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Abstract 

     Due to the significant role in understanding cellular processes, the decomposition 

of Protein-Protein Interaction (PPI) networks into essential building blocks, or 

complexes, has received much attention for functional bioinformatics research in 

recent years. One of the well-known bi-clustering descriptors for identifying 

communities and complexes in complex networks, such as PPI networks, is 

modularity function.   The contribution of this paper is to introduce heuristic 

optimization models that can collaborate with the modularity function to improve its 

detection ability. The definitions of the formulated heuristics are based on nodes and 

different levels of their neighbor properties.  The modularity function and the 

formulated heuristics are then injected into the mechanism of a single objective 

Evolutionary Algorithm (EA) tailored specifically to tackle the problem, and thus, to 

identify possible complexes from PPI networks. In the experiments, different 

overlapping scores are used to evaluate the detection accuracy in both complex and 

protein levels. According to the evaluation metrics, the results reveal that the 

introduced heuristics have the ability to harness the accuracy of the existing 

modularity while identifying protein complexes in the tested PPI networks.  

      

Keywords: complex detection; graph partitioning; heuristic; modularity; Protein-

Protein Interaction network. 
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 الخلاصة
 (PPI) شبكات التفاعل بين البروتين والبروتين تحميلفي فيم العمميات الخمهية ، فإن  الميمنظرًا لمدور      
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نماذج . تعتمد تعريفات المركبات تحديدلتحدين قدرتيا عمى التقميدية نمطية دالة الالتي يمكن أن تتعاون مع 

ومدتهيات مختمفة من خرائص  )أي البروتينات( عمى العقد التحدين المهجيو المقترحة في ىذا البحث
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في آلية  ةالمراغ نماذج التحدين المهجيو ونمطية ال دالة. يتم بعد ذلك حقن ليذه البروتينات الجيران
المحتممة من  المركباتمرممة خريرًا لمعالجة المذكمة ، وبالتالي ، لتحديد  (EA) خهارزمية تطهرية 

دقة الكذف في كل من المدتهيات   مختمفة لتقييم تداخلفي التجارب، يتم استخدام درجات PPI. ال  شبكات
الى  متم إدخالي التينماذج التحدين المهجيو المعقدة والبروتين. وفقًا لمقاييس التقييم، تكذف النتائج أن 

 البروتين في شبكات مركباتمع تحديد  التقميدية دالة النمطيةالقدرة عمى تدخير دقة  ملديي (EA)خهارزمية ال 
 .المختبرة PPI ال

1. Introduction  

    Many complex systems in all areas of science, including social science, politics, biology and 

medicine, can be represented as networks. Topological analyses of such complex networks are 

universal and provide insights in many science studies. Complex systems are usually organized in 

compartments, which have their own role and / or function. In the network representation, such 

compartments appear as sets of nodes with a high density of internal links, whereas links between 

compartments have a lower density. These subgraphs are called communities, or modules, and can 

occur in a wide variety of networked systems. Finding compartments may shed light on the 

organization of complex systems and on their function. Therefore, detecting communities in networks 

has become a fundamental problem in network science. Many methods have been developed, using 

tools and techniques from different disciplines like physics, applied mathematics, biology, computer 

and social sciences. However, it is still not clear which algorithms are reliable and shall to be used in 

applications [1].  

     As an increasing amount of protein–protein interaction (PPI) data becomes available, its 

computational interpretation has become an important problem in bioinformatics. Observations show 

that PPI networks possess invaluable evolutionary insights and information to understand various 

biological processes and cellular functions. However, prediction of protein complexes, like many other 

practical optimization problems, falls into the category of strongly NP-hard combinatorial 

optimization problems that can easily bewilder exact optimization algorithms [2], [3].  

     Complex network clustering is data clustering in dividing the interested entities into clusters or 

modules. However, clusters in complex networks are based on both the inter and intra connections 

densities, while clusters in data clustering are groups of points close to each other  in a way forming 

several local optima. In the literature, modularity [3] and a series of follow-up models have been 

proposed to measure the quality of a set of predicted intra-dense and inter-sparse subgraphs in a graph. 

The majority of these works have been applied to community detection in social networks and to 

complex identification in PPI networks.  

