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Abstract 

      In this work, we will combine the Laplace transform method with the Adomian 

decomposition method and modified Adomian decomposition method for semi-

analytic treatments of the nonlinear integro-fractional differential equations of the 

Volterra-Hammerstein type with difference kernel and such a problem which the 

kernel has a first order simple degenerate kind which the higher-multi fractional 

derivative is described in the Caputo sense. In these methods, the solution of a 

functional equation is considered as the sum of infinite series of components after 

applying the inverse of Laplace transformation usually converging to the solution, 

where a closed form solution is not obtainable, a truncated number of terms is 

usually used for numerical purposes. Finally, examples are prepared to illustrate 

these considerations.   
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المعدلة لحل المعادلات التفاضلية التكاملية غير  ن التحليليةطرق لابلاس أدوميان ولابلاس أدوميا
 هامرشتاين –الخطية من النوع فولتيرا 

 

 احمد شوكان احمد،مروان شازاد شوقي،
 .العخاق ، كهردستان إقميم ، الدميسانية ، الدميسانية جامعة ، العمهم كمية ، الخياضيات قدم1
 .العخاق ، كهردستان إقميم ، شسذسال ، شارمه جامعة ، الأساسية التخبية كمية ، العمهم قدم2

 
 الخلاصة

في ىحا العسل نخبط طخيقة تحهيلات لابلاس مع طخيقة أدوميات التحميمية و طخيقة أدوميان التحميمية      
ىيخمذين بشهات مختمفو -لمسعالجات شبو التحميمية لمسعادلات التفاضمية ذات التكاممية الكدخية من نهع فهلتيخا

ة الاولى و التي وصفت السذتقات الكدخية حيث ان الشهاة ليحه السدألة ىي من الشهع السشحل البديط ذات الختب
فالحل السعادلة الجاليو كسجسهع متدمدمة لانيائية الستزاعفة العميا فييا كسا في مفيهم كابهته. في ىحه الطخق 

في السخكبات بعج تطبيق معكهس تحهلات لابلاس و الحي يكهن متقارب لمحل عشجما لايسكن الحرهل عمى 
للاغخاض العجدية. و في الشياية اعطيت أمثمة هعة )السححوفة( يدتعسل عادة حل مغمق و ان الحجود السقط

 لتهضيح ىحه الافكار. 
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1. Introduction: 

The goal of this work is to provide a semi-analytic solution for treating approximately the multi-

higher different fractional orders of nonlinear Integro-Differential Equations (IFDE) for Volterra-

Hammerstein (V-H) type with the constant coefficients in the general form: 

  
 

 
   ( )  ∑      

 
 
   ( )     ( )

   

   

  ( )   ∑  ∫  (   )   (     
 

 
   ( ))      ,   -

 

 

 

   

                                      ( ) 

with the initial conditions 

  ( )                            *⌈  ⌉ ⌈  ⌉+                       ( ) 

     Where  ( ) is the unknown function which is the solution of equation (1) under initial condition 

(2), as well as, the functions        with (  *(   )        +           
  (   *            +)               , and   ,   -     is a continuous function. In 

addition,         
            and           with property that              

                          and   (         ) are the scalar parameters.   
 

 
 
 Denotes 

the Caputo fractional derivative of order      .    (    )      (     )/   

     Many mathematical modeling of various physical phenomena contains nonlinear fractional order 

Volterra integro differential equations, such as heat conduction in materials with memory [1]. 

Moreover, these equations are encountered in combined conduction, convection, radiation problems, 

fluid dynamics, biological models and chemical kinetics [1,2,3].  

Adomian decomposition method and Laplace operator are widely used by many authors and 

researches to solve the problems in applied sciences such as differential, fractional differential, 

integral and integro-differential equations, see Ref [4,5,6,7,8]. In this work, we extend this technique 

to further deal with considering problem (1) with initial conditions (2).   

 The paper is organized as follows. Section 2 presents the necessary definitions and basic 

preliminaries of the fractional calculus, Adomian decomposition method and the Laplace transform; 

section 3 devotes to formulation of ADM and MADM with the aid of Laplace transforms for solving 

nonlinear IFDE for difference and simple degenerate kernels of V-H type; our results illustrated 

throughout examples in section 4. Finally, section 5 includes a discussion for these methods. 

2. Preliminaries and Notations: 

     In this section, we discuss some basic definitions and properties of the fractional calculus theory 

and the Adomian decomposition method with Laplace transformations which are used further in this 

paper. 

2.1 Fractional Calculus: 

 Fractional calculus deals with the differentiation and integration of arbitrary order, many 

definitions of it have been proposed [9,10,11]. Most frequently occurring are Riemann-Liouville and 

Caputo [4,8]. In this section, we discuss the definition and important properties of these two types of 

fractional derivatives, which are used throughout this paper. Moreover, some formulas which enjoy 

with a fractional operator with Laplace transformation.   we begin by defining the function space 

        which was used in development of the operational calculus for the differential operator. 

