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Abstract 

     Evolutionary algorithms are better than heuristic algorithms at finding protein 

complexes in protein-protein interaction networks (PPINs). Many of these algorithms 

depend on their standard frameworks, which are based on topology. Further, many of 

these algorithms have been exclusively examined on networks with only reliable 

interaction data. The main objective of this paper is to extend the design of the canonical 

and topological-based evolutionary algorithms suggested in the literature to cope with 

noisy PPINs. The design of the evolutionary algorithm is extended based on the 

functional domain of the proteins rather than on the topological domain of the PPIN. The 

gene ontology annotation in each molecular function, biological process, and cellular 

component is used to get the functional domain. The reliability of the proposed 

algorithm is examined against the algorithms proposed in the literature. To this end, a 

yeast protein-protein interaction dataset is used in the assessment of the final quality of 

the algorithms. To make fake negative controls of PPIs that are wrongly informed and 

are linked to the high-throughput interaction data, different noisy PPINs are created. The 

noisy PPINs are synthesized with a different and increasing percentage of misinformed 

PPIs. The results confirm the effectiveness of the extended evolutionary algorithm 

design to utilize the biological knowledge of the gene ontology. Feeding EA design with 

GO annotation data improves reliability and produces more accurate detection results 

than the counterpart algorithms. 

 

Keywords: Complex detection, Evolutionary algorithm, Missing PPI, Modularity, 

Protein–protein interaction, Unreliable PPI. 
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 خلاصة:ال
 (PPINsشبكات تفاعل البروتين البروتين )إن أحد التحديات الرئيسية التي تستنفد بشكل حاسم الموثوقية في تحليل 

غير الموثوقة  التفاعلاتهو الضوابط السلبية للتجارب واسعة النطاق التي تُرجع العديد من الإيجابيات الكاذبة )أي 
المضللة بشكل كبير من التعقيد  PPI(. تزيد مؤشرات التفاعلاتأو الزائفة( والسلبيات الكاذبة )أي عدم وجود 

ة لخوارزميات الكشف الطوبولوجية. بالإضافة إلى نجاح الطوبولوجي للشبكات ، مما يؤدي إلى نتائج غير موثوق
،  PPINsالخوارزميات التطورية على خوارزميات الكشف عن مجريات الأمور لاكتشاف مجمعات البروتين في 

تعتمد العديد من هذه الخوارزميات على ما يبدو على أطرها الأساسية ذات المكونات الطوبولوجية. علاوة على ذلك 
لعديد من هذه الخوارزميات حصريًا على شبكات ذات بيانات تفاعل موثوقة فقط. الهدف الرئيسي من ، تم فحص ا

والقائمة على الطوبولوجيا المقترحة في الأدبيات  النمطيةهو توسيع تصميم الخوارزميات التطورية  هذا البحث
للتعامل مع الشبكات البروتينية الضوضائية. تم توسيع تصميم الخوارزمية التطورية بناءً على المجال الوظيفي 

. يُشتق المجال الوظيفي من شرح علم الوجود الجيني في كل من PPINللبروتينات بدلًا من المجال الطوبولوجي لـ 
ة الجزيئية والعملية البيولوجية والمكون الخلوي. يتم فحص موثوقية الخوارزمية المقترحة مقابل الخوارزميات الوظيف

مجموعة بيانات تفاعل بروتين البروتين الخميرة في تقييم  استعمالالمقترحة في الأدبيات. تحقيقا لهذه الغاية ، يتم 
 PPIوتينية ضوضائية مختلفة لمحاكاة الضوابط السلبية لمؤشرات الجودة النهائية للخوارزميات. يتم إنشاء شبكات بر 

المضللة المرتبطة ببيانات التفاعل عالي الإنتاجية. يتم تصنيع هذه الشبكات البروتينية الضوضائية مع نسبة مختلفة 
ستفادة من تؤكد النتائج فعالية تصميم الخوارزمية التطورية الموسعة للا. PPIsمعلومات مضللة للـومتزايدة من 

 إلى تحسين الموثوقية GOلـ  البيولوجيةبمعلومات  EAيد تصميم و المعرفة البيولوجية لعلم الوجود الجيني. يؤدي تز 
 ويجعل نتائج الكشف أكثر دقة من الخوارزميات المناظرة.

 
1. Introduction 

     Networked systems tend to organize nodes into cohesive modules or communities, but 

identifying these communities is a challenging task in network research with broad 

applications in biological networks, social network modeling, and communication pattern 

analysis [1–7]. Protein-protein molecular interactions (PPIs) in every organism are regularly 

organized as networks, noted as protein-protein interaction networks (PPINs). PPINs make it 

possible for graph theory and network topology to reveal and study the hidden details, like 

functional modules or complexes connected with how cells are organized, how processes 

work, and how the networks in these organisms do their jobs. 