     The main contribution of this paper is to develop a heuristic ground definitions for modularity that 

can improve its detection ability. Here we are motivated by the logical consequence of protein 

neighboring properties and how to exploit and couple such properties with modularity function. In this 

paper, a single objective Evolutionary Algorithm (EA) [4] is adopted to combine modularity (as an 

objective function) and the proposed heuristic approaches.  The algorithm attempts, with aid of 

modularity, to identify the global structure of the complexes and with the aid of heuristic functions, to 

fine tune such complexes. In the experimental results, we show that coupling the proposed heuristic 

operator as exploiter to capture local structures of the solutions provided by modularity can 

significantly improve the detection performance of EA.   

In the remainder of this paper, preliminary concepts relating to complex detection problem in PPI 

networks and the main interest in the literature towards solving complex detection problem in PPI 

networks are presented first. These are followed by a closer look into the formal development of the 

proposed evolutionary based complex detection framework together with the proposed heuristic 

operators. Experimental results are then provided to support the positive impact of the proposed 

heuristic definitions to further correct the complex structures of the well-known modularity function. 

The final section of this paper presents major conclusions and further directions of this work. 

2. Related background 

     A complex network such as PPI network can be denoted by  , of   proteins and   interactions. In 

other terms   is said to be with cardinality   and volume  .          ,    can be modeled as 

undirected graph   (   ) of a set   *          + of   vertices, and a set       

*(     )|               + of   edges. Note that throughout this paper, the terms: tie, edge, link, 
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connection, relation, and interaction are used interchangeably to denote any vertex pair (     ) in  . 

Also, let   be the space of all possible partitioning solutions for   and let     *       + be a 

network partitioning solution belongs to the space    with   partitions or divisions. Normally, any 

unsigned graph   can be represented by a symmetric     adjacency matrix denoted by  . Rows and 

columns of    are labeled with the vertices of   and assigned with   in entry (   ) if vertex pair 

(     ) is in  , and set to   if (     )   .  

     From the adjacency matrix   a set of   direct neighboring lists,   *          +, can be formed. 

Each list    in the set   aggregates connections of all vertices with vertex     . Thus, |  |  
∑ (   ) 

    and | |  ∑ |  |
 
   . Mathematically noted,  |  |     is said to be the degree of   , while 

  | |   is said to be the volume of  . Furthermore, the strength of each node   can be specified in 

more details by |  |  |        |
   

 |        |   
, where|        |

   
and |        |   

 be the intra-

strength and inter-strength of node  , respectively. Generalizing this to all nodes, implies  | |  

 |      |   |      |  ∑ |        |
   

 
    ∑ |        |   

 
   .  

3 Modularity based co-clustering model 

     Co-clustering or simultaneous matrix partitioning (in contrast to clustering, as depicted in Figure-1) 

needs a quality function that can capture the embedded distinct sub-matrix structures. The modularity 

(normally noted as  ) model defined after Newman and Girvan, lays the foundation of many existing 

successful graph clustering algorithms [5], [6]. The purpose of   is to capture the hidden structure of 

sub-graphs or community sets in complex networks by maximizing intra-cluster links while 

minimizing inter-cluster ones.  

     Consider partitioning   of    into a co-clustering solution   *       + such that each vertex 

         is exactly assigned to one cluster         . The impact of   in   is quantified in 

two distinct terms. The set of edges between vertices existing in two distinct clusters:  (     )   

              and the set of edges found inside one cluster:  (     )      .  Then, 

modularity will award   according to the fraction of connections inside its communities as formulated 

in Eq. 1.  The left term in Eq. 1 biases towards a solution   that is covered with a set of densely intra-

connected modules, i.e. many edges fall within each sub-graph *       +. On the other hand, the 

right term in Eq. 1 expresses that the expected value of the same edge density in   with the same 

community structure *       + but fall at random between the vertices should be small.   will 

approach its minimum at   if the number of within-community edges is no better than random. On the 

other hand, values approaching    , which is the maximum, indicate strong community structure.  