Definition 1: [12]  

   A real valued function   defined on ,   - be in the space   ,   - ,    , if there exist a real 

number    , such that  ( )  (   )   ( ), where     ,   -, and it is said to be in the space 

  
 ,   - if and only if  ( )    ,   -       

Definition 2: [10,13] 

 Let     ,   -      and     . Then the Riemann-Liouville fractional integral operator 

  
 
 
  of order   of a function  , for     is defined by: 

  
 
 
  ( )  ∫

(   )    ( )

 ( )

 

 

         

and for    , we have   
 
 
  ( )    ( )   ( ). 

 



Ahmed et al.                                       Iraqi Journal of  Science, 2019, Vol. 60, No.10, pp: 2207-2222    

  
 

0022 

Definition 3: [10,13] 

 The Caputo fractional derivative operator   
 

 
  of order      of a function      

 ,   - and 

            is defined as: 

                                      
 

 
  ( )    

 
 
     

  ( ) 

Thus for    (   )  and     ,   -  we have for all       

  
 

 
  ( )   ( )         

 
 
  ( )    

  ( )  
   ( )

   
 

Note that: [9,10,11,13] 

i. For     and    , then   
 
 
 {(   )   }  

 ( )

 (   )
(   )       

ii. For all     ,     and  ( )    ,   -       then: 

  
    

 
   

 
 
 
 ( )    

 
 
 

  
 
 
  ( )    

 
 
   

 ( ) 

iii. The Caputo derivative of any constant function is zero, i.e.,   
 

 
    ;   is any constant and   is 

arbitrary positive real numbers. 

iv. Assume that      
 ,   -          and   ⌈ ⌉ then   

 
 
  ( ) is continuous on ,   -, 

and ,   
 

 
  ( ) -       

v. Let        ⌈ ⌉ and      ,   -  then, the relation between the Caputo derivative and R-L 

integral are formed: 

  
 

 
   

 
 
  ( )   ( )              
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(   )   

   

   

                     ( ) 

vi. Let        ⌈ ⌉ and for  ( )  (   )  for some     . Then: 

  
 

 
  ( )  {

                           *           +

 (   )

 (     )
 (   )                         

                
 

vii. The Laplace transform of the convolution of two functions is the product of their Laplace 

transforms. 

 *(   )( )  +   ,∫  (   ) ( )  
 

 

  -   ( ) ( ) 

Where  ( )   * ( )  + and  ( )   * ( )  +.  
viii. The Laplace transform of an integral term, for any     can be formed: 

 ,∫  ( )  
 

 

  -  
 

 
 ( )  

ix. The Laplace transform for power function multiple to a function for all    , can be formed: 

 *   ( )  +  (  ) 
  

   
 ( ) 

x. The Laplace transform of Caputo fractional of order          ⌈ ⌉, can be obtained as follows: 

 {   
 

 
  ( )  }    (   ) [   ( )  ∑        ( )( )

   

   

] 

    ( )  ∑       

   

   

 ( )( )                                 ( ) 

2.2 The Adomian Decomposition method: [4,14,15] 

     The Adomian decomposition method is one of the most powerful techniques used to solve semi-

analytically the nonlinear equations. In this method, decomposing the unknown function  ( ) of an 

equation into a sum of an infinite  number  of elements  described through the decomposition series: 

 ( )  ∑   ( )
 

   
 

     Where the components    ( )      are to be determined in a recursive manner, this method 

concerns itself with finding the components   ( )   ( )   ( )   individually. However the 

nonlinear term  ( ( )), can be written in the decomposed form: 
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 ( ( ))  ∑   ,  ( )   ( )     ( )-
 

   
 

     Where      are called the Adomian polynomials which depending on            and that are 

obtained for the nonlinearity  ( ( )) by formula: 

       ( )  
 

  

  

   [ (∑     
 
   )]

   
           

     Where   is a parameter introduced for convenience. The uniqueness of the Adomian polynomial is 

not required at all and we can apply the Taylor expansion of  ( ( )) about the first component   ( ) 

to generate the forms as follows:  

 ( ( ))  ∑   ,  ( )   ( )     ( )-
 

   
 ∑

, ( )    ( )-
 

  
 ( )(  ( ))

 

   
 

Through the use of above expansions, from the simple analytic nonlinearity  ( ( )), the Adomian 

polynomials      are arranged to have the form: 
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and so on. For this case the Adomian polynomial   ( )    ,  ( )   ( )     ( )-    ,  can be 

listed in general formula, [16]: 

  ( )  ∑   
  ( )(  )

 

   
 

Where 

  
  {

                                                

 

 
∑ (   )          

   
   

   
      

 

     A useful tool that will speed up the convergence of the ADM is developed; the new technique 

relies upon in most cases the so-called “Noise Term Phenomenon” [13] that demonstrate a speedy 

convergence of the solution. The noise terms phenomenon can be used for all functional equations 

like the differential or integral equations. The noise terms are defined as the identical terms with 

opposite signs that can also appear in the components   ( ) and   ( ) and in the other components as 

well, Noise terms may appear if the exact solution of the equation is part of the zeroth 

component   ( ). Verification that the remaining non-canceled terms satisfy the integral equation is 

necessary and essential. 

