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Abstract

Due to the significant role in understanding cellular processes, the decomposition
of Protein-Protein Interaction (PPI) networks into essential building blocks, or
complexes, has received much attention for functional bioinformatics research in
recent years. One of the well-known bi-clustering descriptors for identifying
communities and complexes in complex networks, such as PPl networks, is
modularity function.  The contribution of this paper is to introduce heuristic
optimization models that can collaborate with the modularity function to improve its
detection ability. The definitions of the formulated heuristics are based on nodes and
different levels of their neighbor properties. The modularity function and the
formulated heuristics are then injected into the mechanism of a single objective
Evolutionary Algorithm (EA) tailored specifically to tackle the problem, and thus, to
identify possible complexes from PPl networks. In the experiments, different
overlapping scores are used to evaluate the detection accuracy in both complex and
protein levels. According to the evaluation metrics, the results reveal that the
introduced heuristics have the ability to harness the accuracy of the existing
modularity while identifying protein complexes in the tested PPI networks.

Keywords: complex detection; graph partitioning; heuristic, modularity; Protein-
Protein Interaction network.
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1. Introduction

Many complex systems in all areas of science, including social science, politics, biology and
medicine, can be represented as networks. Topological analyses of such complex networks are
universal and provide insights in many science studies. Complex systems are usually organized in
compartments, which have their own role and / or function. In the network representation, such
compartments appear as sets of nodes with a high density of internal links, whereas links between
compartments have a lower density. These subgraphs are called communities, or modules, and can
occur in a wide variety of networked systems. Finding compartments may shed light on the
organization of complex systems and on their function. Therefore, detecting communities in networks
has become a fundamental problem in network science. Many methods have been developed, using
tools and techniques from different disciplines like physics, applied mathematics, biology, computer
and social sciences. However, it is still not clear which algorithms are reliable and shall to be used in
applications [1].

As an increasing amount of protein—protein interaction (PPl) data becomes available, its
computational interpretation has become an important problem in bioinformatics. Observations show
that PPl networks possess invaluable evolutionary insights and information to understand various
biological processes and cellular functions. However, prediction of protein complexes, like many other
practical optimization problems, falls into the category of strongly NP-hard combinatorial
optimization problems that can easily bewilder exact optimization algorithms [2], [3].

Complex network clustering is data clustering in dividing the interested entities into clusters or
modules. However, clusters in complex networks are based on both the inter and intra connections
densities, while clusters in data clustering are groups of points close to each other in a way forming
several local optima. In the literature, modularity [3] and a series of follow-up models have been
proposed to measure the quality of a set of predicted intra-dense and inter-sparse subgraphs in a graph.
The majority of these works have been applied to community detection in social networks and to
complex identification in PPI networks.

The main contribution of this paper is to develop a heuristic ground definitions for modularity that
can improve its detection ability. Here we are motivated by the logical consequence of protein
neighboring properties and how to exploit and couple such properties with modularity function. In this
paper, a single objective Evolutionary Algorithm (EA) [4] is adopted to combine modularity (as an
objective function) and the proposed heuristic approaches. The algorithm attempts, with aid of
modularity, to identify the global structure of the complexes and with the aid of heuristic functions, to
fine tune such complexes. In the experimental results, we show that coupling the proposed heuristic
operator as exploiter to capture local structures of the solutions provided by modularity can
significantly improve the detection performance of EA.

In the remainder of this paper, preliminary concepts relating to complex detection problem in PPI
networks and the main interest in the literature towards solving complex detection problem in PPI
networks are presented first. These are followed by a closer look into the formal development of the
proposed evolutionary based complex detection framework together with the proposed heuristic
operators. Experimental results are then provided to support the positive impact of the proposed
heuristic definitions to further correct the complex structures of the well-known modularity function.
The final section of this paper presents major conclusions and further directions of this work.

2. Related background

A complex network such as PPI network can be denoted by V', of n proteins and m interactions. In
other terms JV is said to be with cardinality n and volume m. Generally, V' can be modeled as
undirected graph G = (V,E) of a set V = {v,v,,...,v,} of n vertices, and a set ECV XV =
{(v;, vj)|vi,vj € Vand i # j} of m edges. Note that throughout this paper, the terms: tie, edge, link,
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connection, relation, and interaction are used interchangeably to denote any vertex pair (v;, v;) in E.
Also, let Q be the space of all possible partitioning solutions for " and let ¢ € Q = {C;, ..., Cx} be a
network partitioning solution belongs to the space Q with K partitions or divisions. Normally, any
unsigned graph G can be represented by a symmetric n X n adjacency matrix denoted by A. Rows and
columns of A are labeled with the vertices of V' and assigned with 1 in entry (i,j) if vertex pair
(v, vj)isin E, and setto O if (v;,v;) € E.