 

     A protein complex is defined as a group of proteins that work together to carry out a 

specific biological process or activity. For example, in Yeast Saccharomyces Cerevisiae PPIN 

(depicted in Figure 1), there are 990 distinct proteins being connected with 4687 different 

interactions. Based on the Munich Information Center for Protein Sequences (MIPS) golden 

reference set, the proteins in this PPIN are structured with 78 uncoupled complexes [8]. In 

Figure 1, complex     with 13 proteins and their interconnections is zoomed out. Figure 2 

depicts the names of the 13 proteins and their interconnections. Note that not all biological 

processes are connected, and interactions between proteins can be classified as within-

complex (intra-connection) or between-complexes (inter-connection), as shown in Figure 3. 
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Figure 1: The yeast Saccharomyces cerevisiae network (left) and one complex (   ) is 

zoomed out in the right  

 

 

 

 

 

 

 

Figure 2: An illustrative example of complex (    ) from yeast Saccharomyces cerevisiae 

PPIN with 13 proteins (depicted with their identity names) and their intra connections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A small PPIN of 10 proteins being decomposed into two complexes. The nodes within 

a dashed circle form one complex. The edges inside the dashed circle are intra-connections, while 

those connecting the two separate complexes are inter-connections. 
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Detecting protein complexes from a PPIN is proven to be a non-deterministic polynomial-

time hard (NP-hard) problem, which makes it computationally difficult to solve. Also, one of the 

biggest problems with studying protein-protein interaction networks (PPINs) is that large-scale 

experiments often give back a lot of false positives (i.e., interactions that aren't real or aren't 

expected) and false negatives (i.e., interactions that aren't there). Such misinformed interactions 

considerably increase the topological complexity of the networks, thus making the results 

unreliable for complex detection algorithms. 

 

     The main goal of this paper is to look into how well evolutionary-based complex detection 

algorithms (ECDs) can find things when there are noisy interactions between proteins. Different 

types of noise are simulated in the experiments. To this end, several noisy PPINs are synthesized 

from the well-known yeast Saccharomyces cerevisiae PPIN. Also, the proposed ECD doesn't just 

use topological-based parts; it also uses information from the functional domain of proteins. This 

comes from Gene Ontology Annotations (GOA) in Molecular Function (MF), Biological Process 

(BP), and Cellular Component (CC). The performance of the proposed Gene Ontology-based 

ECD (GO-based ECD) is compared against the performance of two state-of-the-art ECDs. These 

are the canonical ECD of Pizzuti and Rombo in [9, 10] and the topological-based ECD of Attea 

and Abdullah [11]. The findings in this paper show how important it is to include gene ontology 

information when designing ECD because it makes detection much more reliable compared to the 

canonical and topological frameworks of ECD. 

 

     The remaining sections of this paper are organized as follows: The main ECD approaches 

proposed in the literature are mentioned in the next section. A brief presentation of the 

foundational ideas relating to this study follows. Problem formulation and algorithm design are 

then presented in detail. Results and performance evaluations are reported in Section 5. Finally, 

the paper is closed with a conclusion in Section 6. 

    

2. Related works 

     The literature encompasses different complex detection methods based on meta-heuristic 

algorithms, mainly evolutionary algorithms (EAs). The EA-based complex detection methods are 

proved to be more reliable than their counterpart local-based complex detection methods such as 

Molecular Complex Detection (MCODE) [3], Purification of the bait proteins [4], Dense-

neighborhood Extraction using Connectivity and conFidence Features (DECAFF) [5], Repeated 

Random Walk (RRW) [6], Clustering-based on maximal cliques (CMC) [7], and Hierarchical 

Link Clustering [7, 12]. 

 

     Evolutionary-based complex detection algorithms use evolutionary principles, i.e., natural 

selection and genetic variation, to search for promising candidates for protein complex structures. 

Pizzuti and Rombo proposed one of the earliest evolutionary-based complex detection algorithms 

in [9] and [10]. They developed a single-objective genetic algorithm (GA) with different single-

objective models to solve the problem. The remaining components of their algorithm (i.e., 

selection, crossover, and mutation operators) were designed based on their canonical forms. All 

their objective function models were defined based on different topological characteristics of the 

proteins and their interactions in the networks. The formulation of the objective functions 

includes the well-known modularity (Q) function, community score (CS) function, conductance 

(CO) function, normalized cut (NC) function, internal density (ID) function, expansion (EX) 
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function, and cut ratio (CR) function. Unlike the modularity (Q) function, all the remaining 

models explicitly define both the intra-complex structure and the inter-complex structure with 

different maximization or minimization scores. Traditional modularity, on the other hand, 

explicitly defines the intra-complex structure score only. 

Bandyopadhyay et al. [13] and Ray et al. [14] were the first to formulate the problem as a 

multi-objective optimization (MOO) problem. Both intra-complex structure and inter-complex 

structure are reflected in their MOO model. To solve the issue, they created a multi-objective 

genetic algorithm according to the well-known non-dominated sorting algorithm (NSGA-II). 

 

In [11], two contradictory topological-based intra- and inter-structures were formulated as a 

multi-objective optimization model. The well-known decomposition-based multi-objective 

evolutionary algorithm (MOEA/D) served as the frame for the adopted multi-objective 

evolutionary algorithm. 

 

In [15], a locally-assisted migration operator is proposed based on the topological properties 

of the tested PPINs. The operator has the ability to improve the performance of both single-

objective and multi-objective evolutionary-based complex detection algorithms. These 

evolutionary-based algorithms have proven to be more robust than heuristic algorithms, 

potentially providing better accuracy and scalability for complex detection in large biological 

networks. 

