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Abstract

In this work, we will combine the Laplace transform method with the Adomian
decomposition method and modified Adomian decomposition method for semi-
analytic treatments of the nonlinear integro-fractional differential equations of the
Volterra-Hammerstein type with difference kernel and such a problem which the
kernel has a first order simple degenerate kind which the higher-multi fractional
derivative is described in the Caputo sense. In these methods, the solution of a
functional equation is considered as the sum of infinite series of components after
applying the inverse of Laplace transformation usually converging to the solution,
where a closed form solution is not obtainable, a truncated number of terms is
usually used for numerical purposes. Finally, examples are prepared to illustrate
these considerations.
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1. Introduction:
The goal of this work is to provide a semi-analytic solution for treating approximately the multi-
higher different fractional orders of nonlinear Integro-Differential Equations (IFDE) for Volterra-
Hammerstein (V-H) type with the constant coefficients in the general form:

n-1

Du(t) + Z C; SD%u(t) + Cou(t)
i=1

m t
=f(t)+ Z’b’ f K, (t,s) Hy (s,Cfou(s)) ds,t € [0,T] (D
£=0 0
with the initial conditions
uk(o) =ur €R ;k=10,1, o u—=1;u= max{[an], [ﬁm]} (2)

Where u(t) is the unknown function which is the solution of equation (1) under initial condition
(2), as well as, the functions K,:S >R with (S={(t,s):0<s<t<T}; H;:S.XR-
RS, ={s:0<s<t;t<T}); £=0,1,---,m, and f:[0,7] > R is a continuous function. In
addition, a;, B, eR*, £ =1,2,---,mand i =1,2,---,n with property that a, > a,_4 > - > a; >
ay =0, B> Bm_y1 > > P1 > By =0 and A,(for all #) are the scalar parameters. §D) Denotes
the Caputo fractional derivative of order y € R™; (y = Qj(=1m) OF ﬁf(=m)).

Many mathematical modeling of various physical phenomena contains nonlinear fractional order

Volterra integro differential equations, such as heat conduction in materials with memory [1].
Moreover, these equations are encountered in combined conduction, convection, radiation problems,
fluid dynamics, biological models and chemical kinetics [1,2,3].
Adomian decomposition method and Laplace operator are widely used by many authors and
researches to solve the problems in applied sciences such as differential, fractional differential,
integral and integro-differential equations, see Ref [4,5,6,7,8]. In this work, we extend this technique
to further deal with considering problem (1) with initial conditions (2).

The paper is organized as follows. Section 2 presents the necessary definitions and basic
preliminaries of the fractional calculus, Adomian decomposition method and the Laplace transform;
section 3 devotes to formulation of ADM and MADM with the aid of Laplace transforms for solving
nonlinear IFDE for difference and simple degenerate kernels of V-H type; our results illustrated
throughout examples in section 4. Finally, section 5 includes a discussion for these methods.

2. Preliminaries and Notations:

In this section, we discuss some basic definitions and properties of the fractional calculus theory
and the Adomian decomposition method with Laplace transformations which are used further in this
paper.

2.1 Fractional Calculus:

Fractional calculus deals with the differentiation and integration of arbitrary order, many
definitions of it have been proposed [9,10,11]. Most frequently occurring are Riemann-Liouville and
Caputo [4,8]. In this section, we discuss the definition and important properties of these two types of
fractional derivatives, which are used throughout this paper. Moreover, some formulas which enjoy
with a fractional operator with Laplace transformation. we begin by defining the function space
C,,v € R, which was used in development of the operational calculus for the differential operator.
Definition 1: [12]

A real valued function u defined on [a, b] be in the space C, [a, b] ,y € R, if there exist a real
number p > y, such that u(t) = (t — a)Pu,(t), where u, € C[a, b], and it is said to be in the space
Cla, b] if and only if u™ € C,[a, b],n € Ny,

Definition 2: [10,13]

Let u € C,[a,b],y = —1 and a € R*. Then the Riemann-Liouville fractional integral operator

J¢ of order a of a function u, for @ > 0 is defined by:
t t — a—lu
o) = f &~ u®
a I'(o)
and for a = 0, we have J2u(t) = Iu(t) = u(t).

dé, a=0
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Definition 3: [10,13]
The Caputo fractional derivative operator $DE of order « € R* of a function u € C™ [a, b] and
m—1<a <m,m € N is defined as:
aDfut) = oJI"*D"u(t)
Thus for a = m(€ Ny),and u € C™[a, b], we have foralla <t <b

EDdu(t) = u(t) ; SDMu(t) = DMu(t) =
Note that: [9,10,11,13]

i. Fora>0andp > 0,then J&{(t—a)f1}= _F(Flgfzx) (t —a)f*e1,

ii. Foralla >0, = 0andu(t) € Cy[a,bl,y = —1, then:
JEJEu® = Jf Jfu®) = JEPu)

iii. The Caputo derivative of any constant function is zero, i.e., {DFC = 0; C is any constant and « is
arbitrary positive real numbers.

iv. Assume that u € C™[a,b]; @ = 0,a ¢ N and m = [a] then $D&u(t) is continuous on [a, b],
and [SDfu(t) 1i=q = 0.