From the adjacency matrix A a set of n direct neighboring lists, L = {l;,l,, ..., L}, can be formed.

Each list [; in the set L aggregates connections of all vertices with vertex v; € V. Thus, ;| =
7:1(i,j) and |L| = X7, |l;]. Mathematically noted, |l;| = m; is said to be the degree of v;, while

m = |L|/2 is said to be the volume of G. Furthermore, the strength of each node i can be specified in

more details by |l;| = |li,intm|iec + |lirinter|iec’ where|li,intm|iecand |li'i"f€r|iec be the intra-

strength and inter-strength of node i, respectively. Generalizing this to all nodes, implies |L| =
|Lintra| + |Linter| = ?=1|li,intra|iec + 2?=1|li,inter|iec-

3 Modularity based co-clustering model

Co-clustering or simultaneous matrix partitioning (in contrast to clustering, as depicted in Figure-1)
needs a quality function that can capture the embedded distinct sub-matrix structures. The modularity
(normally noted as Q) model defined after Newman and Girvan, lays the foundation of many existing
successful graph clustering algorithms [5], [6]. The purpose of Q is to capture the hidden structure of
sub-graphs or community sets in complex networks by maximizing intra-cluster links while
minimizing inter-cluster ones.

Consider partitioning ¥V of G into a co-clustering solution C = {C;, ..., Cx} such that each vertex
v;, 1 < i <nis exactly assigned to one cluster C;, 1 < j < K. The impact of E in C is quantified in
two distinct terms. The set of edges between vertices existing in two distinct clusters: E(C;, C;),1 <
i,j<Kandi=+j and the set of edges found inside one cluster: E(C;,C;),1<i<K. Then,
modularity will award € according to the fraction of connections inside its communities as formulated
in Eq. 1. The left term in Eq. 1 biases towards a solution C that is covered with a set of densely intra-
connected modules, i.e. many edges fall within each sub-graph {C;, ..., Cx}. On the other hand, the
right term in Eq. 1 expresses that the expected value of the same edge density in C with the same
community structure {Cj, ..., Cx} but fall at random between the vertices should be small. Q will
approach its minimum at 0 if the number of within-community edges is no better than random. On the
other hand, values approaching Q = 1, which is the maximum, indicate strong community structure.

— K |E(Ci,Ci)| _ ZvECim(v) 2
ey = i=1[ m© ~ Cam@© )]
@

Figure 1-Clustering against co-clustering. Left: clustering means partitioning all data vectors with all
their features into k (sometimes unknown) disjoint groups. Right: co-clustering, or bi-clustering,
means partitioning into a set of k (sometimes unknown) blocks each containing a consistent local
feature pattern (Note that it is not generally possible to display several bi-clusters at the same time as
contiguous blocks).
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4 The proposed heuristic based modularity

This section introduces a heuristic based approach for modularity with three different optimization
models. A set of protein-neighborhood related functions is proposed to extend, accordingly, the unveil
ability of a single objective EA. First, the main components that characterize the evolution process of
EA (solution representation and perturbation operators) are formulated towards solving the problem.
Then, the optimization models and the heuristic operator are introduced and formulated to improve the
quality of generated complexes in the search space. Finally, the main steps of the proposed EA is
outlined.

4.1 The proposed EA

Any Evolutionary Algorithm (EA) searches for appropriate solutions from the set Q of all possible
solutions of the problem at hand. Generally, the search for good solutions is performed through
individual evaluations, selection, crossover, and mutation operators. The design of such operators
would then determine the characteristic of the adopted EA. In this section, the definitions of all
components are relaxed for the purpose of complex detection problem in PPI networks.