 

Significant exploitation of domain knowledge of the optimization problems can support the 

use of EAs to the fullest. Unfortunately, there is a lack of research investigating these 

evolutionary-based algorithms to examine the impact of domain knowledge on their design. In 

bioinformatics, the utilization of ontologies for genome annotation has brought significant 

advances to the field of molecular biology. These bio-ontologies were rarely considered in the 

design of evolutionary-based complex detection algorithms. A few months ago, Abdulateef et al. 

[16] looked at how to design the mutation operator in the EA (with modularity model) using 

biological information from three different gene sub-ontology types. They designed the mutation 

operator based on protein pair similarity in four versions: molecular function (MF), cellular 

component (CC), biological process (BP), and their combinations. 

 

3. Background 

3.1 Interactome and interaction graph 

     The interactome refers to the set of all the molecular interactions within cells, especially 

protein-protein physical interactions. It's a global description obtained through various methods 

to estimate the entire biological network of protein interactions in an organism [17]. For example, 

the interactome of Saccharomyces cerevisiae was estimated to be on the order of 20,000 

interactions. However, larger estimates include indirect or predicted interactions from affinity 

purification/mass spectrometry (AP/MS) studies. 

  

     Mathematically, PPIN is represented as an undirected interaction graph,       , where 

               represents a set of   proteins and                represents a set of   

pairwise interactions. To represent the finite graph of  ,  a square binary symmetric matrix, 

  [   ]
   

 is normally used. If proteins    and    interact (i.e., adjacent), both entries     and 

    of A are non-zeros; otherwise, both entries are assigned zeros. Further, the diagonal entries of 

https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
https://en.wikipedia.org/wiki/Affinity_purification
https://en.wikipedia.org/wiki/Affinity_purification
https://en.wikipedia.org/wiki/Mass_spectrometry
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the adjacency matrix are assigned zeros. Also, for each protein   ,    ∑      
 
    is said to be the 

degree    of   , while ∑ ∑      
 
   

 
    is the whole volume of the network. Figure 4 depicts an 

illustrative example of ten PPIs from the yeast Saccharomyces cerevisiae PPIN (depicted in 

Figure 3). In Figure 3, a total of 16 interactions out of 4687 interactions are mapped to their 

corresponding adjacency matrix. In other words, 32 entries in the adjacency matrix are set to 1. 

Thus, for the whole yeast PPIN network, there should be        entries set to 1 in the 

counterpart adjacency matrix.  

 

     Mathematically, a complex detection problem means to decompose the adjacency matrix A 

into a priori unknown number ( ) of varying sized sub-matrices. The space   of all possible 

decomposition solutions determines the complexity of the problem. There is no deterministic rule 

to decompose the adjacency matrix  , however, any complex detection algorithm attempts to 

figure out the structure of the complex set                 following the general rule of dense 

and sparse connectivity features.  It is widely assumed that a protein       should have more 

internal connections        than external connections        . Formally speaking,        
∑         

 and         ∑         
 express, respectively, the number of intra-connections and 

inter-connections of node    belongs to cluster   . In other words,                  . 

 

Table 1: Adjacency matrix for a small PPIN of 10 proteins from the whole PPIN in Figure 3. "1" 

indicates that the corresponding pair of proteins physically interacts, otherwise, "0" means no 

biological interaction. All diagonal entries are set to “0” 

   

                                

   0 1 1 1 0 0 0 0 0 0 

   1 0 0 0 1 1 0 1 0 1 

   1 0 0 1 0 0 0 0 0 0 

   1 0 1 0 0 0 0 0 0 0 

   0 1 0 0 0 0 0 1 0 0 

   0 1 0 0 0 0 1 1 1 1 

   0 0 0 0 0 1 0 0 0 1 

   0 1 0 0 1 1 0 0 1 0 

   0 0 0 0 0 1 0 1 0 1 

    0 1 0 0 0 1 1 0 1 0 

                

3.2 Annotation of proteins with gene ontology  

     Gene ontology (GO) is an active species-agnostic ontology used in biology to describe the 

semantics or context of gene and gene product attributes in single and multicellular organisms. 

As the activity or function of a protein is defined at different levels, the GO domain has been 

decomposed into three orthogonal categories or aspects: molecular function (MF), biological 

process (BP), and cellular component (CC). Each protein performs elementary molecular-level 

activities that are normally independent of the environment and occur at the molecular level, such 

as catalytic, transport, or binding activities. Larger cellular processes or biological programs are 

accomplished by multiple molecular activities of sets of interacted proteins [18].   
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     Every GO term has a distinct seven-digit identifier that begins with the letters GO (for 

example, GO: 0003714). As an illustrative example, consider Table 1, where the annotations of 

five different proteins with their direct GO terms are reported. The annotations are reported in 

their MF, BP, and CC sub-ontology terms. The GO terms were downloaded online from the 

Saccharomyces Genome Database (SGD) at the following URL: http://genome-

www.stanford.edu/Saccharomyces/. 
 

