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Abstract  

     The primary objective of this work pertains to the examination of a new class of 

grill topological spaces denominated as AE-space. This nomenclature is rooted in 

the delineation of said spaces upon a non-empty set, upon which a myriad of 

topological structures is imposed via an arbitrary grill. The construction of these 

grill topologies precedes the establishment of our nascent topological construct 

through the intersection of these individualized topologies. In this discourse, we 

introduce and rigorously define the notions of AE-open sets and AE-closed sets. 

Furthermore, we establish the result that the AE-space exhibits the fundamental 

attributes of a topological space, assuming the absence of pairwise disjoint non-

empty sets within the intersection of the grill topologies. Illustrative instances of 

such AE-spaces are furnished, accompanied by a comprehensive demonstration of 

their pertinent properties. 

 

Keywords: Grill, AE-open set, AE -closed set, AE -space, AE -interior operator and 

AE -closure operator.  

 

گرلية نوع جديد من الفضاءات التبولوجية ال  
 

 رنا بهجت اسماعيل
ابن الهيثم, جامعة بغداد, بغداد, العراق -الرياضيات, كلية التربية للعلوم الصرفة    

 

  الخلاصة 
التبولوجية        يتمثل في تعريف نوع جديد من الفضاءات  العمل  المعروفة    گرلية الالهدف الأساسي من هذا 

". ينبع هذا المصطلح من وصف هذه الفضاءات على مجموعة غير خالية، حيث يتم فرض    AEباسم "فضاء  
إنشاء    گرلية العلى مجموعه. يسبق بناء هذه التبولوجيات    گرلية المجموعة متنوعة من الفضاءات التوبولوجية  

. في هذا السياق، نقوم بتقديم وتعريف دقيق  گرلية البنية توبولوجية جديدة من خلال تقاطع هذه التوبولوجيات  
". علاوة على ذلك، نثبت النتيجة التي تفيد بأن  AE" والمجموعات المغلقة "AEلمفاهيم المجموعات المفتوحة "

" يتمتع بالسمات الأساسية لفضاء توبولوجي، على أن نفترض عدم وجود مجموعات غير خالية  AEالفضاء "
"، مرفقة بشرح شامل للخصائص ذات  AE. نقدم أمثلة توضيحية للفضاءات "گرليةالداخل تقاطع التبولوجيات  

 الصلة بالمفهوم قيد الدراسة.
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1. Introduction 

     Grill topological spaces are a given set with a topology based on the grill concept, where 

the open set is generalized to topological spaces, using the grill concept [1]. 

     In grill topological spaces, topology is defined using a set of functions that cover the space 

and that determine how points are close together, in addition to the definition of grill-open 

sets. This allows the emergence of different patterns for defining topology that are more 

precise than the traditional definition of topology and more general. Simply put, grill 

topological spaces provide a different perspective for understanding topology which is useful 

in studying certain properties of topological spaces [2], [3]. 

The notion of grill was first introduced by Choquet [1], later many studies appeared on this 

concept. For example, we mention the most important studies of the present time. In 2021, 

Mustafa and Esmaeel [2], presented new generalizations of separation axioms using the 

concept of grill. In 2021, Mustafa and Esmaeel [3], studied new properties of open and closed 

sets in grill-topological space. In 2022, Suliman and Esmaeel [4], popularized the notion of α- 

open set via grill concept and defined new types of continuous functions using this notion.     

 

2. Preliminaries 

 Definition 2.1 [5] 

     Consider a given topological space denoted as (X, τ). Within this context, a grill structure 

on the set X is defined as an assemblage G of non-empty subsets of X that adheres 

meticulously to the following stipulations: 

• The null set ∅ is conspicuously excluded from the collection G. 

• For any set A belonging to G, if A is a subset of another set B, then B must also be a 

constituent of G. 

• Whenever two sets, A and B, both of which are absent from G, are encountered, the 

union of these sets, symbolized as A ⋃ B, is rigorously precluded from membership in G. 