First, the construction of several, but unknown, number of complexes among the interacted proteins
of a given PPI network, is an important issue that the individual representation (i.e. chromosome
genotype encoding) should take quite seriously. In the proposed EA, the locus-based representation
used in [7] is adopted. A chromosome P of the population P is defined as a collection of node-node
neighbor genes. A single gene in the chromosome P is defined by its locus and its allele. Consider a
PPI network v with n proteins. Then, P will consist of n genes, where locus i identifies protein i in
the network, while its allele value j corresponds to the neighbor j that has an actual interaction with
node i in the network, i.e. (v;, v;) € E. This in turn implies that both proteins i and j will be in the
same complex. The decoding function & of a chromosome P (chromosome phenotype) outlines one of
the possible partitioning of the network V" into complexes, i.e. §(P): € = {C}<,. However, K could
vary from one chromosome to another.

Once the population is created and their individuals are evaluated (according to the modularity in
Eqg. 1), a set of good population of parents is selected and processed by perturbation operators to create
better child individuals. Two main perturbation operators are used. These are crossover W, and
mutation W,,,.

Uniform crossover is used and achieved with a specified chromosome-wise crossover probability,
px. Consider two chromosomes Py:(Iyq,112,...,11,) and Pp:(Ip4,155,...,12,) to be the two
participating parents in the crossover.

With probability py, a child P': (13,15, ..., I;,) can be generated from the two parents by uniformly
mixing their alleles (i.e. performing protein-wise fair combination). This can be formally defined by:
Wy (Py, P,px) > P’

Vi,1<i<n

I, _ {Il,i lfT < 0.5

t I, ; otherwise

)

where r~[0,1] is a uniform random number.

The mutation operator ¥,,, imitates the traditional allelic mutation operator which works on allele
values and alters, with a specified mutation probability p,,, the allele (i.e. neighbor) of a selected locus
(i.e. node). This can formally be specified by:. ¥,,,: (P, py,) = P’

Vi,l<i<n Ar <pp:

I =jl(i.j) €E

®)

where r~[0,1] is a uniform random number.

4.2 Formulation of the heuristic optimization models and operator

Generally, heuristic operator or search heuristic is defined to be a rule that decides which solution,
given the current solution, to generate or to visit next based on some heuristic criterion. In
evolutionary computation community, the search for designing appropriate heuristic for a given
problem is essential and can harness the performance of the algorithm. In the following discussion, we
introduce a heuristic operator with three optimization models tailored, here, specifically for complex
detection problem.
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The general characteristic of complexes in PPl networks expresses dense interactions within
complexes while more sparse interactions among different complexes. The main purpose of the
proposed heuristic operator W,,: P — P’ is to move proteins between the complexes of an individual
solution P. The movement of the selected proteins should reduce the problems of both sparse intra-
connections and dense inter-ties. Thus, the proposed W), operator works, with a specified probability
pp, 0N those nodes maintaining un-reliable template in their chosen complexes and move them to other
complexes that can participate within their proteins more reliably. Here, we propose three different
optimization models on how to define reliability assignment of a node to a given complex.

Consider an individual chromosome P: (14,1, ...,1I,,) corresponding to a candidate partitioning
solution C = {C,, ..., Cx} with K complexes. Let node i that corresponds to gene I; being located in
complex k, where 1 <k < K. Then, node i inside complex k has a possible reliable interaction
assignment that can be expressed as the difference between the impact of the intra-connections and
inter-connections:

ReliableAssign(i, C) = Intralmpactec, — Inerlmpact;ec, 4)

For Intralmpact and InterImpact in EqQ. 4, three models are proposed to define them. Let us first
consider an extended version of the adjacency matrix A (discussed in Section 2). A weighted

adjacency matrix wA is constructed using Eq. 5.

WAL = { 1G85 x Ay if A, =1
0 otherwise
(%)

The proposed heuristic operator, ¥, (see Algorithm 1), then, moves node i to another complex k',
1<k'<K and k'+# k where node i could maintain, there, the highest reliability assignment, i.e.
with the highest difference between intra-connections and inter-connections impact. The proposed
heuristic operator (¥,), then, can be stated formally as in Eq. 5. Note that when more than one
complex can receive node i with equal ReliableAssign value, then ¥, randomly selects any one of
these complexes.