v. Leta > 0,m = [a] and u € C™[a, b], then, the relation between the Caputo derivative and R-L
integral are formed:

d™u(t)
dem

CpEJEu) =u); a<t<b

m-—1 (k)
JE Speu® =u@ - ¥ P e o ®)
k=
vi. Let @ > 0;m = [a] and for u(t) = (t — a)” for some B > 0. '(I)'hen:
0 if B€{0,1,2,,m—1}
Dfu@® =4 TB+1) p-a S BENandf=m
F(B+1—a)(t_a) orBé¢Nand B >m—1

vii. The Laplace transform of the convolution of two functions is the product of their Laplace

transforms.
t

L{u*v)(®),p} =L {f u(t — n)v(n)dn.p} =U@V()
0
Where U(p) = L{u(t),p}and V(p) = L{v(t), p}.
viii. The Laplace transform of an integral term, for any t > 0 can be formed:
t 1
L { fo u(é)df,p} = U®)

ix. The Laplace transform for power function multiple to a function for all ¢ > 0, can be formed:
n

d
L{t"u(t),p} = (—D"WU ()
X. The Laplace transform of Caputo fractional of order a and m = [a], can be obtained as follows:

m-—1

p™U(p) — Z pm"“lu(")(O)]
k=0
m-—1

= p U@ - ) 1 u®(0) )
k=0

2.2 The Adomian Decomposition method: [4,14,15]

The Adomian decomposition method is one of the most powerful techniques used to solve semi-
analytically the nonlinear equations. In this method, decomposing the unknown function u(t) of an
equation into a sum of an infinite number of elements described through the decomposition series:

@ =) w®

Where the components w,(t),r = 0 are to be determined in a recursive manner, this method
concerns itself with finding the components wu,(t),uq(t),u,(t), -+ individually. However the
nonlinear term F (u(t)), can be written in the decomposed form:

L{§Dfu(t), p} = p~ "=
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P©) =) Anluo(® (0, un (0]

Where A,,'s are called the Adomian polynomials which depending on ug,u4, -+, u, and that are
obtained for the nonlinearity F(u(t)) by formula:

A @)—;aﬁpwzloeuﬂeo n=012,-
Where 6 is a parameter introduced for convenience. The uniqueness of the Adomian polynomial is
not required at all and we can apply the Taylor expansion of F(u(t)) about the first component u, (t)

to generate the forms as follows: .
@ [u(®) —ue ()]

PE®)= ) Aluo@,u @ u©] = ). FEOEOBL O ()

Through the use of above expansions, from the simple analytic nonlinearity F(u(t)), the Adomian
polynomials A,,"s are arranged to have the form:

_14ad% © i\ _
AO = aw »F (Zizog ui)_6=0 = F(uo)
1 ; 1
an=geF (O o) = T I (@%g + 0Mu)lono = [F'(8%up + %up)]g—o()
11detl =0 ,_, " 11de?
= u F'(uo)
_1 d* 2 i) 1 d? 0 1 2
AZ_Z@_F(ZL OBui)_e . 2'd92[F(9 ug + 0tuy + 0°uy)]g=
1d

=176 —[F'(0%uqy + 0%y + 0%uy) (ug + 20u,)]p-=
1 0 1 2

1
F”(Qouo + 0% uy + 6%uy) (uy + 260uy)?)g=0 = UxF'(ug) + —ulF”(uO)
1
Az = uzF'(ug) + uguF'' (ug) + _u1F'"(uo)

1 1 1
Ay = uyF'(up) + ( u + u1u3)F (ug) + uluzF”’(uO) + 4—u1F(4)(u )

and so on. For this case the Adomian polynomlal A, () = Aplue(®), uq (t), -+, u,(t)],n =1, canbe
listed in general formula, [16]:

n
Ant)= ) CKFO(ug)

Where
k=1

1 n-—
ZZ (]+1)u]+1 . 1}, 2<k<n
j=

A useful tool that will speed up the convergence of the ADM is developed; the new technique
relies upon in most cases the so-called “Noise Term Phenomenon” [13] that demonstrate a speedy
convergence of the solution. The noise terms phenomenon can be used for all functional equations
like the differential or integral equations. The noise terms are defined as the identical terms with
opposite signs that can also appear in the components u,(t) and w4 (t) and in the other components as
well, Noise terms may appear if the exact solution of the equation is part of the zeroth
component u,(t). Verification that the remaining non-canceled terms satisfy the integral equation is
necessary and essential.

3. Solution Technique for multi-higher IFDE of V-H type:

In this section, we shall derive the semi-analytical solution of the nonlinear (IFDE) of the (V-H)
type of the form (1) under the initial condition (2) by using Laplace transform that combine with the
Adomian decomposition method and Modified Adomian decomposition method according to two
different types of kernels difference and first order-simple degenerate kernels which can make a
general formula of each ones:

ck =
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3.1 Apply the LADM for Difference Kernel:
Consider the nonlinear (IFDE) for difference kernel K, (t,s) = K,(t —s) of the (V-H) type of the

form (1) under the initial condition (2). Suppose Fg(u(s))=Hg<s,CDf*’u(s)),forallt’=

0,1---,m; and put F(p) as a Laplace transform of f(t). First, apply the Laplace transform for both
sides of equation (1) with the aid of Laplace transform of Caputo derivatives differentiation property
as in equation (4) and using convolution property (vii) for difference kernel type, the following

equation is obtained:
My, —1

n n-1 i
Y(PIU(p) = Z pr Ky + Z Ci Z p“ [+ F(p)
k=0 i=1 k=0
D A LGOI (u®)} 5)
Where =
n—-1
Y) =™+ ) Epti+Co ©)

Second, to overcome the difficulty of the nonl_inear term Fg(u(t)), we apply the Adomian
decomposition method for handling (5). To achieve this goal, we first represent the linear term w(t) at
the left side by an infinite series of components in the form:

u(®) = Y uy(0) (70)

r=0
Where the components u,.(t) ,r € Ny will be recursively determined, and obtained equation (7b)
after applying the Laplace transform for both sides of equation (7a), with noted that for each r,

