there for A, is projective. Then " A;‘]”T is projective. By the
mNT¢

second isomorphism theorem

A Apy+T Ap+Tr . R . .
M~ ZMT T Thus £ s projective. Hence the second squence splits. But
AMan Ty Ty

M @ M = T;@®B), , therefor T is projective. Thus A, + T is projective,
(where Ay + Tr =~ T; @ AMT+Tf).
f

Let M and N be two R-modules. Recall that M is called N-Rickart (or relatively Rickart to N) if,
for every R-homomorphism f: M — N, kerf is a summand of M [1].

Before giving our next resulte, we need the following.
Propositions 2.6.[1]: The following are equivalent for a module M
(1) M is a Rickart module ;
(2) For every submodule N of M, every direct summand L of M is N-Rickart.
Propositions 2.7: Let M ba an indecomposable R-module and let N be any R-module if M is N-
Rickart, then either
(1) Hom(M,N)=0 or
(2) Every nonzero R-homomorphism from M to N is a monomorphism
Proof: Assume that Hom(M,N) # 0 and let f: M — M be a nonzero R —homomorphism, Since M is
N-Rickart, then kerf is a summand of M. But M is indecomposable. So kerf = {0} and f is a
monomorphism.

Recall that an R-module M is called a Quasi-Dedekind R-module if every nonzero endomorphism
of M is a monomorphism [6 , Th(1.5) , CH2].
Corollary 2.8: Let M be an indecomposable R-module and let N be any R-module such that
Hom(M, N)# 0 .If M is N-Rickart ,then M is Quasi-Dededkind. In particular if M is Rickart, then M is
Quasi-Dedekind
Proof: By Prop.2.7, there is a monomorphism f: M — N. Assume M is not Quasi-Dedekind R-
module, therefore there exists a nonzero endomorphism g: M — M such that kerg # 0. Since f is a
monomorphism ,then ker(f o g) = kerg # 0. Since M is N-Rickart, then kerg <qg M and hence
kerg = M, where M indecomposable. Thus
g = 0, which is a contradiction. Thus M is a Quasi-Dedekind R-module.
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3 CHARACTERIZATIONS OF RINGS BY MEANS OF RICKART MODULES

It’s known The direct sum of the Rickart modules need not be a Rickart module, see[1], [2].

In this section, we give a conditions under which a direct sum of Rickart modules is a Rickart
module.
Proposition3.1: Let M be an R-module, If R is M-Rickart, then every cyclic submodule of M is
projective. In particular if R is an R-Rickart module, then every Principale ideal is projective ideal, i.e.
, Risap.p.ring
Proof: Let m € M, consider the following short exact sequence

OAMﬁiRiRmHO

where i is the inclusion homomorphism and f is defined as follows f(r)=rm,Vvr €R.
Leti,: Rm — M be the inclusion homomorphism. Now consider i, o f: R — M. Since R is M-Rickart.
Then ker(i, o f) isa summand of R. But i, is a monomorphism, therefore kerf = ker(i, o f) =.
Thus the sequence is split and hence Rm is summad of R, since R is a projective R-module. Then Rm
is projective.

Recall that an R-module M is called dualizable if Hom(M, R)# 0, [5]
Corollary3.2: Let M be a dualizable indecomposable R-module and M is R-Rickart, then M is
isomorphic to an ideal of R. Hence if R has no nonzero nilpotent elements, then E (M) is commutative
,where E (M) is the ring of R- endomorphism of M.
Proof: Since Hom(M, R)# 0, then by Prop (2.7) M is isomorphic to an ideal I of R and hence
E(M) = E(I). For the second part, since R has no nilpotent elements and I is an ideal in R, Then E(I)
is commutative[7,prop (2.1)CH1]. Thus E (M) is commutative
Corollary3.3: Let M be a projective indecomposable R-module and R has no nonzero nilpoten
element. If M is an R-Rickart module and Hom(M, R) # 0, then M is a multiplication module.
Proof: By the same argument of the proof of Cor(3.2) , E(M) is a commutative and hence M is
multipliction [8]

Recall that an R-module M is called an SIP module if the intersection of any two direct summands
of M is also a direct summand of M [9]. It is known that every Rickart module is an SIP module [1].