Y, (i € Cx,pp) = max ReliableAssign(i,Cy,) (6)
Cis EC
Now, three different heuristic models are proposed to reflect Intralmpact;cc, and Interlmpact;cc,
terms of ReliableAssign. The first model (heuristic#1) considers the difference between the
accumulated impact of the weighted intra-connections of all proteins i € C;, and their inter-
connections, i.e.:

Intralmpactiec, = Yiecy, jec, WAL J) ()

Interlmpacticc, = Xiec,, jec, WA J) (8)

Equation 7 and 8 are also maintained in the next two heuristic models, however, to be combined
with additional terms in an alternating fashion with equal probability. For the second heuristic model
(heuristic#2), Intralmpact;cc, and InterImpact;ec,, are computed with equal probability, to be
either: 1) Eqg.7 and Eq.8, respectively, or 2) to return accumulated impact of the intra-connections of
neighbors of all proteins i € C}, and their inter-connections, i.e.:

Intralmpactiec, = Yiec,, jecind,jes AW ) ©)

InterImpactiec, = Xiec, jecinii,pee AW J) (10)

Finally, the third model (heuristic#3) computes Intralmpactcc, and Interlmpactcc,, With

equal probability, to be either: 1) equal to Eqg.7 and EQ.8, respectively, or 2) to reflect the accumulated
impact of the intra-connections and inter-connections of all proteins i € Cy, i.e.:

Intralmpactiec, = Yiec,,jec, AW J) (11)
InterImpact, . = Yiecyjec, AW J) (12)
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Algorithm 1: ¥,

Input: 1) chromosome phenotype C = {C;, ..., Cx},

2) number of proteins n,
3) probability of heuristic operator p,,

Output: modified chromosome phenotype C' = {C4, ..., Cx}

1
2
3
4
5
6

~

10
11

for i=1tondo

if(rand < py) // apply heuristic movement to protein i

set C; « Complex(i); // return the current complex of protein i

compute cur_intra_impact_i; // according to the heuristic model

compute cur_inter_impact_i; Il according to the heuristic model

set [Cj, ReliableAssign] < argmaxc;ec (ReliableAssign(i, C]-)); /lreturn complex

C; with maximum reliability assignment for protein i
if(ReliableAssign > (cur_intra_impact_i — cur_inter_impact_i))

set Complex(i) < C;;
end if
end if

end for

4.3 General EA layout
The overall component of the proposed EA with the proposed heuristic model is then presented in
Algorithm 2.

Algorithm 2: heuristic EA for complex detection problem in PPI networks

Input: 1) PPI network: V'(n, E),

2) population size: u, and maximum number of generations max;
3) EA operators and their probabilities: s, Wy, ¥, Yh Px» Pm» Phs

Output: Best individual solution P

© 00 N O O B W N B

e i el e =
g~ W N L O

initialize P «— {Py, P,, ..., B, };

t —0;

evaluate modularity for each individual in the population P(t) = {Ql, Q,, ...,Q#};
while (t < max,) do

fori < 1toudo

P; 1(t) « select(IP;(t)); // select parent 1 for P;
P; ,(t) « select(IP;(t)); // select parent 2 for P;
Pi(t) « Wi (Pi,l(t): =P (), px);

Pi(t) « Wi (Pi(t), Pm);

Pi(t) « Wr(Pi(t), pn);

evaluate Q(P;(t));

end for

t—t+1;

end while

return P € P(t) with maximum Q;
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5 Results

The experiments include two commonly PPI networks, denoted by N1 and N2. N1 has n = 990
proteins with E = 4687 interactions, while 2 has n = 1443 proteins and E = 6993 interactions. To
validate the quality of the predicted complexes generated by the tested EA without heuristic against
with heuristic, two sets of golden standard complexes (Cmplx_D1 and Cmplx_D2) drawn from the
Munich Information Center for Protein Sequence (MIPS) catalog [8] are used in the experiments.
Cmplx_D1 contains 81 complexes, while Cmplx_D?2 is made of 162 hand-curated complexes To
evaluate the quality of the detected complexes obtained by the EA, several metrics are used. The
predicted set of complexes C = {C;, Cs, ..., Cx} obtained by EA is compared with the golden standard
complexes C* = {C{,C3, ..., Cg+} of K* complexes. A predicted complex C; in the solution C overlaps
a golden standard complex C;" by an overlapping score (0S). Then, the predicted complex C; matches

the golden standard complex C; if 0S is equal or larger than a specified threshold, gy, [9].