L{u, (£), p} = Uy (p): )
U@ =) V) (7b)

However, the nonlinear term Fg(u(t)) at the right side (5) will be represented by an infinite series
of the Adomian polynomials in the form, for all £ = 0 1,-

F(u(®) = EA*’ [0 (), w1 (), ur ()] ®
At last, substituting equations (7b 7a and 8) lnto (5) then leads to the following recursive relation:
m .
a;— \

0o(®) = 55 Z penh- 1uk+z Z P | + F ()

9
Ur+1(p) = W{; Ao L{Ip()IL{ AR [t (8), u1 (8), -+, up (D]} 5 for k = OJ
Where
Ag [uol = Fp(uo) ; Af[uo,ul] = u1F{5(uo);
(10)

2
1 Uy "
Ab[ug, ug, uz] = upFy(up) + 7(@ (up)); -

Applying the inverse Laplace transform to the first part of the equation (9) gives uy(t) =
L7{U,(p), t}, so putting in the second part of equation (9) we obtain U, (p) and then getting u, (t) =
L7Y{U,(p), t}. By same stages, this in turn will lead to the complete determination of the components
ofall up(t);k=0.

In computational practice for the Adomian polynomials A%’s we truncate the series after r = M for
positive finite number M. Thus:
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M
1d .
AL(p) = 1 doT [F{; <z Glui)] ,0<r<M;forall£=0,1-,m
i=0 0=0
So, all terms of the series in equation (7a) need not to be determined and so we use an

approximation of the solution by the following truncated series:
M

u(t) = Ay () = Zur(t), Mezt (11)

r=0

The components u,, uq, -+, uy are determined recursively by the above formula (9) or using the
noise terms approach idea. It is important to note that the decomposition method suggests that the
zeroth component u, (t) be defined by the initial conditions and the function f(t) as described above.
The other components namely w4, u,, -+, uy, are derived recurrently.

3.2 Apply the LADM for Simple Degenerate Kernel:

Laplace Adomian decomposition technique can be used to solve some kinds of nonlinear IFDE of
V-H type which the kernel is not necessarily differenced kernel, here we take the same equation (1)
with all conditions (2) on that equation except the kernel which is a first order simple degenerate
kernel: X,(t,s) = cpt + d,s, where c,and d, are any two positive-real numbers. Suppose that

Fo(u(s)) = H, (s , CDf*’u(s)); and put F(p) as a Laplace transform of f(t). First, apply the Laplace

transform for both sides of with the aid of fractional differentiation property (vii) of Laplace transform
for Caputo derivatives, the following equation is obtained:

Mey—1 n—1 Mg;—1
1
U(p) = L{u(t)} = ) Z pin~* 1y + Z Ci Z p%~* [+ F(p)
= =1 k=0
1 m
+ W{; A(col{If) + d{;L{If})} (12)
Where
t t
¢ =fth(u(s))ds ; I = st{)(u(s))ds
0 0

and (p) given in equation (6). Taking Laplace transforms for If and If, £=0,1,--,m;
respectively, and calling properties (viii and ix) for integral parts, yields:

c{if} = - ;—p (% L{Ff(u(s))})

1d
L{Is{} = —E%AC{F{:(U(S))}
Now, we represent the linear term u(t) at the left side (12) by an infinite series of components
defined in the equation (7a). However, the nonlinear term Fg(u(S)); £ =0,1,---,m at the right side

of it will be represented by an infinite series of the Adomian polynomials defined in the equation (8).
Then substituting equations (16) and (7b) into (12) leads to the following recursive relation:

man—l mai_l

n-—1
1
Uo(p)=m z p“”"“luk+z€i z p% k" ty | + F(p)
p k=0 i=1 k=0

(13)

~1 (o d (1 (14
Ui () = @{; A [c% (5 L{AL o0, s (0, ui (O]

1d
+d45%L{A£ [uo (8), uq (t), ---,uk(t)]}]}; fork =0

Where 1 (p) given in equation (6) and all A% [ug(t), u,(t), -, u, (t)] are defined in equation (10).
Also, apply the inverse Laplace transform to the first part of the equation (14) gives uy(t) =
LU, (p),t}, so putting in the second part of equation (14) we obtain U;(p) and then getting
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uy (t) = L7HU,(p), t}. By the same stages, this, in turn, will lead to the complete determination of
the components of all u,(t); 0 < k < M. So we use an approximation of the solution by the truncated
series (11).

3.3 Apply the Modify LADM for Solving non-Linear IFDE of V-H type:

The modified Adomian decomposition method with the aid of Laplace transform to solving
nonlinear IFDE of V-H type of the form (1), introduces a slight variation to the recurrence relation (9)
that will lead to the determination of the components of w(t) in an easier and faster manner. For many
cases, the function f(t) in equation (1) can be set as the finite sum of partial functions f;(t),i =
0,1,..,N(e N):

f@®) = fo© + fi(©) + -+ fy (©) (15)

In view of (15), we introduce a qualitative change in the formation of the recurrence relation (9).
To minimize the size of calculations, we identify the zeros component u,(t) by one part of f(t),
namely f,(t). The other part of f(t) can be added to the component u, (t), namely f;(t), among
other terms, Continue this process N-time. The modify Adomian decomposition technique with the

aid of Laplace transform introduces the modified recurrence relation for difference kernel type:
Me;—1

1 nlﬂln_1 n—-1
Up(p) = o) Z pn~k Ty, + 2 Ci Z p® =k lyy | + Fo(p)
i k=0

?i(P)
Y(p) IIJ( )

Ui(p) = {Ewm(t)}m [o(®), w3 (), w @O}, (i 2 D (1)

Ups1(p) = 7 Z A L{HC (O} L{ Al Lo (8), ua (8), -+, e (D]} for ke = N
lP(p) ~ )

Where F;(p) is Laplace transform of f;(t). This shows that the difference between the standard
recurrence relation (9) and the modified recurrence relation (16) rests only in the formation of the first
M-components u,(t), uq (t) and so on to uy, (t). The other components w;,j > M remain the same in
the third recurrence relations. Although this variation in the formation of wu,(t), u,(t), ..., up(t) is
slight, however it plays a major role in accelerating the convergence of the solution and in minimizing
the size of computational work.