Table 2:  A sample of yeast proteins with their identity numbers, identity names, and direct 

GO annotation with MF, BP, and CC sub-ontology terms 

Protein GO term 

# name BP CC MF 

82 'YHR200W' 

[GO:0006511, 

GO:00 43248, 

GO:00 43161] 

[GO:0000502, 

GO:0008540, 

GO:0005829, 

GO:0005634] 

[GO: 0036435, 

GO:00 31593] 

41 'YDL147W' [GO:0000338] 

[GO:0000502, 

GO:0008180, 

GO:0008541, 

GO:0034515, 

GO:0005737, 

GO:0008541, 

GO:0031595] 

[GO:0005515] 

178 'YIL075C' 

[GO:0006511, 

GO:0043248, 

GO:0042176, 

GO:0050790] 

[GO:0005634, 

GO:0008540, 

GO:0034515, 

GO:0000502] 

[GO:0004175, 

GO:0031625, 

GO:0030234] 

434 'YER094C' 

[GO:0010498, 

GO:0010499, 

GO:0043161, 

GO:0006508, 

GO:0051603] 

[GO:0019774, 

GO:0005634, 

GO:0005789, 

GO:0019774, 

GO:0034515, 

GO:0005634, 

GO:0005737, 

GO:0000502, 

GO:0005839, 

GO:0019774] 

[GO:0061133] 

274 'YJL001W' 

[GO:0010498, 

GO:0010499, 

GO:0043161, 

GO:0006508, 

GO:0051603] 

[GO:0019774, 

GO:0005634, 

GO:0005789, 

GO:0034515, 

GO:0005737, 

GO:0000502, 

GO:0005634, 

GO:0005839] 

[GO:0004175, 

GO:0004298, 

GO:0016787, 

GO:0008233, 

GO:0004298] 

308 'YOL038W' 

[GO:0010499, 

GO:0043161, 

GO:0006511, 

GO:0051603, 

GO:0005737] 

[GO:0005634, 

GO:0005739, 

GO:0019773, 

GO:0034515, 

GO:0042175, 

GO:0005737, 

GO:0000502, 

GO:0005839] 

[GO:0003674, 

GO:0004298, 

GO:0004175] 

 

     Each GO term     can be structured hierarchically by a directed acyclic graph (DAG), 

where each GO term is a node, and the relationships between the terms are edges between the 

nodes. Child GO terms are more specialized than their parent GO terms, and a GO term may 

http://genome-www.stanford.edu/Saccharomyces/
http://genome-www.stanford.edu/Saccharomyces/
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have more than one parent GO term. A relation between two terms (  ,   ) is represented as a 

directed edge pointing from    to   . There are three main types of directed relationships 

between GO terms. These are ‘    ’, ’       ’, and ’        ’ [18]. A  straightforward 

class-subclass relation is called     , where            denotes that GO term    is a subclass 

of GO term   . A partial ownership relation is a         where                 means that 

whenever    is present, it is always a part of   , but    is not required to be present. The 

relation ’        ’ describes a case in which one process directly affects the manifestation of 

another process or quality, i.e., the former regulates the latter. Figure 4, depicts the DAG for 

cytoplasm (GO:0005737). This GO term has two parents: it      cellular anatomical entity, 

and it is         the intracellular anatomical structure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Graph-based representation for GO terms and relations 

     Proteins or gene products are, then, annotated with GO terms either directly or via inheritance, 

which implies annotation to all of their ancestor    terms in       . An ancestor set,       , for 

some   is defined as:  

                                                                                                        (1)  

As an illustrative example, consider the three DAGs for three GO terms for protein            
in Figure 5. The GO terms are:    (           ),    (          ), and    

(         ). For example, the DAG for            (meiotic cell cycle) has six terms 

connected with six ‘    ’ relations and one ‘       ’ relation. The term            

(reproductive process) is considered as      subclass of            (biological process) and   

     also a                    (reproduction). 
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Figure 5: Three DAGs for three different GO terms for the protein "YPL139C". One MF term 

(GO: 0003714) (top left), one BP term (GO: 0051321), and one CC term (GO: 005634) (right). 

Solid arrows represent ‘is_a’ relations, while dashed arrows represent ‘part_of ’ relations 
 

3.2.1 GO-based semantic similarity  

     Gene-ontology-based semantic similarity (  ) gives the opportunity to compare GO terms or 

entities annotated with GO terms based on their semantic properties, normally acquired from 

corpora. From   , a semantic similarity matrix          is obtained for   GO terms that 

annotate   different proteins, where               is the semantic similarity between terms 

   and   .  

     Based on the meaning of semantic value and semantic contribution, Wang et al. [19] proposed 

one of the well-known semantic similarity measures. The semantic value                for 

a GO term   is computed as the sum of the semantic contributions (  ) of all GO terms in 

       to term  ,                  , along the best (i.e., maximum) weighted paths to 

 .  Note that the semantic contribution of the term   in its DAG to itself is 1, 

i.e.   (        )   . The best weighted path for each ancestor is the path that has the 

maximum product of the weights on its edges. Wang et al. [19] set       and       for 

'is_a' and 'part_of,' respectively. The formulation in Eq. 2 expresses the semantic contribution of 

term    to term   in        . The formulation reveals that terms    that are closer to   in        
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contribute more to its semantics, whereas terms    that are farther from   in        contribute 

less as they are more general terms [19].  

  (         )              
            

                                          (2) 

where the directed relation between    and   
  is denoted by the expression        

  . Then, the 

semantic value of the term   in its     is expressed in Eq. 3.  

      ∑                        
               (3) 

 

     Then, the semantic similarity between two GO terms,   and   (as expressed in Eq. 4), is 

defined as the ratio of the semantic contributions of all common terms (also known as 

intersecting terms) in the      of,    and   to the semantic values of    and   , respectively . 