05(C;, Cf) = (13)
where
standard complex.
match(Cl, 1) {1 if OS(Ci; Cj) = 0ps (14)
0 otherwise

At both complex and protein levels, the three standard metrics of recall, precision, and F measure
are evaluated. The complex/protein levels, recalllrecally, precision/precisiony, and cumulative F-
measurelFy are defined. In recall, the fraction of golden complexes/proteins that are matched to any
predicted complex is determined. On the other hand, precision refers to the fraction of predicted
complexes/proteins that are matched to any golden standard complex. A harmonic mean of both
recall,and precision is reflected by F-measure.

|ci:ciec* A Acjec-match(C].C))|

recall = o (15)
C;: Ci€C N\IC;eC*>match(C;,C}
precisi0n=| SR d K ( - ]) (16)
[
F-measure = Z*recall*prec"is.ion (17)
recall+preaston
recally = Zic 1||7Z‘|| (18)
where |m;| = maxcjec|match(Ci*, C).
K,
- Zi_cllmil
precisiony = =% (19)
N skl
where |m;| = maxcjfec*lmatch((]l, /).
__ 2xrecally*precisiony
FN - recally+precisiony (20)

Other measures can be computed with no dependency to the overlapping score (o,s). These are
general sensitivity (sensitivity), general positive predictive value (PPV), and accuracy [9]. General
sensitivity (sensitivity) between the set of complexes C* = {C7,C;, ..., Cg+} and the set of detected
partitioning solution C = {C;, C,, ..., Cx} is the weighted average of complex-wise sensitivity of all
reference complexes (Eqg. 21). Similarly, general PPV, with respect to the detected complexes (Eqg.
22).

Zz 1max5( 1T,(ll.£)
sensitivity = ——p——— 21
y ¥ e (21)
Z, | max KlT(ll)
=1
PPV = — 1 (22)

2B T
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where T'; represents the marginal sum of column j. The tradeoff between sensitivity and PPV can
be represented by the geometric accuracy. High accuracy (Eq. 23) value requires a high performance
for both sensitivity and PPV.

accuracy = \/sensitivity * PPV (23)

Results for all mentioned metrics are reported in Tables-(1 — 7) and Figures-(2, 3). The reported
results (given in bold) clearly reveal the positive impact of the proposed heuristic operator with the
three different versions of models. The proposed heuristic operator extends the applicability of the
well-known modularity function (Q) to partition a given PPI network.

Table 1-Performance in terms of recall for &1 and V2 when Q is adopted without heuristic, in one
hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score g,s is
varied from 0.1 to 0.5 in step of 0.05.

N1 N2
%0s | Q without Q with Q without Qwith
heuristic peyristic #1 heuristic #2 heuristic #3 M€UTIStiC peyristic #1 heuristic # heuristic #3

0.1 | 0.8500 0.8949 0.8538 0.8744 0.9287 0.9267 0.9167 0.9193
0.15| 0.7910 0.8359 0.7795 0.8141 0.8493 0.8493 0.8307 0.8420
0.2 | 0.7244 0.7872 0.7256 0.7538 0.7860 0.7860 0.7613 0.7653
0.25| 0.6872 0.7449 0.6782 0.7077 0.7260 0.7307 0.7013 0.7147
0.3 | 0.6462 0.7090 0.6551 0.6731 0.6580 0.6573 0.6307 0.6467
0.35| 0.6269 0.7038 0.6359 0.6603 0.5767 0.5813 0.5660 0.5787
0.4 | 0.5936 0.6872 0.6064 0.6244 0.5333 0.5367 0.5340 0.5413
0.45| 0.5577 0.6538 0.5808 0.6000 0.4633 0.4673 0.4660 0.4773
0.5 | 0.5423 0.6346 0.5603 0.5872 0.4440 0.4467 0.4467 0.4520

Table 2-Performance in terms of recally for N1 and V2 when Q is adopted without heuristic, in
one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score g5 is
varied from 0.1 to 0.5 in step of 0.05.

N1 N2
%0s | Qwithout Q with Q without Q with
heuristic yeyristic #1 heuristic #2 heuristic #3| €UTIStC  heyristic# heuristic # heuristic #3

0.1 0.8582 0.8936 0.8835 0.8970 0.6062 0.6070 0.6121 0.6116
0.15| 0.8180 0.8498 0.8300 0.8505 0.5833 0.5790 0.5800 0.5856
0.2 0.7575 0.8137 0.7866 0.8016 0.5571 0.5507 0.5459 0.5518
0.25| 0.6983 0.7635 0.7100 0.7466 0.5220 0.5155 0.5101 0.5126
0.3 0.6163 0.7091 0.6779 0.6765 0.4717 0.4707 0.4542 0.4650
0.35 0.6011 0.7049 0.6535 0.6668 0.4026 0.4113 0.4138 0.4301
0.4 0.5478 0.6860 0.6029 0.6157 0.3576 0.3740 0.3783 0.3916
0.45| 0.4964 0.6288 0.5524 0.5601 0.3040 0.3211 0.3215 0.3403
0.5 0.4718 0.5845 0.5180 0.5382 0.2783 0.2881 0.2904 0.3042
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Table 3 Performance in terms of precision for N1 and V2 when Q is adopted without heuristic, in
one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score gy is
varied from 0.1 to 0.5 in step of 0.05.