3. Solution Technique for multi-higher IFDE of V-H type: 

 In this section, we shall derive the semi-analytical solution of the nonlinear (IFDE) of the (V-H) 

type of the form (1) under the initial condition (2) by using Laplace transform that combine with the 

Adomian decomposition method and Modified Adomian decomposition method according to two 

different types of kernels difference and first order-simple degenerate kernels which can make a 

general formula of each ones: 
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3.1 Apply the LADM for Difference Kernel: 

Consider the nonlinear (IFDE) for difference kernel   (   )    (   ) of the (V-H) type of the 

form (1) under the initial condition (2). Suppose   ( ( ))    (     
 

 
   ( ))            

        and put  ( ) as a Laplace transform of  ( ). First, apply the Laplace transform for both 

sides of equation (1) with the aid of Laplace transform of Caputo derivatives differentiation property 

as in equation (4) and using convolution property (vii) for difference kernel type, the following 

equation is obtained: 

    ( ) ( )  ∑           ∑   [ ∑          

   
  

   

]

   

   

     

   

  ( )

 ∑   *  ( )+ {  ( ( ))}

 

   

                                                                                             ( ) 

Where   

  ( )      ∑    
   

   

   

                                                           ( ) 

 Second, to overcome the difficulty of the nonlinear term   ( ( ))  we apply the Adomian 

decomposition method for handling (5). To achieve this goal, we first represent the linear term  ( ) at 

the left side by an infinite series of components in the form:   

 ( )  ∑   ( )

 

   

                                                                   (  ) 

 Where the components   ( )       will be recursively determined, and obtained equation (7b) 

after applying the Laplace transform for both sides of equation (7a), with noted that for each  , 

 *  ( )  +    ( ): 

 ( )  ∑   ( )

 

   

                                                            (  ) 

     However, the nonlinear term   ( ( ))  at the right side (5) will be represented by an infinite series 

of the Adomian polynomials in the form, for all          :  

   ( ( ))  ∑   
 ,  ( )   ( )     ( )-

 

   

                               ( )  

    At last, substituting equations (7b, 7a and 8) into (5) then leads to the following recursive relation: 
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      ( ) 

Where 

   
 ,  -    (  )           

 ,     -      
 (  )   

   
 ,        -      

 (  )  
  

 

  
(  

  (  ))     
}                            (  ) 

     

      Applying the inverse Laplace transform to the first part of the equation (9) gives   ( )  
   *  ( )  +  so putting in the second part of equation (9) we obtain   ( ) and then getting   ( )  
   *  ( )  +. By same stages, this in turn will lead to the complete determination of the components 

of all   ( )        
     In computational practice for the Adomian polynomials   

 ’s we truncate the series after     for 

positive finite number  . Thus:  



Ahmed et al.                                       Iraqi Journal of  Science, 2019, Vol. 60, No.10, pp: 2207-2222    

  
 

0020 

  
 ( )  

 

  

  

   [  (∑    

 

   

)]

   

                         

     So, all terms of the series in equation (7a) need not to be determined and so we use an 

approximation of the solution by the following truncated series: 

 ( )   ̂ ( )  ∑   ( )

 

   

                                             (   ) 

     The components            are determined recursively by the above formula (9) or using the 

noise terms approach idea. It is important to note that the decomposition method suggests that the 

zeroth component   ( ) be defined by the initial conditions and the function  ( ) as described above. 

The other components namely            are derived recurrently. 

3.2 Apply the LADM for Simple Degenerate Kernel: 
     Laplace Adomian decomposition technique can be used to solve some kinds of nonlinear IFDE of 

V-H type which the kernel is not necessarily differenced kernel, here we take the same equation (1) 

with all conditions (2) on that equation except the kernel which is a first order simple degenerate 

kernel:   (   )         , where           are any two positive-real numbers. Suppose that 

  ( ( ))    (     
 

 
   ( ))   and put  ( ) as a Laplace transform of  ( ). First, apply the Laplace 

transform for both sides of with the aid of fractional differentiation property (vii) of Laplace transform 

for Caputo derivatives, the following equation is obtained: 

 ( )   * ( )+  
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}                                   (  ) 

Where 

  
  ∫   ( ( ))  

 

 

       
  ∫   ( ( ))  

 

 

  

and  ( ) given in equation (6). Taking Laplace transforms for   
  and   

            ; 

respectively, and calling properties (viii and ix) for integral parts, yields: 

 {  
 }   

 

  
(
 

 
 {  ( ( ))})

 {  
 }   

 

 

 

  
 {  ( ( ))}    

}
 

 

                                (  ) 

 Now, we represent the linear term  ( ) at the left side (12) by an infinite series of components 

defined in the equation (7a). However, the nonlinear term   ( ( ))             at the right side 

of it will be represented by an infinite series of the Adomian polynomials defined in the equation (8). 