 

          
∑   (         )   (         )                    

           
                          (4) 

 

3.2.2 Gene functional similarity 

Functional similarity (  ) measures the degree to which two proteins share functional 

properties [20]. For   different proteins, then, a functional-based similarity matrix    
      

     can be derived. For a pair of proteins,    requires two sets of protein-level 

annotation, i.e., GO terms. Protein-term (  ) representation can be established at two different 

levels: 1) the direct annotation scheme and 2) the indirect annotation scheme. In the direct 

annotation scheme, proteins are annotated using their direct GO terms across all three sub-

ontology types. In other words,       ,   ,    . One of the well-known methods is Jaccard 

[20], as defined in Eq. 5.  

                 
         

         
                                 (5) 

For indirect annotation, each protein is annotated according to its direct GO terms (  ) 

and their ancestors in their corresponding DAG structures, i.e.,    ⋃       
, where     ⋃     

indicates that the term   and all of its ancestors. They statistically consider a combination of the 

semantic similarities between the terms     and     to determine    between two gene products 

   and   . For example, maximum functional similarity [20] is defined in Eq. 6. 

                                                  (6) 

 

4. Problem formulation and algorithm design 

4.1 Synthesizing noisy PPINs 

     The success of accurate protein complex detection depends on the availability of high-quality 

benchmarks. High-throughput experimental techniques typically produce a rich source of 

experimentally detected PPI datasets; however, these PPIs are susceptible to noise (i.e., spurious 

interactions that do not exist) and incompleteness (i.e., missing interactions). This can arise due 

to a variety of factors, such as experimental limitations, technical errors, or even intentional  

attempts to manipulate the data. 

 

     In this paper, to simulate negative controls, different noisy PPINs were generated by 

perturbing the yeast Saccharomyces cerevisiae (S. cerevisiae) dataset. These synthesized PPINs 

were generated with varying percentages of misinformed PPIs by randomly adding or removing 
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an increasing percentage of interactions from the original PPIN. To follow different noise levels 

in the synthesized PPINs, five increasing percentages (from 10% to 50%) of interactions were 

randomly added or removed from the network. The interactions are divided into two types with 

respect to the interacted proteins: those interactions connecting proteins with the highest degrees 

(weighty proteins) and those interactions connecting proteins with the lowest degrees (light 

proteins). Proteins were classified first by Zaki et al. [21] according to the number of interactions 

they contribute. They categorize hub proteins into two main categories: genuine hub proteins and 

noisy proteins. Hub proteins are those highly connected proteins within complexes and those 

essential proteins with few connections but inside too small complexes. Genuine hub proteins 

have critical roles in mediating cellular processes. They showed that understanding the protein 

complex structure correctly is heavily augmented by differentiating genuine hub proteins from 

noisy proteins. 

 

     In this paper, three different forms of perturbation are used to add fake interactions or remove 

valid interactions. These are perturbing weighty proteins, perturbing light proteins, and 

perturbing random proteins. Here, a weighty protein is defined as having a degree greater than 

average in the PPIN, whereas a light protein is defined as having a degree less than average in the 

PPIN. Thus, a noisy PPIN was generated by adding a percentage (10%–50%) of fake interactions 

to either weighty proteins, light proteins, or random proteins. Similarly, a noisy PPIN can be 

obtained by removing 10%–50% interactions from either weighty proteins, light proteins, or 

random proteins. 

 

     Two illustrative examples demonstrate how two light proteins from the yeast Saccharomyces 

cerevisiae network (shown in Figure 1) are perturbed with noisy information. The PPIN in Figure 

1 is perturbed with 10% noise. Protein #844 (YDR311’) has only three interactions, as depicted 

in Figure 6 (left), which are perturbed after adding 10% fake interactions to the whole PPIN. 

Adding fake interactions leaves protein #844 (YDR311W) with 4 additional interactions, as 

depicted in Figure 6 (right). Figure 7, on the other hand, depicts another illustrative example 

while deleting true interactions from protein #618 (YOL090W). Protein #618 (YOL090W) has 6 

true interactions (left). The 10% noise perturbation leaves this protein with only 4 interactions, as 

depicted in Figure 7 (right). 
 

 

 

 

 

 

 

Figure 6: Adding fake interactions to protein #844 (YDR311W) 
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Figure 7: Deleting true interactions from protein #618 (YOL090W) 

 

     Also, Figure 8 shows how adding or removing 50% noise from the whole yeast 

Saccharomyces cerevisiae PPIN (in Figure 1) changes three different types of proteins. The 

selected proteins from the PPIN are one weighty protein #38 (YLR033W), one light protein #503 

(YFL049W), and one random protein #179 (YPL016W). 

Protein type Selected yeast protein  50% spurious interactions 50% missing interactions 

Weighty protein 

 

Light protein 

 

Random protein 

 

Figure 8: Adding fake interactions to or removing actual interactions from protein #38 

(YLR033W), protein #503 (YFL049W), and protein #179 (YPL016W) 
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4.2 Algorithm design 

      To make a strong evolutionary algorithm (EA) that can solve a certain real-life optimization 

problem, one of the most important things is to create a heuristic-based evolutionary operator that 

works with the EA framework [23]. Several studies followed this rule in designing competitive 

EAs for solving different NP-hard problems [24–27]. 