Applying the inverse Laplace transform to the first part of equation (16) gives uy(t) =
LUy (p),t}, so putting in the second part of equation (16) we obtain U;(p) and then getting
uy (t) = L7HU,(p), t}. By same stages, this in turn will lead to the complete determination of the
components of all u (t). So we use an approximation of the solution by the truncated series (11).
Moreover, Laplace transform with MADM can also be applied for first order simple degenerate
kernels: K, (t,s) = cpt + dps, where ¢ & d € R*. Thus by the same procedure as in section 3.2 and
from equations (12 and 13) we obtain the following recurrence relations respectively:

May—1 n—1 Me;—1
1
U, (p) — Z pan—k—lu + z C: Z pai—k—lu
’ l'b(p){ k=0 ’ i=1 l k=0 ’

_E®) L d
= MM;MP%A#MHmwmuu,mmm

#do s LA B, 0, w O] £ 1

+ TO(P)}

Ui(p)
17)

dezmﬁib[ (Lt 00(©,1. 0w )
0

) 1d ™ - fork >N
T { k[uo(t),ul(t)'""u"(t)]}]}' =

4. llustrative Examples:
In this section, we shall give some illustrative examples in order to clarify our approach. We
consider the following test problems:
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Example 1: We first consider a higher-order nonlinear IFDE of VV-H type with variable coefficients:
t r
Epau(t) = f(t) + Af (t —s) {ngu(s)} ds; 0<a<1
0

Where
_ A3"T"(3)
flO) =m—=t7%—
r3—a) Q@r—-—pr+1)Q2r—Br+2)Irr(3-p)
And 2 € R subject to the initial conditionu(0) =0 .
Now, if we take § = 0andr = 1 we get the linear IFDE. From here put « = 0.5and A1 = é then

from the equation above we have:
Ho(t,5) = (¢ = 8); mg = 1; LK (0),p} = 5 and F(p) = =z —
and Fo(u(s)) = §D2u(s) = u(s). From equation (6) yields: ¢ (p) = p®°

Using the first part of recursive relation (9) we obtain:

t2r—/3’r+2; reN

6 2
Uo(p) = L{ue(t),p} = 535S
Taking inverse Laplace to transform for the above equation yields

up(t) = L7H{Uo(p), t} = 3t?
Using equation (10) where £ = 0, we get:
AY = Fy(ug(t)) = 362 — —=—t*5 and L{AJ(t),p} =

r(s.5)
Applying the second part of recursive relation (9) with k = 0 we obtain:

_ t9/2
I'(5.5)

6 2
e

2 2
Ui (p) = L{u (1), p} = 255 T 3,8
Taking inverse Laplace to transform for the above equation yields
u, (t) = _Z t%/2 __Z t7
1 r'(5.5) 3I(8)
From equation (10) to find A% put £ = 0, thus:
2 2
AY = u, Fj(uy(t)) = 1= t*> — t’
1= U o(uo( )) Uy * r(5.5) 3r(8)
and
2 2
L{AY (), p} = P55 3pP

Applying the second part of recursive relation (9) with k = 1, we obtain:
2 2
U, (p) = L{u,(6),p} = 38 gpi0s
Taking inverse Laplace to transform for the above equation yields
2 2

£) = t7 — t19/2
w® =33yt T oros)
Using equation (10), with £ = 0 we get:
A =u F’(u)+lu2F”(u)=u *1+0= 2 t7 — 2 t9>
27— e Al g 0 z 3[(8) 9r(10.5)

L{AY(t),p} = 3p8  gpios

Applying the second part of recursive relation (9) with k = 2 we obtain:
2 2
Us(p) = L{us(6),p} = 9p105 2713
Taking inverse Laplace to transform for the above equation yields
us(t) = o 2
3 321(10.5) 33r(13)
By the same technique for k = 3 we get

t12

2 2
£) = 12 _ £29/2
w(® =333 34T(15.5)
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In general k > 1 we get
2 2

uk(t) — (5k+4)/2 _
3k-11(3 + 5k/2) 3kr(11/2 + 5k/2)
Considering (11), the approximated solution for k = 1,3 and 5 are:
1

t(5k+9)/2

w(t) = 4, (t) = ;ui(t) =3t 51yt
3

u(®) = ;) = ZO u(t) = 3t — gyt
5

u(®) = a5(t) = ZO u(t) = 3t = gt

The following table presents a comparison between the exact solution and the approximate
solution @, (t), ti5(t) and i (t) respectively, depending on the least square error.