Then substituting equations (16) and (7b) into (12) leads to the following recursive relation: 

  ( )  
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{ ∑           ∑   [ ∑          
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  ( )}
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 ,  ( )   ( )     ( )-})
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 ,  ( )   ( )     ( )-}]}          
}
 
 
 
 

 
 
 
 

    (  ) 

     Where  ( ) given in equation (6) and all   
 ,  ( )   ( )     ( )- are defined in equation (10). 

Also, apply the inverse Laplace transform to the first part of the equation (14) gives   ( )  
   *  ( )  +  so putting in the second part of equation (14) we obtain   ( ) and then getting 
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  ( )     *  ( )  +. By the same stages, this, in turn, will lead to the complete determination of 

the components of all   ( )        So we use an approximation of the solution by the truncated 

series (11). 

3.3 Apply the Modify LADM for Solving non-Linear IFDE of V-H type: 

     The modified Adomian decomposition method with the aid of Laplace transform to solving 

nonlinear IFDE of V-H type of the form (1), introduces a slight variation to the recurrence relation (9) 

that will lead to the determination of the components of  ( ) in an easier and faster manner. For many 

cases, the function  ( ) in equation (1) can be set as the finite sum of partial functions   ( )   
       (  ): 

   ( )    ( )    ( )      ( )                                          (  ) 
     In view of (15), we introduce a qualitative change in the formation of the recurrence relation (9). 

To minimize the size of calculations, we identify the zeros component   ( ) by one part of  ( ), 

namely   ( ). The other part of  ( ) can be added to the component   ( ), namely   ( ), among 

other terms, Continue this process  -time. The modify Adomian decomposition technique with the 

aid of Laplace transform introduces the modified recurrence relation for difference kernel type: 

  ( )  
 

 ( )
{ ∑           ∑   [ ∑          
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{∑   *  ( )+ {  

 ,  ( )   ( )     ( )-}

 

   

}          
}
 
 
 
 

 
 
 
 

  (  ) 

     Where   ( ) is Laplace transform of    ( ). This shows that the difference between the standard 

recurrence relation (9) and the modified recurrence relation (16) rests only in the formation of the first 

 -components   ( )   ( ) and so on to   ( ). The other components        remain the same in 

the third recurrence relations. Although this variation in the formation of   ( )   ( )     ( ) is 

slight, however it plays a major role in accelerating the convergence of the solution and in minimizing 

the size of computational work. 

 Applying the inverse Laplace transform to the first part of equation (16) gives   ( )  
   *  ( )  +  so putting in the second part of equation (16) we obtain   ( ) and then getting 

  ( )     *  ( )  +. By same stages, this in turn will lead to the complete determination of the 

components of all   ( )  So we use an approximation of the solution by the truncated series (11). 

Moreover, Laplace transform with MADM can also be applied for first order simple degenerate 

kernels:   (   )         , where         . Thus by the same procedure as in section 3.2 and 

from equations (12 and 13) we obtain the following recurrence relations respectively:   

  ( )  
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 {  

 ,  ( )   ( )     ( )-}]}          
}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

    (  ) 

4. Illustrative Examples: 

     In this section, we shall give some illustrative examples in order to clarify our approach. We 

consider the following test problems: 
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Example 1:  We first consider a higher-order nonlinear IFDE of V-H type with variable coefficients: 

  
 

 
  ( )   ( )   ∫ (   ) {   

 
 
  ( )}

 
  

 

 

           

Where  

 ( )  
 

 (   )
     

     ( )

(       )(       )  (   )
               

  And     subject to the initial condition  ( )        

 Now, if we take              we get the linear IFDE. From here put       and   
 

 
  then 

from the equation above we have:  

      (   )  (   )          *  ( )  +  
 

    and   ( )  
 

     
 

   

and    ( ( ))    
 

 
  ( )    ( ). From equation (6) yields:    ( )       

Using the first part of recursive relation (9) we obtain: 

  ( )   *  ( )  +  
 

  
 

 

    
 

Taking inverse Laplace to transform for the above equation yields 

  ( )     *  ( )  +      
 

 (   )
   ⁄  

Using equation (10) where    , we get: 

  
    (  ( ))      

 

 (   )
       and    *  

 ( )  +  
 

   
 

     

Applying the second part of recursive relation (9) with     we obtain: 

  ( )   *  ( )  +  
 

    
 

 

   
 

Taking inverse Laplace to transform for the above equation yields 

  ( )  
 

 (   )
   ⁄  

 

  ( )
   

From equation (10) to find   
  put    , thus: 

  
      

 (  ( ))        
 

 (   )
     

 

  ( )
   

and 

 *  
 ( )  +  

 

    
 

 

   
 

Applying the second part of recursive relation (9) with    , we obtain: 