 

     The general framework for the proposed evolutionary-based complex detection (ECD) 

algorithm         is an iterated transformation function that starts with an initial population 

                   of genotype/phenotype solutions. The genotype of these solutions is 

generated randomly from the whole search space of the problem  . The encoding scheme is a 

locus-based adjacency representation, where each locus of an individual          corresponds to 

a protein   and its allele value represents a neighbor protein with which it can coexist in the same 

complex. The global locus-based initialization process designates the direct neighbors of   in  , 

i.e.,       , to be the possible allele values at locus  . The phenotype solution corresponding to 

a set of   complexes is mapped by a decoding function       (where               ) 
applied to each individual. By this,   assigns the intra- and inter-relationships among the whole 

set of connections in  . Note that for any two solutions    and    in the population  ,    and    do 

not necessitate to be equivalent. In other words, their phenotype solutions                
  

and                
  could be dissimilar. Figure 9 depicts an illustrative example of two 

different genotype solutions and their corresponding phenotype solutions for a small PPIN with 

15 yeast proteins from the yeast Saccharomyces cerevisiae PPIN (in Figure 9). The genotype is 

depicted as three vectors. The 1st vector lists protein labels, while the 2nd assigns the neighbors 

as alleles for the corresponding protein labels, and the 3rd vector maps proteins with their 

neighbors to complexes. Note that the two genotype solutions in Figure 9 are decoded into two 

different solutions with, respectively, two and three complexes. This also revises where the intra-

connections and the inter-connections are to be in the adjacency matrix (as clarified in Figure 9 

with black ones and red ones for, respectively, the intra-connections and the inter-connections of 

the two solutions).  

  

     The quantitative function modularity density (   in Eq. 7) is adopted as an objective function 

to quantitatively measure the quality of the generated solutions. The model of    [22] is defined 

as the sum of the averaged density of the sub-graphs that constitute the whole graph structure. In 

each sub-graph, the density is measured as the difference between the intra- and inter-degrees 

proportioned to the size of the sub-graph, and it is formulated by: 

   ∑
               

    
 

    
 
                                                           (7) 

where for a set of   complexes               , the numerator expresses the difference 

between two terms. The first term is the inner degree of a community   , which is twice the 

number of edges in    divided by the number of nodes in the complex   , The second term is the 

outer degree of   , which is the number of edges between nodes in    and other nodes in      . 

The denominator expresses the number of nodes in   . 
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Figure 9:  Two genotypes and their corresponding phenotype solutions for a small PPIN with 15 

proteins from the yeast Saccharomyces cerevisiae  

 

     Based on the quality values of the solutions, parent solutions are then selected using binary 

tournament selection                     , where   is the quality value of the solution 

computed by   . The selection operator prepares a pool of       parents. For a pair of parent 

solutions    and   ,  uniform crossover operator (             ) is adopted to evenly mix 

their   decision making parameters. Crossover occurs to the parent’s pair if the probability of 

crossing   is greater than the probability of crossover,   . Here,    is set to    .  
                           

     {
                

                     
                             (8) 

where     refers to uniformly mix the   parameters from the two parents. 
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Mutation operator, on the other hand, is named as migration operator (           
 ) and it directly operates on the phenotype (or the topological) representation of the PPIN. When 

mutation operator is activated on protein   for an individual   , it will change the complex of this 

protein to a new complex, say   , where it could maintain there the maximum functional 

similarity (i.e., ∑         
 has its maximum value). 

                           

     {
  |                 ∑         

            

                                                                                    
                                    (9) 

This will imply a modification to the genotype representation. The general framework for the 

proposed GO-based EA (noted as noted as      ) with modularity density and GO-based 

mutation operator is sketched out in Algorithm 1.  

 

5. Results and discussions 

     A yeast called Saccharomyces cerevisiae PPIN (see Figure 1) is used in the experiments [24] 

to test how well the proposed GO-based EA works. This PPIN has 4687 interactions over 990 

proteins. Only 28 proteins have single interactions, while the remaining proteins have two or 

more interactions, with an average degree of 9.4687 interactions per protein. The protein 

"YCR057C" (#170) has the highest number of interactions, 52. Thus, weighty proteins are 

defined as those with more than 9.4687 interactions, while light proteins are those with degrees 

less than 9.4687. From this PPIN, 30 different noisy PPINs are generated using 5 increasing 

levels of noise percentage (10%–50%). 

 

Algorithm 1: General framework for the proposed GO-based EA 

Input:  , ,          //PPIN, topological, Semantic  similarity and Functional similarity for   

proteins 

Input:      ,   ,   ,   ,    ,    

Output:                with maximum    

begin 

   ; // initial generation 

          ; // maximum number of generations 

initialize       
    

          
  ;  

decode:  (           
 )    

    
          

  ;  //Phenotype as a set of complexes for each individual 

where 

                                                             
              

  

evaluate :          
        

              
   ; //    for each phenotype 

while (          do  

    select   :                                           ; 
    recombine   :                          }; 

    GO-based  mutate   :             
       ;  

    decode:  (           
   )    

      
            

    ; // where   
                

  

    evaluate:            
          

                
     ; 

         ; 

end while; 

return           
  with best                 with maximum   ; 

end 
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For each noise percentage, fake interactions are added to the proteins, or true interactions 

are deleted from the proteins. Further, for each noise percentage, the perturbation is performed on 

either random proteins, weighty proteins, or light proteins. Recall that   for the yeast 

Saccharomyces cerevisiae PPIN in Figure 1 equals to 4687, then let      ,     ,   ,        , 

        , and          to denote, respectively, number of added fake interactions, number of 

deleted true interactions, total number of interactions in the noisy PPIN, maximum number of 

interactions per protein, number of proteins with maximum number of interactions,   and number 

of proteins with minimum number of interactions. Table 2 and Table 3 report the characteristics 

of the synthesized PPINs used in the evaluation.  