N1 N2
dos Q without Q with Q without Q with
heuristic heuristic #1 heuristic #2 heuristic #3 heuristic heuristic # heuristic # heuristic #

0.1 0.7735 0.7588 0.7859 0.7799 0.5932 0.5964 0.6125 0.6049
0.15| 0.7361 0.7212 0.7533 0.7431 0.5656 0.5698 0.5897 0.5872
0.2 0.7332 0.7175 0.7533 0.7402 0.5403 0.5458 0.5643 0.5634
0.25| 0.7226 0.7097 0.7485 0.7343 0.4964 0.4945 0.5169 0.5235
0.3 0.7002 0.6931 0.7421 0.7224 0.4913 0.4814 0.5068 0.5199
0.35| 0.6866 0.6880 0.7343 0.7163 0.4694 0.4548 0.4878 0.4924
0.4 0.6718 0.6844 0.7172 0.7059 0.4559 0.4331 0.4751 0.4764
0.45| 0.6452 0.6653 0.7016 0.6869 0.4178 0.4039 0.4441 0.4428
0.5 0.6288 0.6477 0.6802 0.6735 0.4103 0.3956 0.4378 0.4339

Table 4-Performance in terms of precisiony for &1 and V2 when Q is adopted without heuristic,
in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score gy
is varied from 0.1 to 0.5 in step of 0.05.

N1 N2
gos Q without Qwith Q without Qi
heuristic heuristic #1 heuristic #2 heuristic #3 heuristic heuristic # heuristic # heuristic #

0.1 | 0.6338 0.7185 0.6683 0.6779 0.6829 0.6976 0.6890 0.6974
0.15| 0.6302 0.7138 0.6653 0.6743 0.6768 0.6929 0.6853 0.6944
0.2 | 0.6300 0.7107 0.6653 0.6715 0.6672 0.6841 0.6735 0.6829
0.25| 0.6097 0.7037 0.6511 0.6653 0.6510 0.6607 0.6509 0.6687
0.3 | 0.5692 0.6779 0.6359 0.6325 0.6429 0.6328 0.6241 0.6465
0.35| 0.5596 0.6743 0.6194 0.6260 0.6106 0.6082 0.6146 0.6246
0.4 | 0.5297 0.6719 0.5867 0.6067 0.5826 0.5710 0.5910 0.5894
0.45]| 0.4906 0.6282 0.5501 0.5588 0.5259 0.5312 0.5331 0.5510
0.5 | 0.4688 0.5845 0.5180 0.5382 0.5078 0.5100 0.5138 0.5294
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Table 5-Performance in terms of Fmeasure for 1 and 2 when Q is adopted without heuristic,
in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score g,
is varied from 0.1 to 0.5 in step of 0.05.

a1 N2
905 Q without Qwith Q without Qi
heuristic heuristic #1 heuristic #2 heuristic #3 heuristic heuristic # heuristic # heuristic #

0.1 | 0.8095 0.8209 0.8178 0.8241 0.7238 0.7255 0.7342 0.7296
0.15| 0.7621 0.7737 0.7655 0.7765 0.6787 0.6818 0.6895 0.6918
0.2 | 0.7281 0.7498 0.7385 0.7467 0.6401 0.6440 0.6478 0.6489
0.25]| 0.7041 0.7260 0.7110 0.7204 0.5894 0.5895 0.5948 0.6042
0.3 | 0.6716 0.7002 0.6954 0.6965 0.5624 0.5554 0.5615 0.5762
0.35]| 0.6550 0.6950 0.6811 0.6866 0.5172 0.5098 0.5234 0.5319
0.4 | 0.6298 0.6849 0.6568 0.6622 0.4912 0.4789 0.5022 0.5066
0.45]| 0.5980 0.6587 0.6351 0.6401 0.4391 0.4329 0.4543 0.4592
0.5 | 0.5821 0.6400 0.6140 0.6269 0.4262 0.4191 0.4418 0.4426

Table 6-Performance in terms of Fy for &'1 and V2 when @ is adopted without heuristic, in one
hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score oys is
varied from 0.1 to 0.5 in step of 0.05.