  ( )   *  ( )  +  
 

   
 

 

      
 

Taking inverse Laplace to transform for the above equation yields 

  ( )  
 

  ( )
   

 

  (    )
    ⁄  

Using equation (10), with     we get: 

  
     

 (  )  
 

  
  

    (  )          
 

  ( )
   

 

  (    )
     

 *  
 ( )  +  

 

   
 

 

      
 

Applying the second part of recursive relation (9) with     we obtain: 

   ( )   *  ( )  +  
 

      
 

 

     
 

Taking inverse Laplace to transform for the above equation yields 

  ( )  
 

   (    )
    ⁄  

 

   (  )
    

By the same technique for     we get 

  ( )  
 

   (  )
    

 

   (    )
    ⁄  
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In general     we get 

  ( )  
 

     (     ⁄ )
 (    )  ⁄  

 

   (        ⁄ )
 (    )  ⁄  

Considering (11), the approximated solution for              are: 

 ( )   ̂ ( )  ∑  ( )

 

   

     
 

  ( )
   

 ( )   ̂ ( )  ∑  ( )

 

   

     
 

   (  )
    

 ( )   ̂ ( )  ∑  ( )

 

   

     
 

   (  )
    

  

     The following table presents a comparison between the exact solution and the approximate 

solution  ̂ ( )  ̂ ( ) and  ̂ ( ) respectively, depending on the least square error. 

  Exact solution 
Approximate Solutions 

 ̂ ( )  ̂ ( )  ̂ ( ) 

                    
                                  
                                  
                                  
                                  
                                  
                                            
                                            
                                            
                                            
                                          

                                      
 

     If we take                we get the nonlinear IFDE of V-H type, put       and   
 

 
 then 

from the basic problem we have: 
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∫ (   )[   

   
 
  ( )]

 
  

 

 

  

Where  

 ( )  
 

 (   )
     

   ( )

    (   )
   

     Since we have the same kernel   (   )      ;  *  ( )  +  
 

    and  ( )  
 

     
  

  (   )   

and    ( ( ))  [   
   

 
  ( )]

 
. From equation (6)  ( )      .Using the first part of recursive 

relation (9) we obtain: 

  ( )   *  ( )  +  
 

  
 

  

  (   )    
 

Taking inverse Laplace to transform for the above equation yields 

  ( )     *  ( )  +      
  

  (   ) (   )
     

     To find   
 , from equation (10) putting     and using the Caputo definition for order     we 

obtain: 

  
 ( )    

 ,  ( )-    (  ( ))  [   
 

 
     ( )]

 
 

  

  (   )
   

  

   (   )
     

 

    (   )
    

Apply Laplace definition on   
 ( ), we get 
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 *  
 ( )  +  
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  (  )
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Applying the second part of recursive relation (9) with     we obtain: 

  ( )   *  ( )  +  
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   (   )

   (   )   
 

  (  )

    (   )     
 

Taking inverse Laplace transform for the equation, yields 

  ( )     *  ( )  +  
  

  (   ) (   )
     

   (   )

   (   ) (  )
   

  (  )

    (   ) (    )
      

Thus the approximate solution by the truncated series using two iterate   ( ) and   ( ): 

 ( )   ̂ ( )    ( )    ( )      
   (   )

   (   ) (  )
   

  (  )

    (   ) (    )
      

From equation (10) to find   
  put    , thus: 

  
 ,  ( )   ( )-  

 

  
[  (  ( )     ( ))]   

 
 

  
[   
 

 
   (  ( )     ( ))]

 
|
   

  [   
 

 
     ( )][   

 
 
     ( )]

 
  

   (   )
     

    (   )

   (   ) (   )
    

   (  )

    (   ) (  )
      

  

    (   )
   

 
   (   )

    (   ) (   )
      

   (  )

     (   ) (  )
 

     After finding the Laplace transform for   
 ,  ( )   ( )- and putting the answer in the equation (9) 

we obtain   ( )   *  ( )  +, finally using the inverse Laplace operator yields: 

  ( )     *  ( )  +

 
   (   )

   (   ) (  )
   

  (  )

   (   ) (    )
*
   (   )

 (   )
 

 

 
+      

 
   (    )

    (   ) (  )
*
 (  )

 (  )
 

  (   )

 (   )
+     

  (  ) (  )

     (   ) (  ) (    )
      

Thus the approximate solution by the truncated series using three iterate   ( ),   ( ) and   ( ): 

 ( )   ̂ ( )    ( )    ( )    ( )

     
  (  )

   (   ) (    )
*
   (   )

 (   )
 

 

 
+      

 
   (    )

    (   ) (  )
*
 (  )

 (  )
 

  (   )

 (   )
+     

  (  ) (  )

     (   ) (  ) (    )
      

By the same procedure, we can find   ( ) and putting in approximate form then we obtain  ̂ ( ): 

 ( )   ̂ ( )  ∑   ( )
 

   

     
   (    )

   (   ) (  )
*
 (  )