When we conjoin a preexisting topological space (X, τ) with a concomitant grill structure G 

imposed upon the set X, a distinctive form of topological space is engendered, designated 

herein as a grill topological space. Notably, this unique spatial construct is succinctly denoted 

as (X, τ, G). 

 

Definition 2.2 [6] 

Suppose we have a grill G defined on a topological space (L, τ). The operator Φ∶ P(L) → 

P(L), on subsets of L. For any subset A ⊆ L, the operator Φ(A) is the collection of elements 

I∈ L such that for all sets S∈ τ containing I. The intersection of S with A belongs to the G. 

Now, we define another mapping Ψ∶ P(L) → P(L), where for any subset A of L, then Ψ(A) is 

the union of A with Φ(A). 

The significant part here is that the map Ψ induces what known as Kuratowski’s closure 

operator. This, in turn, generates a finer topology on L compared to the original τ. This finer 

topology is denoted as τG and is defined as follows: a subset A of L is in τG if and only if the 

complement of the set obtained by applying Ψ to the complement of A (i.e., Ψ(L-A)) is equal 

to the complement of A itself (i.e., L-A) . 

 

Definition 2.3 [7] 

     Imagine we have a grill G established on a topological space (X, τ), and say (X, τG) 

represents the grill topological space that emerges from this grill G. In this context, the 

assortment B (G, τ) is created, which consists of sets of the form V-A, where V belongs to the 

original topology τ, and A is not a part of the grill G. This collection, B (G, τ), essentially acts 

as the foundation for the new grill-induced topology τG. 
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Scientific research has witnessed many studies conducted to study generalizations of weak 

sets in the grill topological space. These studies centred on studying the characteristics and 

behaviour of these weak sets, while presenting some important relationships and theorems. 

The study included the concept of continuity mostly according to the different types of 

vulnerable sets, in addition to other topological concepts (see, [8-20]). 

  What distinguishes our current research is the innovative introduction of a new topological 

space using the concept of grill. This new space opens new doors to explore the properties of 

weak sets in a new topological context, contributing to the development of our understanding 

of this field and making a contribution to the field of study. 

 

Notation 2.4 

     Suppose X stands as a non-empty set, and consider an assortment of topologies be {τk}kϵJ, 

where the index k ranges from 2 onwards, all defined on the set X. Additionally, assume we 

have a grill G associated with X. In such scenario, we denote {𝜏𝑘G
 , kϵJ and  k ≥ 2}  by the 

collection of grill topologies formed on X using the grill G.   

 

3. AE-space 

Definition 3.1 

     Consider a non-empty set L and consider an assortment of grill topologies {𝜏𝑘G
}

kϵJ
, where 

the index k ranges from 2 onwards. Now, we delve into the concept of AE- open sets within 

this context. A subset Ⱳ of L is deemed to be AE- open if either of the following conditions 

holds: there exists a set T, belonging to the intersection of all the grill topologies {𝜏𝑘G
}

kϵJ
, 

such that T is non-empty and T is contained within Ⱳ; or Ⱳ itself is an empty set. 

 

     This leads us to the concept of AE- closed sets, which are simply the complements of AE- 

open sets. We denote the collection of all AE- closed subsets of L as AECX. Consequently, 

the pair (L, AEOX) can be referred as an AE-space, where AEOX represents the family of AE- 

open sets which are defined as: AEOX = {Ⱳ ⊆ L: Ⱳ = ∅ or there exists a set T ∈ ⋂kϵJ 

𝜏𝑘G
 such that T is non-empty and contained within Ⱳ}. 

 

Example 3.2 

Let L = {a, b, c, 𝑑}, and let    {τi}i=1
3  be a family of topologies on L , where τ1 = ℙ(L), 

 τ2 =  {L, ∅, {𝑎}, {𝑎, 𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}}  and τ3= {L, ∅, {𝑎}, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑐, 𝑑}}.  

Let G = { {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, L} be a grill on L, then   

𝜏1𝐺
= ℙ(L), 𝜏2𝐺

= {L, ∅, {𝑎}, {𝑎, 𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}} 

𝜏3𝐺
=  ℙ(L),  it follows that ⋂ 𝜏𝑘𝐺

3
𝑘=1 = 𝜏2𝐺

, hence 

AEOX = {L, ∅, {𝑎}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}}. 