. Approximate Solutions

t Exact solution MO NO) 7= (D)
0.0 0.0 0.0 0.0 0.0
0.1 0.03 0.029999999986 0.03 0.03
0.2 0.12 0.119999998306 0.12 0.12
0.3 0.27 0.269999971071 0.27 0.27
0.4 0.48 0.479999783280 0.48 0.48
0.5 0.75 0.749998966600 0.75 0.75
0.6 1.08 1.079996297142 1.079999999999 1.08
0.7 1.47 1.469989106574 1.469999999997 1.47
0.8 1.92 1.919972259894 1.919999999989 1.92
0.9 2.43 2.429936733214 2.429999999956 2.43
1.0 3.0 2.999867724867 2.999999999845 3.0
L S.E 2.24024 e — 008 2.59395 e — 020 0.0

If we take 8 = 0.5 and r = 2 we get the nonlinear IFDE of V-H type, puta = 0.5and A = %then
from the basic problem we have:

t
D2ou(®) = £ +5 [ (= [§%uo)ds
0

Where
3r2(3)
= _$3/2 __= "7 45
O =ra5t" ~20r228)
Since we have the same kernel ¥, (t,s) =t —s; L{F,(t),p} = = and F(p) = o 72

7 75 T Gor
and  Fo(u(s)) = [8D£-5u(s)]2. From equation (6) ¥(p) = p®>.Using the first part of recursive
relation (9) we obtain:

oy — £ 6 72
o®) = Liwo(O,1} = 5 ~ g5 pes

Taking inverse Laplace to transform for the above equation yields

uo(t) = L~HUy(p), t} = 3t* - ZL
r2(2.5)r(6.5)

To find A9, from equation (10) putting £ = 0 and using the Caputo definition for order 0.5 we
obtain:

2
AJ () = Afluo (D] = Fo(uo(®)) = [§D2°ue(®)]” =
Apply Laplace definition on A3 (t), we get

t5'5

36 36

t3 _ t6'5
r2(25)  5I3(2.5)

th

T 25 25)
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LA (), p) = 216 36 N 9r(11)
o\ PI = T2(25)p* ~ 5T3(2.5)p75  2504(2.5)plL
Applying the second part of recursive relation (9) with k = 0 we obtain:
U (p) = Lws (), ) = 72 12I(7.5) 3r(11)
1P = A PI = 122 5)p65 ~ 5T3(2.5)p™0 | 25T4(2.5)p135
Taking inverse Laplace transform for the equation, yields

72 12I(7.5) 3r(11)
— r-1 — 55 _ 9 12.5
w® =LHLWP B = maer6e ! SPEsra)’ | 25T 2535
Thus the approximate solution by the truncated series using two iterate uy(t) and u, (t):
D = (0 = uo () + 1, (6) = 362 L2r(75 3r(11) 125
u® =40 = u @ +u (0 = 5T3(2.5)I(10) ' 25T*(2.5)I(13.5)
From equation (10) to find A9 put £ = 0, thus:
d d 2
Afuo(8), u, (D] = a0 [Fo(uo(t) + Ouy (t))]9=0 BT [thO'S (uo ® + 9“1(0)] |9=0
= 2[00 5o (0)][§D0 5, (0)]
36 . 144T(75) 36r(1l) .. 18
~ 5I3(2.5) 5T4(2.5)I'(9.5) 25I5(2.5)r(13) 25T4(2.5)
72I(7.5) 155 18r(11)
25I5(2.5)I'(9.5) 1256(2.5)I'(13)

After finding the Laplace transform for A?[u,(t), u; (t)] and putting the answer in the equation (9)
we obtain U, (p) = L{u,(t), p}, finally using the inverse Laplace operator yields:
uy(t) = L~HU,(p), t}
12r(7.5) 3r(11) 16I(7.5) N g] 125

T 53(2.5)(10) 5T4(2.5)r(13.5)| r95 ' 5
12r(145) [r(11) 2r7.5)] ,, 6I'(11)r(18)
t s @2e)ran |Taz) T TEs5) |¢ T 125T6(2.5)r(13)r(20.5)
Thus the approximate solution by the truncated series using three iterate uy(t), u, (t) and u, (t):
u(t) = 4,(t) = up(t) + uqg (8) +up(t)

19.5

a2 3r0D 16r(7.5)+1] 2
5T (25)I(13.5) | T(95) 15
12r(14.5) [F(11)  20(7.5)] .. 6T (11)T(18) Lo
T sresran |tas) T Tes) |¢ T 125r@s)ras)reos)

By the same procedure, we can find u5(t) and putting in approximate form then we obtain 5 (t):
3
t) = 05(t) = (¢
u(®) = 8500 = ) wi(®)

4

t2

w

12r(145) [T(11) 2r(7.5) 16rADIIS)] .,

T 5MS(2.5)r(17) |57A3) T 5r@5) T T3)r(9.5) ]

6I(18)  [16F(11)T(7.5) 2r(11) 8T(11)F(145) 16T'(14.5)T(7.5)

25T6(2.5)0(20.5) | T(13)T(9.5) ' 5r(13) ~ T13)[(165) = T(16.5)T(9.5)

82(7.5)] ...

_I_

[2(9.5)
24T(215)  [TADF(145)  2M(75)I(145) TADIAS) TADITS)] ..

T 12507(25)1(23.5) [I‘(13)I‘(16.5) T TO5r65) T TU3)I20)  TI3)©.5)
3r(11)1(25) (i) 4ras)] ..

625I8(2.5)[(13)T'(27.5) [r(13) "~ T(20) ] t
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The following table presents a comparison between the exact solution and the approximate
solution i, (t), 1, (t) and 115 (t) respectively, depending on the least square error.