  (  )
 

  (   )

  (   )
 

   (  ) (   )

 (  ) (   )
+    

 
  (  )

    (   ) (    )
*
   (  ) (   )

 (  ) (   )
 

  (  )

  (  )
 

  (  ) (    )

 (  ) (    )
 

   (    ) (   )

 (    ) (   )

 
   (   )

  (   )
+      

 
   (    )

     (   ) (    )
*
 (  ) (    )

 (  ) (    )
 

  (   ) (    )

 (   ) (    )
 

 (  ) (  )

 (  ) (  )
 

 (  ) (   )

 (  ) (   )
+      

 
  (  ) (  )

     (   ) (  ) (    )
*
 (  )

 (  )
 

  (  )

 (  )
+       
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      The following table presents a comparison between the exact solution and the approximate 

solution  ̂ ( )  ̂ ( ) and  ̂ ( ) respectively, depending on the least square error. 

  Exact solution 
Approximate Solutions 

 ̂ ( )  ̂ ( )  ̂ ( ) 

                    
                                 
                                
                                        
                                        
                                                
                                             
                                            
                                             
                                             
                                            

      
 

                                         

Example 2: Consider a higher-order nonlinear IFDE of V-H type: 

  
 

 
  ( )   ( )  ∫ (   ) {   

  
 
  ( )}

 
  

 

 

 ∫ (   ) {   
  

 
  ( )}

 
  

 

 

 

Where 

 ( )  
 

 (   )
     

 

  (    )
,

      

     
 

       

     
 

      

     
-

 
 

  (    )
,

      

     
 

      

     
- 

And               with the initial condition  ( )        ( )   .  

Now, if we take                       then from the equation above we have: 

  (   )  (   )       (   )  (   )       (   )           

 *  ( )+  
 

  
       *  ( )+  

 

  
   ( )  

 

    
 

 

  (   )  
  

   (   )

    (   )    
  

Let          ( ( ))  [   
 

 
    ( )]

 
         ( ( ))  ,   

 
 
    ( )-  

From equation (6) yields:  ( )       Using the first part of recursive relation (9) we obtain: 

  ( )   *  ( )+  
 

  
 

 

 
 

 

  
 

 

  (   )    
 

   (   )

    (   )    
 

Taking inverse Laplace to transform for the above equation yields 

  ( )          
 

  (   ) (   )
     

   (   )

    (   ) (   )
     

Using equation (10), with       we get: 

  
    (  )  (

 

 (   )
     

 

  (   ) (   )
     

   (   )

    (   ) (   )
    )

 

 

  
    (  )  (

 

 (   )
     

 

  (   ) (   )
     

   (   )

    (   ) (   )
    )

 

 

Applying the second part of recursive relation (9) with     we obtain: 

                       ( )   *  ( )+  
 

  (   )    
 

  (   )

  (   )    
   

Taking inverse Laplace to transform for the above equation yields 

  ( )  
 

  (   ) (   )
     

  (   )

  (   ) (   )
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The noise terms 
 

  (   ) (   )
     and  

  (   )

  (   ) (   )
     appears in   ( ) and   ( ). Cancelling these 

terms from the zeros component   ( ) gives the solution which is the exact solution:  

 ( )          
Example 3: Consider the following nonlinear IFDE of V-H type 

  
 

 
    ( )   ( )  ∫ (   )   

 
 
    ( )  

 

 

 ∫ (   ){   
 

 
    ( )}

 
  

 

 

 

where  

 ( )  
 

 (   )
     

   

     (   )
     

  

    (   )
     

With the initial condition  ( )       ( )    .  

While the exact solution is  ( )          . 

Now, from the problem we have: 

  (   )   (   )       (   )  (   )       (   )     
                                              

  ( ( ))  {   
 

 
    ( )}

 
         ( ( ))    

 
 
    ( ) 

Apply standard LADM: Using the first part of recursive relation (9) to find   ( ) where    
        and From equation (6), for        and all   ’s are zeros, we obtain  ( )      . Then 

taking the inverse Laplace to transform for both sides we get: 

  ( )     *  ( )  +           
 

 (   )
     

   (   )

    (   ) (   )
     

To find   
  and   

 , from equation (10) putting       and using the Caputo definition for order     

and     with    and   , respectively, we obtain: 

  
 ( )    

 ,  ( )-    (  ( ))    
 

 
     ( )  

 

 (   )
     

 

 (   )
     

   (   )

    (   ) )( )
   

  
 ( )    

 ,  ( )-    (  ( ))  [   
 

 
     ( )]

 

 
  

  (   )
     

  

 (   ) (   )
   

    (   )

    (   ) (   )
     

  

  (   )
    

 
    (   )

    (   ) (   ) (   )
     

      (   )

     (   )  (   )
   

Apply Laplace definition on   
 ( )   

 ( ), and the Laplace transform of each kernel is  *  ( )+  
  

     *  ( )+  
 

   with using the formula (9) we obtain   ( ). Finally take Laplace inverse for both 

sides we get the   ( ): 