 

     The reference set, as identified by         , is used to validate the quality of the detected 

complexes over yeast PPIN. This truly complex dataset was created from the Munich Information 

Center for Protein Sequences (MIPS) genomes and protein sequences database. It contains 81 

true complexes with different sizes ranging from 6 up to 38 proteins. 
 

Table 3:  Characteristics of noisy PPINs generated from the yeast Saccharomyces cerevisiae 

PPIN by adding different percentages of fake interactions to random proteins, weighty proteins, 

and light proteins 

Perturbing random proteins 

Noise%                                    

0.10 469 5156 54 1 11 

0.20 937 5624 53 1 2 

0.30 1406 6093 55 1 13 

0.40 1875 6562 54 1 1 

0.50 2344 7031 58 1 1 

Perturbing weighty proteins 

Noise%                                    

0.10 378 5065 52 1 28 

0.20 757 5444 56 1 28 

0.30 1135 5822 55 1 28 

0.40 1514 6201 58 1 28 

0.50 1892 6579 60 1 28 

Perturbing light proteins 

Noise%                                    

0.10 91 4778 52 1 17 

0.20 181 4868 52 1 11 

0.30 272 4959 52 1 5 

0.40 362 5049 52 1 4 

0.50 453 5140 52 1 7 
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Table 4:  Characteristics of noisy PPINs generated from yeast Saccharomyces cerevisiae PPIN 

by deleting different percentage of true interactions from random proteins, weighty proteins, and 

light proteins 

Perturbing random proteins 

Noise%                                   

0.10 469 4218 49 1 42 

0.20 937 3750 42 1 76 

0.30 1406 3281 39 1 116 

0.40 1875 2812 32 1 170 

0.50 2344 2343 28 1 217 

Perturbing weighty proteins 

Noise%                                   

0.10 378 4309 45 1 28 

0.20 757 3930 41 1 28 

0.30 1135 3552 37 1 28 

0.40 1514 3173 30 1 30 

0.50 1892 2795 31 1 31 

Perturbing light proteins 

Noise%                                   

0.10 89 4598 52 1 57 

0.20 178 4509 52 1 98 

0.30 268 4419 52 1 152 

0.40 357 4330 52 1 126 

0.50 446 4241 52 1 143 

 

Three measures are used in the evaluation. These are complex-wise sensitivity 

(           ), complex-wise positive predictive value (   ), and geometric accuracy 

(        ). Both             and     are based on the size of the intersection between the 

detected complexes and the true benchmark complexes [23]. 

            
∑    

   

     
  
   

∑     
  
   

                   (10) 

    
∑    

   

     
  
   

∑ ∑    
  
   

  
   

                   (11) 

where     acts as the number of proteins shared by both the golden standard complex   and the 

predicted complex  , while    and    refer, respectively, to the number of true complexes and 

the number of the predicted complexes. The geometric          can be utilized to indicate the 

trade-of between            and    . 

         √                                   (12) 

The performance of the proposed algorithm is compared with the EA of Pizzuti and 

Rombo [9] with a canonical mutation operator (noted as noted as       ) and the single-

objective EA of Attea and Abdullah [11, 30] with a topological-based mutation operator (noted as 
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noted as       ). The tested algorithms were endorsed for evaluation under a simulation of 30 

different runs. Each run is initialized with a random population of 100 individual solutions. The 

evolutionary process of each algorithm is allowed to continue for 100 generations. The average of 

the 30 different runs (in terms of the best solution obtained) is reported for each algorithm. The 

best solution for each algorithm is recognized by its objective function (  ). The results are 

reported in Tables 4–9. The best result in each test case is given in bold.  
 

Table 5:  Performance evaluation for noisy PPINs generated from the yeast Saccharomyces 

cerevisiae PPIN by adding different percentages of fake interactions to random proteins 

Noise% 
Sensitivity PPV Accuracy 

                                                            

0.1 0.8218 0.9565 0.9587 0.5789 0.7445 0.7552 0.6892 0.8438 0.8508 

0.2 0.7425 0.8781 0.9248 0.4241 0.6363 0.6412 0.5606 0.6412 0.7696 

0.3 0.6918 0.7143 0.8141 0.2873 0.3872 0.4484 0.4443 0.4484 0.6027 

0.4 0.6575 0.6398 0.7091 0.2240 0.2444 0.2705 0.3823 0.2705 0.4350 

0.5 0.6962 0.6365 0.6330 0.1591 0.1818 0.1949 0.3309 0.3368 0.3497 

 

 

Table 6:  Performance evaluation for noisy PPINs generated from yeast Saccharomyces 

cerevisiae PPIN by deleting different percentage of true interactions from random proteins 

Noise% 
Sensitivity PPV Accuracy 

                                                            