. Approximate Solutions

t Exact solution 2.0 ,(0) T2 (D)
0.0 0.0 0.0 0.0 0.0
0.1 0.03 0.02999999999 0.03 0.03
0.2 0.12 0.1199999973 0.12 0.12
0.3 0.27 0.2699998963 0.2699999999 0.27
0.4 0.48 0.4799986198 0.4799999981 0.48
0.5 0.75 0.7499897244 0.7499999683 0.7499999999
0.6 1.08 1.079947045 1.079999691 1.079999998
0.7 1.47 1.469788348 1.469997888 1.46999998
0.8 1.92 1.919297908 1.919988841 1.919999829
0.9 2.43 2427980786 2.429951663 2.429998883
1.0 3.0 2.994813197 2.999821107 2.999994036

L.S.E 3.15208 e — 05 3.4469 e — 08 3.684 e — 11

Example 2: Consider a higher-order nonlinear IFDE of VV-H type:

Cpa ' 2 [cpb z ' cnbB2 3
oDEu(t) :f(t)+J;) (t—ys) {ODS u(s)} ds+f0(t—s){0Ds u(s)} ds

Where
4 t7-2B1 27281 t7-2B1

2 -
fO=r3-5t _F2(3—ﬁ1){5—231_6—231+7—231}

8 t8—3ﬁ2 t8—3ﬁ2
@3- p2) {7 =3B, 8- 3[)’2}
And 1< a, B4, B, < 2 with the initial condition u(0) = —9,u'(0) = 2.
Now, if we take « = 1.1, 8, = 1.5, 8, = 1.8 then from the equation above we have:
K, (t,s) = (t—5) ; Ki(t,s) = (t—5)?; Ko(t,s) =0; m, =2
LU, () = 1 LU, (0] = 2 Fp) = 2 8 25I'(3.6)
2= e M = TP E s T T (15)ps | 13M3(1.2)p°

Let  F(u(s)) = [§D2%u)] 5 Fy(u(s)) = [§DE5u(s)]?
From equation (6) yields: ¥ (p) = p*! Using the first part of recursive relation (9) we obtain:
Uo(p) = L{ (t)}_z 9+2 8 25I(3.6)
0P = o = 2 T, T 3 T T2(15)pst  13M3(1.2)p*7
Taking inverse Laplace to transform for the above equation yields
8

25T(3.6)

2 _a._ 51 _ 3.7
Up(t) =t +2t =9 r2(1.5)r(6.1) 13r3(1.2)I'(4.7)
Using equation (10), with £ = 1,2 we get:
) 8 25T'(3.6) ’
1 _ 05 _ 3.6 _ 2.2
Ay = F1(uo) = <F(1.5) T as)r@s) 1313(1.2)r(3.2) )
) 8 25T'(3.6) ’
2 _ _ 02 _ 33 _ L9
Ay = Fa(ug) = <F(1.2) B T rasrasn’ T 1Brarey)’ >

Applying the second part of recursive relation (9) with k = 0 we obtain:
Uy () = Ly (0) = 4 OO
P = M = r2 1 5)pet T T3 (12)p*7
Taking inverse Laplace to transform for the above equation yields

Do 8 i1, 8T0A6)
uy (t) = T2(1.5)I(6.1) r3(1.2)I(4.7)

t37 4 ...
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_ 8 51 8r(1.6)
The noise terms+ _1"2(1.5)1"(6.1) t>" and £ r3(1.2)T(4.7)

terms from the zeros component u, (t) gives the solution which is the exact solution:
u(t) =t>+2t-9
Example 3: Consider the following nonlinear IFDE of V-H type

EDEou(t) = f(t) + f (t — $)2$D1?u(s)ds — f (t— s){gDsl'7u(s)}2ds
0 0

t37 appears in uy(t) and u, (t). Cancelling these

where

4 500 50
r(1.4) 11971(1.8) 13T2(1.3)

With the initial condition u(0) = 7 ,u’(0) = —3.
While the exact solution is u(t) = 7 — 3t + 2t2.
Now, from the problem we have:
Ho(t,s) = —(t—5) ; Ki(t,s) = (t —5)* ; Ko(t,s) =0
a=16 ; f,=17, B=12,B,=0; m,=2
Fy(u()) = {§D37u()Y’ 5 Fy(u(s)) = §032u(s)
Apply standard LADM: Using the first part of recursive relation (9) to find Uy(p) where uy =

7;u; = —3 and From equation (6), for a; = 1.6 and all C;’s are zeros, we obtain (p) = p®. Then
taking the inverse Laplace to transform for both sides we get:

4.2

o B 8 . 50I'(3.6)
u(6) = L7HUo(p), 6} =7 =3t + 26* — o t™ e s re

To find A} and A2, from equation (10) putting £ = 0,1 and using the Caputo definition for order 1.2
and 1.7 with F, and F;, respectively, we obtain:

4 8 50I'(3.6
A5(0) = Ajlue (D] = Fo(uo (1)) = §DHue(t) = ) t08 — TG t42 + = (1_(3)F; @ 3
A3() = Ab[uo(®)] = Fy (uo(0)) = [§DETuo ()]’
16 64 400T(3.6) 64

— £0-6 _ t* + £28 4 74
r2(1.3) ['(1.3)I'(4.7) 13r3(1.3)I'(3.5) r2(4.7)
800T'(3.6) 6.2 2500T2(3.6)

13T2(1.3)I'(4.7)I'(3.5) 169T4(1.3)I'2(3.5)

Apply Laplace definition on A3 (t), A3(t), and the Laplace transform of each kernel is L{ZC,(t)} =

;—;; L{K, ()} = % with using the formula (9) we obtain U; (p). Finally take Laplace inverse for both

5

sides we get the u, (t):

uy () = L7HU; (p), t}

8 t5'4 16 8.8

4
r6d’ TE®' TTAIIGEE) [13r(1.3) " T@n
16r(1.6) ,, 400r(3.6)r(38) ., 64T(8.4)
T r2(13)r(5.2)  13r3(1.3)r(3.5)r(7.4) T2(4.7)r(12)
800T'(3.6)['(7.2) o 2500T2(3.6)T'(6)
13r2(1.3)I(4.7)[(3.5)r(10.8) 169T*(1.3)I'2(3.5)r(9.6)
Thus the approximate solution by the truncated series using two iterate u,(t) and u, (t):
u(t) = 1, (t) = up(t) + uy ()

=7 —3t+2t%—

25T(3.6) 161"(5)] .