  ( )     *  ( )  +

 
 

 (   )
     

  

 (   )
     

 

 (   ) (   )
*
   (   )

   (   )
 

   ( )

 (   )
+     

 
   (   )

  (   ) (   )
     

    (   ) (   )

    (   ) (   ) (   )
     

   (   )

  (   ) (  )
   

 
    (   ) (   )

    (   ) (   ) (   ) (    )
     

      (   ) ( )

     (   )  (   ) (   )
     

Thus the approximate solution by the truncated series using two iterate   ( ) and   ( ): 

 ( )   ̂ ( )    ( )    ( )

          
  

 (   )
     

 

 (   ) (   )
*
   (   )

   (   )
 

   ( )

 (   )
+     

 
    (   ) (   )

    (   ) (   ) (   )
     

   (   )

  (   ) (  )
   

 
    (   ) (   )

    (   ) (   ) (   ) (    )
     

      (   ) ( )

     (   )  (   ) (   )
     

Putting     from the second part of equation (9) and using the Laplace transforms of kernels 

 *  ( )+ and  *  ( )+ with valued od   ’s in the equation, yields  
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  ( )  
 

    {
 

  
 *  

 ,  ( )   ( )-+  
 

  
 *  

 ,  ( )   ( )-+} 

     After finding each of   
  and   

  by using defining the    and   , respectively and determine 

Laplace transforms with putting all into the formula above. Finally, taking the inverse Laplace 

transform to obtain   ( ). Thus the approximate solution by the truncated series using three iterations 

  ( ),   ( ) and   ( ): 
 ( )   ̂ ( )    ( )    ( )    ( )

          
  

 (    )
     

 ,
 

 (   ) (  )
*
   (   )

   (   )
 

   ( )

 (   )
+  

   (   )

 (  )
[

 

 (   ) (   )
 

 

  (   )
]-    

 
    (   ) ( )

    (   ) (   ) (   )
*
   (   )

 (   )
 

   (   )

 (   )
+     

 
 

 (    )
,

    (   )

  (   ) (   )
*
 (   )

 (   )
 

 (   )

 (   )
+  

   (   )

  (   ) (   )
*
   (   )

   (   )
 

   ( )

 (   )
+-     

 
   

 (   ) (    )
*
 (   )

 (   )
 

  (    )

 (   )
+       

     (   ) (  )

  (   ) (    ) (    )
     

 
  

 (   ) (    )
,

   (   )

   (   ) (   )
*
 (   )

 (   )
 

 (    )

 (   )
+

 
 (    )

 (   )
*

  (   )

 (   ) (    )
 

   (   )

   (   ) (   )
 

   ( )

 (   ) (   )
+-      

 
    (   )

    (   ) (   ) (  )
,
   (   )

   (   )
*

 ( )

 (   )
 

  (   )

 (   )
+

 
   (   )

 (   )
*
 (   )

 (   )
 

 (   )

 (   )
 

 ( )

 (   )
+-    

 
       (   ) (   )

     (   )  (   ) (    )
*

 ( )

 (   )
 

  (   )

 (   )
+      

 
     (   ) (    )

    (   )  (   ) (   ) (    )
*
 (   )

 (    )
 

  (   )

 (   )
+      

 
       (   ) (    )

     (   )  (   ) (   ) (    )
*

 ( )

 (   )
 

  (   )

 (   )
+      

 
        (   ) ( ) (    )

      (   )  (   ) (   ) (  )
    

     The following table presents a comparison between the exact solution and the approximate 

solution  ̂ ( )  ̂ ( ) and  ̂ ( ) respectively, depending on the least square error. 

  Exact solution 
Approximate Solutions 

 ̂ ( )  ̂ ( )  ̂ ( ) 

0.0 7.0 7.0 7.0 7.0 

0.1 6.72 6.720034244 6.719999942 6.72 

0.2 6.48 6.480626219 6.479995145 6.479999955 

0.3 6.28 6.283418818 6.279934883 6.279998544 

0.4 6.12 6.131376244 6.119587955 6.119983051 

0.5 6.0 6.028856817 5.998270101 5.999887496 

0.6 5.92 5.981645921 5.914391509 5.9194782 

0.7 5.88 5.996965041 5.864774937 5.878116676 

0.8 5.88 6.083463905 5.843683769 5.874363761 

0.9 5.92 6.251199649 5.841486751 5.905445168 

1.0 6.0 6.511605461 5.842873373 5.966721596 
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Apply Modified LADM: We first split  ( ) into two parts (   ), namely: 

  ( )  
 

 (   )
              ( )  

    

     (   )
     

  

    (   )
     

Then the Laplace transform became: 

  ( )  
 

    
                   ( )  

     (   )

     (   )    
  

   (   )

    (   )    
 

Using the first part of recursive relation (16) to find   ( ) where            and From 

equation (6), for        and all   ’s are zeros, we obtain  ( )      , we obtain: 