N1 N2
905 | o without Qwith Q without i
heuristic heuristic #1 heuristic #2 heuristic #3 heuristic heuristic # heuristic # heuristic #

0.1 | 0.7286 0.7962 0.7609 0.7721 0.6422 0.6489 0.6480 0.6516
0.15| 0.7115 0.7757 0.7383 0.7517 0.6264 0.6305 0.6281 0.6353
0.2 | 0.6873 0.7584 0.7205 0.7302 0.6071 0.6099 0.6027 0.6104
0.25| 0.6506 0.7322 0.6792 0.7031 0.5791 0.5789 0.5716 0.5802
0.3 | 0.5917 0.6930 0.6562 0.6536 0.5438 0.5396 0.5255 0.5408
0.35| 0.5796 0.6891 0.6359 0.6456 0.4847 0.4904 0.4940 0.5093
0.4 | 0.5385 0.6788 0.5946 0.6111 0.4426 0.4517 0.4607 0.4704
0.45| 0.4934 0.6285 0.5512 0.5594 0.3848 0.3999 0.4005 0.4206
0.5 | 0.4702 0.5845 0.5180 0.5382 0.3591 0.3677 0.3705 0.3860
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Table 7 Performance in terms of Sensitivity, PPV, Accuracy, CCF and Strength for N1 and
V2 when Q is adopted without heuristic, in one hand, and with the proposed heuristics.

N1 N2
Q with Q with
Q without Q without
heuristic heuristic
heuristic #1 heuristic #2 heuristic #3 heuristic #1 heuristic #2 heuristic #Z

Sensitivity] 0.9621 0.9613 0.9772 0.9752 0.6420 0.6411 0.6531 0.6527
PPV 0.6345 0.7201 0.6688 0.6790 0.2785 0.2810 0.2778 0.2832
Accuracy 0.7810 0.8317 0.8081 0.8134 0.4229 0.4244 0.4259 0.4299
CCF 559.6000 589.3500 576.9000 579.8000 875.4500 876.9000 885.2500 890.1000
Strength 0.6647 0.6635 0.7435 0.7312 0.5647 0.5636 0.6098 0.6311

Two additional metrics are also included in Table 7. These are Cross Common Fraction (CCF) and
Strength of complex structure. CCF compares each pair of complexes, in which one comes from the
golden data (C;) and the second comes from the detected result (C;), to find the maximal shared
parts.Strength measures the intensity of the detected complexes (C;). This measure comes after
Radicchi et al. [10] well-known community definition. They showed that a community structure
usually seems correct, strong, and valid if most members with their neighbors are inside one

community.

K* max K max

1 1
CCF:EZL'=1 leian|+EZj=1 ilCianl (24)
Strength = %Zf(:lScore(Ci) (25)
where:
1 if Vv € Ci i |lv,intra|veci + |lv,inter|veci

Score(C;) = (26)

0.5 if ZVUECillv,intralveci > ZVVECi|lv,inter|veCi
0 otherwise

Generally, all reported results reveal consistent effectiveness of the proposed heuristic models and
the proposed operator when coupled with the modularity function to partition a PPl network into
different complexes. The detected complexes have satisfactory aggregation of intra connections where
more intra-group connections appear than inter-group connections. This occurs much clearly in the
first PPI network than in the second network. This is mainly due to the fact that the second network
contains several overlapping proteins.
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Figure 2-Performance at the complex and protein levels for 1 when Q is adopted without heuristic,
in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score g,

is varied from 0.1 to 0.5 in step of 0.05.
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Figure 3-Performance at the complex and protein levels for 2 when @ is adopted without heuristic,
in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score g,

is varied from 0.1 to 0.5 in step of 0.05.
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6 Conclusions

The results reported in this paper show the importance on explicitly considering neighboring
relations and heuristic movement models to improve the detection reliability of the modularity based
EA. The proposed heuristic models emphasize the complex oriented structures where dense intra
connections and sparse inter connections are declared. Generally, the results provided in this paper are
encouraging, especially for the future of the proposed heuristic operators and models, and their
extensions in the application to other complex detection models (e.g. community score, normalized
cut, and ratio cut) and difficult mining problems in complex networks, for example for community
detection problem in weighted networks and overlapping complex detection.
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