AECX = {L, ∅, {𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑐, 𝑑}, {𝑏, 𝑑}, {𝑑}, {𝑏, 𝑐}, {𝑏}, {𝑐}, {𝑎, 𝑑}, {𝑎, 𝑏}, {𝑎}} 

  

Proposition 3.4 

The arbitrary union of AE- open sets is an AE- open set. 

 

Proof: 

Let {Ⱳi}i∈I be a subcollection of AEOX. If Ⱳi = ∅ for each i ∈ I, then ⋃ Ⱳii∈I = ∅, thus 

⋃ Ⱳii∈I ∈  AEOX. If Ⱳi ≠ ∅ for each i ∈ I (or for some i ∈ I ), then there exits   𝒯i ∈
⋂ 𝜏𝑘𝐺kϵJ  ∋  ∅ ≠ 𝒯i ⊆ Ⱳi, it follows that  ⋃ 𝒯ii∈I ⊆ ⋃ Ⱳii∈I , but ⋃ 𝒯ii∈I ∈ ⋂ 𝜏𝑘𝐺kϵJ , hence 

⋃ Ⱳii∈I ∈  AEOX. 
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Remark 3.5 

The finite intersection of AE- open sets is not necessarily an 𝑨𝑬 −open set in general. 

 For example  

Let L = {a, b, c}, and let    {τi}i=1
3  be a family of topologies on L, where τ1 = ℙ(L), 

 τ2 =  {L, ∅, {𝑎}, {𝑎, 𝑏}}  and τ3= {L, ∅, {𝑎}, {𝑏, 𝑐}}.  

Let G = { {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, L} be a grill on L, then   

𝜏1𝐺
=  ℙ(L), 𝜏2𝐺

= {L, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}} and 𝜏3𝐺
= {L, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}}, then 

⋂ 𝜏𝑘𝐺
3
𝑘=1 = {L, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}}. Hence AEOL = {L, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}. 

Note that, {𝑎, 𝑐} and {𝑏, 𝑐} are AE- open sets, but {𝑎, 𝑐} ∩ {𝑏, 𝑐} = {𝑐} is not AE- open set. 

 

Proposition3.6 

If there are no two non-empty disjoint sets in  ⋂ 𝜏𝑘𝐺kϵJ  , then the finite intersection of AE- 

open sets is an AE- open set. 

 

Proof: 

Let {Ⱳi: 𝑖 = 1, … . , 𝑛} be a subcollection of AEOX. If Ⱳi = ∅ for each 𝑖 = 1, … . , 𝑛 (or for 

some 𝑖 = 1, … . , 𝑛 ), then ⋂ Ⱳi
n
i=1 = ∅, thus ⋂ Ⱳi

n
i=1 ∈  AEOX. If Ⱳi ≠ ∅ for each 𝑖 =

1, … . , 𝑛, then ∃ 𝒯i ∈ ⋂ 𝜏𝑘𝐺kϵJ  ∋  ∅ ≠ 𝒯i ⊆ Ⱳi, it follows that  ⋂ 𝒯i
n
i=1 ⊆ ⋂ Ⱳi

n
i=1 , but 

⋂ 𝒯i
n
i=1 ∈ ⋂ 𝜏𝑘𝐺kϵJ , and ⋂ 𝒯i

n
i=1 ≠ ∅. Hence ⋂ Ⱳi

n
i=1 ∈  AEOX. 

 

Proposition3.7 

X and  ∅  are AE- open sets. 

 

Proof: 

An empty set ∅ ∈  AEOX  (From definition of  AEOX). 

Since  X ∈  τkG
 ∀ kϵJ, so X ∈  ⋂ τkGkϵJ , hence X ∈  AEOX. 