Before we give our next result , we need the following
Theorem 3.4.[9]: Let R be a Noetherian domain and let M be an injective R-module .If M has the SIP,
then either
(1) M is torsion free  or
(2) M is torsion and for any two distinct indecomposable summands A and B of M, Hom(A, B)=0
Now, we prove that
Theorem 3.5: Let R be a Noetherian domain and let M be an injective R-module, then the following
are equivalent
(1) M @ M is a Rickart module .
(2) M is torsion free .
(3) @, M is Rickart module, for every index set A.
Proof: (1)=(2) Since M is a summand of M @ M, then M is Rickart and hence M has the SIP. By Th
(3.4) M is either torsion or torsion free. Suppose M is torsion, so M €@ M is torsion. Since R is
noetherian domain, then by [4,Th(6.6.2),p.162], M =@ep M« Where M, is an indecomposable
submodule of M, now let «,€ A and hence

M®M = M. DOM. D [D xen MM] o) [GB «EA Mo(]
XFEXo XFEXo

mmmmmNow M. M., is Rickart and injective ,thus by Cor (2.8) M,.is Quasi-Dedekind and hence
My, is prime by [6,prop (1.7),p.26] which is a contradiction.To verify this suppose M, is prime.
Since M is torsion ,then M, is torsion. But M., is injective over integral domain ,therefor M, is
divisible. Now let 0 # x € M,, and let O#r € annx . Since M, is divisible , then x=ry for some
Yy € My, .Thus M, is not prime.

(2)=(1) since M is torsion free, then M @ M is torsion free. Hence M@M is prime and injective.
Thus M@®M is a Rickart module ,by Prop (2.3).
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(2)= (3) Since M is torsion free, then M is prime and hence @ M is prime for every index set A.But
@, M is injective, then by Prop (2.3), @, M is a Rickart module.

Recall that A ring R is a left semihereditary if every finitely generated left ideal is projective[10].
Befor we give our next result, we need the following

Theorem 3.6.[2]: A ring R is a left semihereditary if and only if every finitely generated projective
(free) R-module is a Rickart module.

Theorem 3.7: The following statements are equivalent for a commutative ring R

(1) R is a semiheredatary ring.

(2) @;R is Rickart for every finite index set I.

(3) RORPR is a Rickart R-module

Proof:(1)<(2) Clear by Th 3.6

(2= (3) Clear

(3)=(1) Let I = Ra + Rb be two generated ideal in R.

Define f:R®R - Ra+Rb by f(r,1;) =rja+ b It is clear that f is an epimorphism. Let
i:Ra+ Rb— R be the inclusion map. Since io f:R®R — Rand R @ R @ Ris Rickart, then
ker(i o f) is a summand by Prop(2.6) .It is clear that i is a monomorphism, therefore ker(io f) =
kerfis a summand of R, Thus Ra + Rb is a projective R-module. One can show that R is
semihereditary[11].

We end this section by the following

Theorem 3.8: The following conditions are equivalent for a ring R

(DR is semisimple.

(2)All R-modules are Rickart.

(3)All injective R-modules are are Rickart.

Proof: (1)—(2)—(3) It is clear.

(3)= (1) Let Mbe any R-module, there is an injective R-module E; and a monomorphism g;.M — Ej,
by [4] Likewise, there is an a monomorphism gz:”i—lg1 — E,, for some injective R-module E,. Let

f:E - Iilgl
injective and hence by assumption E;@®E, is Rickart, then by Prop(2.6) E; is E,-Rickart.Thus
kerg, o f is a summand of E;. But g, is a monomorphism, then ker(g, o f) = kerf = Img, is
summand of E;, Thus Img, is injective. Since M =Img,;. Then M is injective. Then by

[4.cor(8.2.2)P.196] R is semisimple.

be the natural epimorphism. Now consider g, o f:E; = E,. Note that E;®E, is
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