11

8.6

(88 4 25T'(3.6) N 16I'(5)|
r'(9.8) '(1.3)r8.6) [13r(1.3) Tr4.7)
400I'(3.6)I'(3.8) 64 641(8.4)
1313(1.3)r(3.5)r(7.4) I'2(4.7)r(12)
N 800T'(3.6)I'(7.2) o8 2500I2(3.6)I'(6)
13r2(1.3)I'(4.7)r(3.5)r(10.8) 169T4(1.3)I'2(3.5)I'(9.6)
Putting k = 1 from the second part of equation (9) and using the Laplace transforms of kernels
L{F; ()} and L{XK,(t)} with valued od A,’s in the equation, yields

11

8.6
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1 (2 1
Uy(p) = F{FL{AH% @), u, (O]} — p—ZL{A% [uo(t),ul(t)]}}

After finding each of A} and A% by using defining the F; and F,, respectively and determine
Laplace transforms with putting all into the formula above. Finally, taking the inverse Laplace
transform to obtain u, (t). Thus the approximate solution by the truncated series using three iterations
uy(t), uqy (t) and u, (t):

u(t) = 4,(t) = uo(t) +uy (1) +uy(t)

The following table presents a comparison between the exact solution and the approximate
solution i, (t), @i, (t) and i, (t) respectively, depending on the least square error.

32
=7 —3t+ 2t — ———t1??

T(13.2)
8 25T(3.6) 16I'(5)] 64T(8.4) 2 1
+{r(1.3)r(12) [13r(1.3) + r(4.7)] MYET)) [F(1.3)F(8.1) + r2(4.7)]}t11

13T4(1.3)I(3.5)r(9.6)| I'(5.7) '(3.5)

100T(3.6)I'(6) [32[‘(3.8)_241‘(1.6)] oo

1 256I'(1.6) [I'(3.8) TI(7.2) 32r(7.2) [25T(3.6) L 16T(5)]) .4
" T(10.8) {r2(1.3)r(3.5) r(1.3)_r(4.7)] T2(13)1(6.9) |137(1.3) | T(4.7) }
128 re4) 2rais)] ., 1024r(84r(14) .,
TT@rasa) [r@n T TeD T T3(4.7)r(10.8)r(17.6)
64

T ra3ras)

13T (1.3)r(3.5)

25T(3.6) [T(7.2) T(10.6)
[r(4.7) "TED

r(10.6)[ 8r(s.4) 25T(3.6) 16I'(5) .
T(4.7) [T(4.7)r(10.3) " 13r(1.3)(6.9) F(4.7)I‘(6.9)]}t
200T'(3.6) 25T(3.6)[ T(6)  2I'(9.4)
13r3(1.3)r(3.5)r(13) {13r(1.3) [r(3.5) r(6.9) ]
32rOH)[F(7.2) T38)  T() ]}tlz
T(4.7) r(5.7) (6.9

20000I'2(3.6)['(8.2)

r'6)

2rB38)] L0s

T 169rs (132 3.5)r(18) |T(7.9) T T(G.7)

re4) 272 .,

6400T(3.6)['(12.8)
T B3 @) (G5 (164) [
40000T2(3.6)I'(11.6)

r(103) T TO.1D

re 2r7.2)]| .,

169T*(1.3)I'2(3.5)I'(4.7)I'(15.2) [T(7.9) * T(9.1)
25000073 (3.6)T(6)I'(10.4)

t 97T (1.3) 3 (3.5)M(7.9)T(14)

13

. Approximate Solutions

t Exact solution o (D) 2,(0) G
0.0 7.0 7.0 7.0 7.0
0.1 6.72 6.720034244 6.719999942 6.72
0.2 6.48 6.480626219 6.479995145 6.479999955
0.3 6.28 6.283418818 6.279934883 6.279998544
0.4 6.12 6.131376244 6.119587955 6.119983051
0.5 6.0 6.028856817 5.998270101 5.999887496
0.6 5.92 5.981645921 5.914391509 5.9194782
0.7 5.88 5.996965041 5.864774937 5.878116676
0.8 5.88 6.083463905 5.843683769 5.874363761
0.9 5.92 6.251199649 5.841486751 5.905445168
1.0 6.0 6.511605461 5.842873373 5.966721596

L.S.E 0.431286 0.032438 0.001354
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Apply Modified LADM: We first split f(t) into two parts (N = 1), namely:

fo(®) = t%* and f1(t) = t38 + >0 6
0 r(1.4) ! 1197T(1.8) 13I2(1.3)
Then the Laplace transform became:
—500I(4.8) 50I(3.6)

4
F, =— d F =
@ =73 and B0 = rrragpie T Brea)pie
Using the first part of recursive relation (16) to find U,(p) where uy = 7;u, = —3 and From
equation (6), for a; = 1.6 and all C;’s are zeros, we obtain (p) = p1®, we obtain:

-3 7 4
Up(p) = L{ug(0)} = 7 + » + o3
Taking inverse Laplace to transform for the above equation yields
ug(t) =2t2 -3t +7
Using equation (10), with £ = 1,2 we get:
4 16
1 - — 0.8. 42 — — 0.6
Apluog(®)] = F1(u0(t)) I(1.8) t°%; Aglug (t)] Fz(uo(t)) T2(1.3) t
Applying the second part of recursive relation (16) we obtain:
—500TI'(4.8) 50I'(3.6) 8 16I'(1.6)
Ui1(p) = L{wy(O)} = + + ———= =0

1197T(1.8)p64 ' 13r2(1.3)p52 ' pb4 T2(1.3)p5?2
The Laplace inverse of the zero function is zero,so  u,(t) =0
Using the third part of recursive relation (16) we obtain, for k > 1:

2
1
Uk+1(p) = L{ug 41 (D)} = F{Z Ao LLC, (O IL{ AL [uo (0, uy (), -+, ur (O]} = 0
=0

It is obvious that each component of u;,j > 1 is zero. The solution is:u(t) = 2t* — 3t + 7. which is
the exact solution to our problem.
Example 4:  Consider the following nonlinear IFDE of V-H type

t

ED2Cu(t) = f(t) + f(t + 5)§D%*u(s) — (t + 25)[8D5f"5u(s)]2 ds
0

where
2 42 14
f@® r(1.4) 5I'(3.6) * 3T'2(1.5)
with the initial condition u(0) = —7.
Now, from the problem we have: a = 1.6;m, =2 and
[Bo B Bzl=[0 04 05];[4 A4 4]=[0 1 -1]
Ho(t,s) =t+2s ; Ki(t,s) =t+s ;Ky(t,s)=0
2
Fy(u(s)) = [6D°u()]” 5 Fi(u(s)) = §DJ*u(s)
The Laplace transform of the function f(t) can formed as:
F(p) = 42 4 28
() = p1.4 5p3.6 F2(1.5)p4
Apply standard LADM: Using the first part of recursive relation (16) to find U, (p) where uy = —7;
and From equation (6), for « = 0.6 and all C;’s are zeros, we obtain Y (p) = p°®®. Then taking the
inverse Laplace to transform for both sides we get:
(t) = L7HUy(p), t} = -7 + 2t 42 t32 + 28 t
Yolt) = o\P) b} = 5T(4.2) [2(1.5)I(4.6)
To find A} and A%, from equation (10) putting £ = 0,1 and using the Caputo definition for order 0.4
and 0.5 with F; and F,, respectively, we obtain:

A§(0) = Ablup ()] = Fy(uo(t)) = “DR*uy(t) =

3

3.6

t0'6 _ 42 t2'8 28

+ t3'2
T(1.6) 5T(3.8) rZ(1.5)0)(4.2)
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A2(t) = Ab[ug(6)] = fz(uo(t)) = [ *DP5uy(®)]”

168 o, M2 o0 1764,

BASI@ED . 251237
to° + ___ 78t t
5I2(1.5)'(4.1)r'(3.7) [4(1.5)r2(4.1)
Apply Laplace definition on A}(t), A3(t), and using the formula (16) we obtain U, (p), for k =0 .
Finally, take Laplace inverse for both sides we get the u, (t):

uy (t) = L7HU; (p), t}
42

25" TSrGras)
2352

6.8 8.2

., 1806 1316 co 28 ik
=35 " — 3
5r(4.2) 25T'(6.4) 5r2(1.5)I'(6.8) I2(1.5)T'(4.6)
114241(42) o 9968I(5.6) L, 22805T(6.4)
25T(1.5)T'(3.7)r(6.8) 5r3(1.5)[(4.1)I(8.2) 16I'2(3.7)T'(9)
45911T(7.8) 1121121(9.2)

T A5 @D G.7)r(104) e - 5r4(1.5)2(4.1)r(11.8)

i _42 .32 _ 28 .36 . )
The noise terms+ ST G2) t><and + LSS t>© appears in uy(t) and u, (t). Cancelling these terms

from the zeros component u,(t), as the theorem of Noise terms in iterative, then gives the solution
which is the exact solution: u(t) = 2t — 7.
Apply Modified LADM: We first split £(t) into two parts (N = 1), namely:
t) = 2 t% and f,(t) = — 2 +—14 t
fo =rapt " ad Al =~rm 3T2(1.5)
Then the Laplace transform became:
42 28

2

Using the first part recursive relation (17) we obtain: U,(p) = L{uy(t)} = —% + pz—z :

Taking inverse Laplace to transform for above equation yields wu,(t) = —7 + 2t. Applying equation
(10), with £ = 1,2 we get:

Ap(t) = Fl(uo(t)) = I(1.6) t%6 5 A§() = Fz(uo(t)) =

Applying the second part of recursive relation (17) yields
-84 20 8.4 20
U (p) = L{u (D)} = 212 T2(15)p*e + pi2 + T2(15)p"® 0
So u,(t) = 0. Then from the third part of recurrence relation (17), it follows immediately that
ur(t) =0,V k = 2. So the exact solution u(t) = 2t — 7, readily obtain.
5. Conclusion

In this paper, Adomian and modified Adomian decomposition method has been successfully
applied to finding the approximate as well as an exact solution of nonlinear integro-fractional
differential equations of the Volterra-Hammerstein type. These techniques are very powerful and
efficient in finding analytical as well as a numerical solution to our problem. It provides more realistic
series solution that converges very rapidly to the solutions.

A considerable advantage of the method is that if we do not obtain the exact solution, then the
solution can be written as a form of truncated series, and then u(t) can be easily evaluated for
arbitrary values of t. To obtain the best approximation we must use more terms. Sometimes the noise
terms in Adomian method will not appear, so we use modified Adomian decomposition method.

10.8

3

r2(15)"
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