 

Theorem 3.8 

If there are no two non-empty disjoint sets in  ⋂ 𝜏𝑘𝐺kϵJ  , then the AE −space is a topological 

space, this means that the collection AEOX = {Ⱳ ⊆ X: Ⱳ = ∅ or ∃ 𝒯 ∈

⋂ 𝜏𝑘𝐺kϵJ  such that  ∅ ≠ 𝒯 ⊆ Ⱳ} satisfying the following conditions: 

1. X, ∅ ∈  AEOX. 

2. ⋃ Ⱳii∈I ∈  AEOX ∀ Ⱳi  ∈  AEOX, 𝑖 ∈ 𝐼. 

3. ⋂ Ⱳi
n
i=1 ∈  AEOX ∀ Ⱳi  ∈  AEOX, 𝑖 = 1, … . , 𝑛 . 

 

Proof: 

It follows from Propositions 3.4, 3.6 and 3.7. 

 

Theorem 3.9 

Consider the family AECL of all AE − closed subsets of an AE −space  (L, AEOL). If there are 

no two non-empty disjoint sets in  ⋂ 𝜏𝑘𝐺kϵJ  , then this family satisfying the following 

conditions: 

1. L, ∅ ∈  AECL. 

2. ⋂ Fii∈I ∈  AECL ∀ Fi  ∈  AECL, 𝑖 ∈ 𝐼. 

3. ⋃ Fi
n
i=1 ∈  AECL ∀ Fi  ∈  AECL, 𝑖 = 1, … . , 𝑛.  

 

Proof: 

1. Since L, ∅ ∈  AEOL , so L, ∅ ∈   AECL . 
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2. Let {Fi}i∈I be a subcollection of AECL, then {Fi
𝑐}i∈I is a subcollection of AEOL, so 

⋃ Fi
𝑐

i∈I ∈  AEOL. Using De-Morgan's laws, we get (⋂ Fii∈I )𝑐 ∈  AEOL. Thus ⋂ Fii∈I ∈  AECL. 

3. Let {Fi: 𝑖 = 1, … . , 𝑛} be a subcollection of AECL, then {Fi
𝑐: 𝑖 = 1, … . , 𝑛} is a 

subcollection of AEOL, so ⋂ Fi
𝑐n

i=1 ∈  AEOL. Using De-Morgan's laws, we get (⋃ Fi
n
i=1 )𝑐 ∈

 AEOL. Hence, ⋃ Fi
n
i=1 ∈  AECL. 

 

Definition 3.10 

Let (L, AEOL) be an AE −space. A subset 𝐻 of L is called an  AE −  neighborhood of an 

element 𝑥 in L if there exists an AE − open set Ⱳ such that 𝑥 ∈ Ⱳ ⊆  H.  

 

Example 3.11 

Let L = {a, b, c}, and let  τ1 = ℙ(L), τ2 =  I  and τ3= {L, ∅, {𝑎}}.  

Let G = { {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}, L} be a grill on L, then   

𝜏1𝐺
=  ℙ(L), 𝜏2𝐺

= {L, ∅, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}} and 𝜏3𝐺
= {L, ∅, {𝑎}, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}}, then 

⋂ 𝜏𝑘𝐺
3
𝑘=1 = {L, ∅, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}}. Hence, AEOL = {L, ∅, {𝑐}, {𝑎, 𝑐}, {𝑏, 𝑐}}.  

Note that, {𝑎, 𝑐} is AE −open set, so it is an AE −  neighborhood of the elements 𝑎  and  𝑐. 

 

Theorem 3.12 

Let  (L, AEOL) be an AE −space. A subset 𝐻 of L is an AE − open set if and only if  it is an                         

AE −  neighborhood for each of its elements. 

 
Proof: 

⇒) Suppose that 𝐻 is an AE − open set, such that for all  ℎ ∈ 𝐻, ∃ Ⱳ ∈ AEOL  ∋ ℎ ∈ Ⱳ ⊆
 H, where Ⱳ =  H. Thus, H is an AE −  neighborhood for each of its elements. 

  

⟸) Suppose that 𝐻 is an AE −  neighborhood for each of its elements, then for all  ℎ ∈
𝐻, ∃ Ⱳℎ ∈ AEOL  ∋ ℎ ∈ Ⱳℎ ⊆  H, therefore,  𝐻 = ⋃ Ⱳℎℎ∈𝐻  , it follows that  𝐻 ∈ AEOL. 