0.1 0.8893 0.9569 0.9621 0.7496 0.7882 0.7985 0.8162 0.8684 0.8765 

0.2 0.8795 0.9466 0.9550 0.7503 0.7849 0.7999 0.8122 0.8619 0.8740 

0.3 0.8699 0.9281 0.9417 0.7632 0.7888 0.7932 0.8146 0.8556 0.8642 

0.4 0.8413 0.9049 0.9175 0.7684 0.7951 0.7996 0.8038 0.8482 0.8564 

0.5 0.8239 0.8735 0.8924 0.7951 0.8145 0.8184 0.8093 0.8434 0.8545 

 

Table 7:  Performance evaluation for noisy PPINs generated from the yeast Saccharomyces 

cerevisiae PPIN by adding different percentages of fake interactions to weighty proteins 

Noise% 
Sensitivity PPV Accuracy 

                                                            

0.1 0.8425 0.9347 0.9572 0.6066 0.7522 0.7575 0.7144 0.8384 0.8514 

0.2 0.8052 0.8973 0.9320 0.4858 0.6769 0.6859 0.6246 0.7790 0.7990 

0.3 0.8106 0.8266 0.8878 0.4019 0.4983 0.5302 0.5697 0.6399 0.6844 

0.4 0.8192 0.8448 0.8782 0.3435 0.4186 0.4286 0.5288 0.5920 0.6108 

0.5 0.8420 0.9148 0.9402 0.3136 0.3359 0.3563 0.5125 0.5519 0.5776 
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Table 8:  Performance evaluation for noisy PPINs generated from the yeast Saccharomyces 

cerevisiae PPIN by deleting different percentages of true interactions from weighty proteins 

Noise% 
Sensitivity PPV Accuracy 

                                                            

0.1 0.8900 0.9544 0.9654 0.7493 0.7859 0.7967 0.8164 0.8660 0.8769 

0.2 0.8885 0.9591 0.9642 0.7447 0.7967 0.8043 0.8132 0.8741 0.8806 

0.3 0.8658 0.9449 0.9501 0.7669 0.8112 0.8206 0.8147 0.8754 0.8829 

0.4 0.8541 0.9380 0.9524 0.7677 0.8247 0.8281 0.8096 0.8795 0.8880 

0.5 0.8374 0.9238 0.9365 0.7800 0.8211 0.8313 0.8081 0.8709 0.8823 

 

Table 9:  Performance evaluation for noisy PPINs generated from the yeast Saccharomyces 

cerevisiae PPIN by adding different percentages of fake interactions to light proteins 

Noise% 
Sensitivity PPV Accuracy 

                                                            

0.1 0.8776 0.9571 0.9670 0.7117 0.7747 0.7883 0.7900 0.8610 0.8731 

0.2 0.8676 0.9502 0.9653 0.6875 0.7509 0.7731 0.7720 0.8446 0.8638 

0.3 0.8410 0.9489 0.9631 0.6532 0.7539 0.7641 0.7408 0.8457 0.8578 

0.4 0.8291 0.9479 0.9614 0.6297 0.7324 0.7441 0.7223 0.8331 0.8457 

0.5 0.8131 0.9425 0.9625 0.6013 0.7187 0.7452 0.6989 0.8229 0.8468 

 

 

Table 10:  Performance evaluation for noisy PPINs generated from the yeast Saccharomyces 

cerevisiae PPIN by deleting different percentages of true interactions from light proteins 

Noise% 
Sensitivity PPV Accuracy 

                                                            

0.1 0.8928 0.9652 0.9652 0.7396 0.7796 0.7934 0.8125 0.8674 0.8751 

0.2 0.8858 0.9546 0.9538 0.7430 0.7831 0.7943 0.8111 0.8646 0.8704 

0.3 0.8546 0.9184 0.9214 0.7337 0.7743 0.7778 0.7917 0.8432 0.8465 

0.4 0.8792 0.9513 0.9548 0.7397 0.7838 0.7881 0.8062 0.8634 0.8674 

0.5 0.8791 0.9486 0.9511 0.7427 0.7814 0.7855 0.8079 0.8609 0.8643 

 

     The results reported in the tables prove the ability of the proposed EA with GO-based 

mutation operators to outperform the EA with canonical mutation and the EA with topological-

based mutation operators in all evaluation measures and in all noisy PPINs. This performance 

suggests that the design of the EA should disclose the significance of injecting biological 

information (i.e., GO semantic similarity and protein functional similarity) into its framework 

and that acting on this concept can be satisfying and lead to interesting results. 
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6. Conclusions 

     Identifying protein complexes in protein-protein interaction networks (PPINs) is a challenging 

task with broad applications in biological networks, social network modeling, and 

communication pattern analysis. PPINs can help to understand the mechanisms that control cell 

life, predict the biological functions of unknown proteins, and have important therapeutic 

applications. However, the high rate of false positives and false negatives in large-scale 

experiments can greatly increase the complexity of the networks and lead to unreliable results for 

topological-based detection algorithms. To address this issue, we proposed an evolutionary 

algorithm that incorporates information from the functional domain of proteins to detect protein 

complexes in PPINs. The algorithm's reliability was tested using noisy PPINs being synthesized 

from a yeast PPIN dataset. The results clarify the ability of the proposed algorithm to outperform 

both canonical and topological-based EAs in all evaluation measures. In other words, the results 

prove the effectiveness of the proposed algorithm to handle noisy PPINs.  
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