  ( )   *  ( )+  
  

  
 

 

 
 

 

  
 

Taking inverse Laplace to transform for the above equation yields 

  ( )           

Using equation (10), with       we get: 

  
 ,  ( )-    (  ( ))  

 

 (   )
       

 ,  ( )-    (  ( ))  
  

  (   )
     

Applying the second part of recursive relation (16) we obtain: 

  ( )   *  ( )+  
     (   )

     (   )    
 

   (   )

    (   )    
 

 

    
 

   (   )

  (   )    
      

The Laplace inverse of the zero function is zero, so         ( )    

Using the third part of recursive relation (16) we obtain,        : 

    ( )   *    ( )+  
 

    {∑   *  ( )+ {  
 ,  ( )   ( )     ( )-}

 

   

}    

It is obvious that each component of        is zero. The solution is: ( )          . which is 

the exact solution to our problem. 

Example 4:   Consider the following nonlinear IFDE of V-H type 

  
 

 
    ( )   ( )  ∫(   )   

 
 
    ( )  (    )[   

 
 
    ( )]

 

 

 

   

where     

 ( )  
 

 (   )
     

  

  (   )
     

  

   (   )
   

with the initial condition   ( )     . 

Now, from the problem we have:                and 

  ,         -  ,       -   ,         -  ,    - 
  (   )            (   )          (   )     

  ( ( ))  [   
 

 
    ( )]

 
         ( ( ))    

 
 
    ( ) 

The Laplace transform of the function  ( ) can formed as: 

 ( )  
 

    
 

  

     
  

  

  (   )  
 

Apply standard LADM: Using the first part of recursive relation (16) to find   ( ) where        
and From equation (6), for       and all   ’s are zeros, we obtain  ( )      . Then taking the 

inverse Laplace to transform for both sides we get: 

  ( )     *  ( )  +        
  

  (   )
     

  

  (   ) (   )
     

To find   
  and   

 , from equation (10) putting       and using the Caputo definition for order     

and     with    and   , respectively, we obtain: 

  
 ( )    

 ,  ( )-    (  ( ))    
 
     ( )  

 

 (   )
     

  

  (   )
     

  

  (   ) )(   )
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 ( )    

 ,  ( )-    (  ( ))  [   
 
     ( )]

 

 
 

  (   )
  

   

  (   ) (   )
     

   

  (   ) (   )
     

    

    (   )
    

 
    

   (   ) (   ) (   )
     

   

  (   )  (   )
     

Apply Laplace definition on   
 ( )   

 ( ), and using the formula (16) we obtain   ( ), for     . 

Finally, take Laplace inverse for both sides we get the   ( ): 

  ( )     *  ( )  +

 
  

  (   )
     

    

   (   )
     

    

   (   ) (   )
     

  

  (   ) (   )
    

 
      (   )

   (   ) (   ) (   )
     

     (   )

   (   ) (   ) (   )
     

      (   )

    (   ) ( )
  

 
      (   )

   (   ) (   ) (   ) (    )
     

       (   )

   (   )  (   ) (    )
      

The noise terms 
  

  (   )
     and  

  

  (   ) (   )
     appears in   ( ) and   ( ). Cancelling these terms 

from the zeros component   ( ), as the theorem of Noise terms in iterative, then gives the solution 

which is the exact solution:  ( )      . 

Apply Modified LADM: We first split  ( ) into two parts (   ), namely: 

  ( )  
 

 (   )
              ( )   

  

  (   )
     

  

   (   )
   

Then the Laplace transform became: 

  ( )  
 

    
               ( )   

  

     
  

  

  (   )  
 

Using the first part recursive relation (17) we obtain:    ( )   *  ( )+   
 

 
 

 

   . 

Taking inverse Laplace to transform for above equation yields    ( )       . Applying equation 

(10), with       we get: 

  
 ( )    (  ( ))  

 

 (   )
              

 ( )    (  ( ))  
 

  (   )
        

Applying the second part of recursive relation (17) yields   

  ( )   *  ( )+  
    

    
 

  

  (   )    
 

   

    
 

  

  (   )    
   

So   ( )   . Then from the third part of recurrence relation (17), it follows immediately that 

    ( )           . So the exact solution  ( )        readily obtain. 

5. Conclusion   
 In this paper, Adomian and modified Adomian decomposition method has been successfully 

applied to finding the approximate as well as an exact solution of nonlinear integro-fractional 

differential equations of the Volterra-Hammerstein type. These techniques are very powerful and 

efficient in finding analytical as well as a numerical solution to our problem. It provides more realistic 

series solution that converges very rapidly to the solutions.  

     A considerable advantage of the method is that if we do not obtain the exact solution, then the 

solution can be written as a form of truncated series, and then  ( ) can be easily evaluated for 

arbitrary values of   . To obtain the best approximation we must use more terms. Sometimes the noise 

terms in Adomian method will not appear, so we use modified Adomian decomposition method. 
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