Hence,  𝐻 is AE − open set. 

 

Definition 3.13 

Let  (L, AEOL) be an AE −space. A subcollection 𝔅 of  AEOX is said to be AE −Bases for  

AEOX if the following terms hold: 

1. ∀ x ∈ L ∃ S ∈  𝔅 ∋ x ∈ S. 

2. If  x ∈  S1 ∩ S2 , for some S1, S2 ∈  𝔅, then ∃ S ∈ 𝔅 ∋ x ∈ S ⊆ S1 ∩ S2 . 
 

Example 3.14 

Let us take the AE − space in Example 3.2, then 𝔅 = {{a}, {a, c}, {a, b, d}} is AE −Bases for  

AEOL. 

  

Theorem 3.15 

Let  (X, AEOX) be an 𝐴𝐸 −space and let 𝔅 be an AE −Bases for  AEOX. If there are no two 

nonempty disjoint sets in  ⋂ 𝜏𝑘𝐺kϵJ , then the family 𝔅OX = {Ⱳ ∈ AEOX: ∀ 𝑤 ∈ Ⱳ ∃ S ∈ 𝔅 ∋

𝑤 ∈ S ⊆ Ⱳ } is a topology on X containing 𝔅. 

 

Proof: 

1. As X, ∅ ∈  𝔅OX  from Proposition 3.7, we have X, ∅ ∈  AEOX, and from the Definition 

3.13(1), we have for all   x ∈ X ∃ S ∈  𝔅 ∋ x ∈ S, so X ∈  𝔅OX. Now, using the properties of 

logical expressions  (w ∈ ∅ ⟹  ∃ S ∈ 𝔅 ∋ w ∈ S ⊆ ∅) ≡ (False ⟹ False) which is true, 

thus ∅ ∈  𝔅OX. 
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2. Let {Ⱳi}i∈I be a subcollection of 𝔅OX, then {Ⱳi}i∈I be a subcollection of AEOX, it follows 

from Proposition 3.4 that ⋃ Ⱳii∈I ∈  AEOX. Now, let  w ∈ ⋃ Ⱳii∈I , so w ∈ Ⱳj for some j ∈ I, 

therefore, ∃ S ∈ 𝔅 ∋ w ∈ S𝑗 ⊆ Ⱳj ⊆  ⋃ Ⱳii∈I . Hence, ⋃ Ⱳii∈I ∈ 𝔅OX. 

3. Let {Ⱳi: i = 1, … . , n} be a subcollection of 𝔅OX, then {Ⱳi: i = 1, … . , n} be a 

subcollection of AEOX, it follows from Proposition 3.6 that ⋂ Ⱳi
n
i=1 ∈  AEOX. Now, let  w ∈

 ⋂ Ⱳi
n
i=1 , then w ∈ Ⱳi   ∀i = 1, … . , n, therefor ∃ Si ∈ 𝔅 ∋ w ∈ Si ⊆ Ⱳi  ∀i = 1, … . , n, so 

we get that.                                             

             w ∈ ⋂ Sn
i=1 i

⊆ ⋂ Ⱳi
n
i=1 , it follows from Definition 3.13(2) that,   

            ∃ S ∈ 𝔅 ∋ x ∈ S ⊆ ⋂ Sn
i=1 i

⊆ ⋂ Ⱳi
n
i=1 . Thus ⋂ Ⱳi

n
i=1 ∈ 𝔅OX. 

 

Definition 3.16 

       Let  (X, AEOX) be an AE −space and let ⊆ X . Let  AEO𝒦 be a family of subsets of 𝒦 

defined as  AEO𝒦 = {Ⱨ ⊆ 𝒦: Ⱨ = Ⱳ ∩ 𝒦 ∋ Ⱳ ∈ AEOX}. Then the pair (𝒦, AEO𝒦) is said 

to be an AE −subspace of the  AE −space (X, AEOX). 

 

Theorem 3.17 

      Let  (X, AEOX) be an AE −space and let ⊆ X . If there are no two non-empty disjoint sets 

in  ⋂ 𝜏𝑘𝐺kϵJ , then AEO𝒦 is a topology on 𝒦. 

 

Proof: 

1. Since 𝒦 = X ∩ 𝒦 and X ∈ AEOX, so 𝒦 ∈  AEO𝒦 . 

             Since ∅ = ∅ ∩ 𝒦 and ∅ ∈ AEOX, so  ∅ ∈  AEO𝒦. 

 

2. Let {Ⱨi}i∈I be a subcollection of AEO𝒦,  then Ⱨi = Ⱳi ∩ 𝒦 ∋ Ⱳi ∈ AEOX ∀ i ∈ I so 

⋃ Ⱨii∈I = ⋃ (Ⱳi ∩ 𝒦) i∈I =  ⋃ Ⱳii∈I ∩ 𝒦, but ⋃ Ⱳii∈I ∈  AEOX. Thus, ⋃ Ⱨii∈I ∈ AEO𝒦. 

 

3. Let {Ⱨi: i = 1, … . , n} be a subcollection of AEO𝒦, then Ⱨi = Ⱳi ∩ 𝒦 ∋ Ⱳi ∈ AEOX  
∀ i = 1, … . , n, then ⋂ Ⱨi

n
i=1 = ⋂ (Ⱳi ∩ 𝒦) n

i=1 = ⋂ Ⱳi 
n
i=1 ∩ 𝒦, but ⋂ Ⱳi

n
i=1 ∈  AEOX. 

Hence, ⋂ Ⱨi
n
i=1 ∈ AEO𝒦. 

             

 

4. AE-interior operator and AE-closure operator 

 

Definition 4.1 

        Let  (X, AEOX) be an AE −space. An AE − interior operator is a map ℒ: (X, AEOX) ⟶
(X, AEOX) satisfying the following axioms: 

1. ℒ(X) = X, 

2. ℒ(H) ⊆ H  ∀H ⊆ X, 

3. If {Hi: i = 1, … . , n} is a collection of subsets of X, then ℒ(⋂ Hi
n
i=1 ) = ⋂ ℒ(H𝑖)

n
i=1 , 

4. ℒ(ℒ(H))  = ℒ(H) ∀H ⊆ X. 

 

 

Theorem 4.2 

       Let  (L, AEOX) be an AE −space and let ℒ: (L, AEOL) ⟶ (L, AEOL) be an AE − interior 

operator and t1, t2 be two subsets of  X, then 

1. 𝑡1 ⊆ 𝑡2 ⟹ ℒ(𝑡1) ⊆ ℒ(𝑡2). 

2. ℒ(𝑡1) ∪ ℒ(𝑡2) ⊆ ℒ(𝑡1 ∪ 𝑡2). 

3. ℒ(∅) = ∅. 
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Proof: 

1. Suppose that 𝑡1 ⊆ 𝑡2, then 𝑡1 ∩ 𝑡2 = 𝑡1,it follows that ℒ(𝑡1 ∩ 𝑡2) = ℒ(𝑡1). But ℒ(𝑡1 ∩
𝑡2) = ℒ(𝑡1) ∩ ℒ(𝑡2), so ℒ(𝑡1) = ℒ(𝑡1) ∩ ℒ(𝑡2) which means ℒ(𝑡1) ⊆ ℒ(𝑡2). 

 

2. Since 𝑡1 ⊆ 𝑡1 ∪ 𝑡2 and 𝑡2 ⊆ 𝑡1 ∪ 𝑡2, it follows from (1) that   ℒ(𝑡1) ⊆ ℒ(𝑡1 ∪ 𝑡2) and 

ℒ(𝑡2) ⊆ ℒ(𝑡1 ∪ 𝑡2). Hence, ℒ(𝑡1) ∪ ℒ(𝑡2) ⊆ ℒ(𝑡1 ∪ 𝑡2). 

 

3. From Definition 4.1(2), we have ℒ(∅) ⊆ ∅, but ∅ ⊆ ℒ(∅). Thus ℒ(∅) = ∅. 

 

Theorem 4.3 

         Let  (X, AEOX) be an AE −space and let ℒ: (X, AEOX) ⟶ (X, AEOX) be an AE − interior 

operator. A collection ℒ𝑂𝑋 = {t ⊆ X: ℒ(t) = t } is a topology on X. 

 

Proof: 

1. From Definition 4.1(1), we have ℒ(X) = X and from Theorem 4.2(3), we have ℒ(∅) = ∅. 

Thus,  X, ∅ ∈ ℒ𝑂𝑋. 

 

2. Let {ti}i∈I be a subcollection of ℒ𝑂𝑋,  then ℒ(ti) = ti ∀ i ∈ I, it follows that ⋃ ℒ(ti)i∈I =
⋃ tii∈I . But ⋃ ℒ(ti)i∈I ⊆ ℒ(⋃ tii∈I ), so 

 

⋃ tii∈I ⊆ ℒ(⋃ tii∈I )                                         ⋯ ⋯ ⋯ (1). 

 

From Definition 4.1(2) we have  

 

ℒ(⋃ tii∈I ) ⊆ ⋃ tii∈I                                        ⋯ ⋯ ⋯ (2). 

 

By (1) and (2), we get ℒ(⋃ tii∈I ) = ⋃ tii∈I . Hence, ⋃ tii∈I ∈ ℒ𝑂𝑋. 

3. Let {ti: i = 1, … . , n} be a subcollection of ℒ𝑂𝑋, then ℒ(ti) = ti ∀ 𝑖 = 1, … . , n, it follows 

that ⋂ ℒ(ti)
n
i=1 = ⋂ ti

n
i=1 , but ⋂ ℒ(ti)

n
i=1 = ℒ(⋂ ti

n
i=1 ), therefore, ℒ(⋂ ti

n
i=1 ) = ⋂ ti

n
i=1 . Thus, 

⋂ ti
n
i=1 ∈ ℒ𝑂𝑋. 

 

Definition 4.4 

      Let  (X, AEOX) be an AE −space. An AE − closure operator is a map £: (X, AEOX) ⟶
(X, AEOX) satisfying the following axioms: 

1. £(∅) = ∅, 

2. t ⊆ £(t)  ∀t ⊆ X, 

3. If {ti: i = 1, … . , n} is a collection of subsets of X, then £(⋃ ti
n
i=1 ) = ⋃ £(t𝑖)

n
i=1 , 

4. £(£(t))  = £(t) ∀t ⊆ X. 

 

Theorem 4.5 

     Let  (X, AEOX) be an AE −space and let £: (X, AEOX) ⟶ (X, AEOX) be an AE − closure 

operator and t1, t2 be two subsets of  X, then 

1. 𝑡1 ⊆ 𝑡2 ⟹ £(𝑡1) ⊆ £(𝑡2). 

2. £(𝑡1 ∩ 𝑡2) ⊆ £(𝑡1) ∩ £(𝑡2). 

3. £(X) = X. 

 

Proof: 
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1. Suppose that 𝑡1 ⊆ 𝑡2, then 𝑡1 ∪ 𝑡2 = 𝑡2, it follows that £(𝑡1 ∪ 𝑡2) = £(𝑡2).        But 

£(𝑡1 ∪ 𝑡2) = £(𝑡1) ∪ £(𝑡2), so £(𝑡2) = £(𝑡1) ∪ £(𝑡2) which means £(𝑡1) ⊆ £(𝑡2). 

 

2. Since 𝑡1 ∩ 𝑡2 ⊆ 𝑡1  and 𝑡1 ∩ 𝑡2 ⊆  𝑡2, it follows from (1) that  £(𝑡1 ∩ 𝑡2) ⊆ £(𝑡1) and 

£(𝑡1 ∩ 𝑡2) ⊆ £(𝑡2). Hence £(𝑡1 ∩ 𝑡2) ⊆ £(𝑡1) ∩ £(𝑡2). 

 

3. From Definition 4.4(2), we have X ⊆ £(X), but £(X) ⊆ X. Thus £(X) = X. 

 

Theorem 4.6 

       Let  (X, AEOX) be an AE −space and let  £: (X, AEOX) ⟶ (X, AEOX) be an AE − closure 

operator. A collection £𝑂𝑋 = {t ⊆ X: £(X − t) = X − t } is a topology on X.  

 

Proof: 

1. From Definition 4.4(1), we have £(∅) = ∅, that means £(X − X) = X − X and from 

Theorem 4.5(3), we have £(X) = X, that means £(X − ∅) = X − ∅ . Thus  X, ∅ ∈ £𝑂𝑋. 

 

2. Let {ti}i∈I be a subcollection of £𝑂𝑋,  then £(ti
𝑐) = ti

𝑐 ∀ i ∈ I, it follows that  

⋂ £(ti
𝑐)i∈I = ⋂ ti

𝑐
i∈I .  

But £(⋂ ti
𝑐

i∈I ) ⊆ ⋂ £(ti
𝑐)i∈I . So £(⋂ ti

𝑐
i∈I ) ⊆ ⋂ ti

𝑐
i∈I ⋯ ⋯ ⋯ (1).   

From Definition 4.4(2) we have   ⋂ ti
𝑐

i∈I  ⊆ £(⋂ ti
𝑐

i∈I ) ⋯ ⋯ ⋯ (2).  

By (1) and (2), we get £(⋂ ti
𝑐

i∈I ) = ⋂ ti
𝑐

i∈I . From De- Morgan Laws we get 

 £((⋃ tii∈I )𝑐) = (⋃ tii∈I )𝑐. Hence, ⋃ tii∈I ∈ £𝑂𝑋. 

 

3. Let {ti: i = 1, … . , n} be a subcollection of £𝑂𝑋, then £(ti
𝑐) = ti

𝑐 ∀ 𝑖 = 1, … . , n, it follows 

that ⋃ £(ti
𝑐)n

i=1 = ⋃ ti
𝑐n

i=1 , but ⋃ £(ti
𝑐)n

i=1 = £(⋃ ti
𝑐n

i=1 ), therefore, £(⋃ ti
𝑐n

i=1 ) = ⋃ ti
𝑐n

i=1 .  

From De- Morgan Laws we get £((⋂ ti
n
i=1 )𝑐) = (⋂ ti

n
i=1 )𝑐 . Thus, ⋂ ti

n
i=1 ∈ £𝑂𝑋. 

 

5. DE-space 

Definition 5.1 

     Consider a topological space denoted as (X, τ), and let {Gk}kϵJ, k≥2 be a collection of 

arbitrary grills defined on X. Consequently, the set {𝜏𝖦k
, kϵJ and k≥2} forms an assemblage 

of grill topologies imposed upon X. A subset Έ of X is classified as DE-open if there exists a 

non-empty subset T⊆Έ, where T is an element of the intersection ⋂kϵJ {τkG}, or it may be that 

Έ itself is empty. The complete set of all such DE-open subsets within X is symbolized as 

DEOX. Furthermore, the notion of a DE-closed set corresponds to the complement of a DE-

open set. The collection of all DE-closed subsets of X is designated as DEOX. The pair (X, 

DEOX) is referred to as a DE-space, wherein DEOX is the set of all subsets Έ⊆X satisfying 

the conditions Έ=∅ or ∃ T∈⋂kϵJ {τkG} such that ∅≠T⊆Έ.  

 

Remark 5.2 

     In a manner congruent with prior exposition, it is of scholarly import to discern that the 

entirety of the antecedently expounded deliberations remains applicable in the context of the 

stipulated definition above.  

 

Conclusion 

     The primary goal of this work is to construct and define a new type of topological space 

known as “AE-space”. This definition can be used to study all topological properties and 

compare its properties with previously studied topological properties according to the 

previous topological structure, especially the various applied aspects, in addition to 
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identifying new weak sets, determining the accuracy of these sets, and presenting soft 

topological spaces according to the context presented in this work. 
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