 

 ( )  ∑ 0
| (     )|

 ( )
 (

∑   ( )    

  ( )
) 1 

                                                     

(1)   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-Clustering against co-clustering. Left: clustering means partitioning all data vectors with all 

their features into   (sometimes unknown) disjoint groups. Right: co-clustering, or bi-clustering, 

means partitioning into a set of   (sometimes unknown) blocks each containing a consistent local 

feature pattern (Note that it is not generally possible to display several bi-clusters at the same time as 

contiguous blocks). 
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4 The proposed heuristic based modularity  
     This section introduces a heuristic based approach for modularity with three different optimization 

models. A set of protein-neighborhood related functions is proposed to extend, accordingly, the unveil 

ability of a single objective EA. First, the main components that characterize the evolution process of 

EA (solution representation and perturbation operators) are formulated towards solving the problem. 

Then, the optimization models and the heuristic operator are introduced and formulated to improve the 

quality of generated complexes in the search space. Finally, the main steps of the proposed EA is 

outlined. 

4.1 The proposed EA 

     Any Evolutionary Algorithm (EA) searches for appropriate solutions from the set   of all possible 

solutions of the problem at hand. Generally, the search for good solutions is performed through 

individual evaluations, selection, crossover, and mutation operators. The design of such operators 

would then determine the characteristic of the adopted EA. In this section, the definitions of all 

components are relaxed for the purpose of complex detection problem in PPI networks.  

     First, the construction of several, but unknown, number of complexes among the interacted proteins 

of a given PPI network, is an important issue that the individual representation (i.e. chromosome 

genotype encoding) should take quite seriously. In the proposed EA, the locus-based representation 

used in [7] is adopted. A chromosome   of the population   is defined as a collection of node-node 

neighbor genes. A single gene in the chromosome   is defined by its locus and its allele. Consider a 

PPI network   with   proteins. Then,   will consist of   genes, where locus   identifies protein   in 

the network, while its allele value   corresponds to the neighbor   that has an actual interaction with 

node   in the network, i.e. (     )   . This in turn implies that both proteins   and   will be in the 

same complex. The decoding function   of a chromosome   (chromosome phenotype) outlines one of 

the possible partitioning of the network   into complexes, i.e.  ( )    * +   
 . However,   could 

vary from one chromosome to another.  

     Once the population is created and their individuals are evaluated (according to the modularity in 

Eq. 1), a set of good population of parents is selected and processed by perturbation operators to create 

better child individuals. Two main perturbation operators are used. These are crossover    and 

mutation   .  

     Uniform crossover is used and achieved with a specified chromosome-wise crossover probability, 

  . Consider two chromosomes    (                ) and    (                ) to be the two 

participating parents in the crossover. 

     With probability   , a child    (  
    

      
 ) can be generated from the two parents by uniformly 

mixing their  alleles (i.e. performing protein-wise fair combination). This can be formally defined by: 

   (        )      

        : 

  
  {

               

               
                          

(2) 

where   ,   - is a uniform random number.  

     The mutation operator    imitates the traditional allelic mutation operator which works on allele 

values and alters, with a specified mutation probability   , the allele (i.e. neighbor) of a selected locus 

(i.e. node). This can formally be specified by:.    (    )      

         ⋀     : 

   
   |(   )                           

(3) 

where   ,   - is a uniform random number.  

4.2 Formulation of the heuristic optimization models and operator  
     Generally, heuristic operator or search heuristic is defined to be a rule that decides which solution, 

given the current solution, to generate or to visit next based on some heuristic criterion.  In 

evolutionary computation community, the search for designing appropriate heuristic for a given 

problem is essential and can harness the performance of the algorithm. In the following discussion, we 

introduce a heuristic operator with three optimization models tailored, here, specifically for complex 

detection problem.  
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     The general characteristic of complexes in PPI networks expresses dense interactions within 

complexes while more sparse interactions among different complexes. The main purpose of the 

proposed heuristic operator         is to move proteins between the complexes of an individual 

solution  . The movement of the selected proteins should reduce the problems of both sparse intra-

connections and dense inter-ties. Thus, the proposed    operator works, with a specified probability 

  , on those nodes maintaining un-reliable template in their chosen complexes and move them to other 

complexes that can participate within their proteins more reliably. Here, we propose three different 

optimization models on how to define reliability assignment of a node to a given complex.  

     Consider an individual chromosome   (          ) corresponding to a candidate partitioning 

solution   *       + with   complexes. Let node   that corresponds to gene    being located in 

complex  , where      . Then, node   inside complex   has a possible reliable interaction 

assignment that can be expressed as the difference between the impact of the intra-connections and 

inter-connections: 

              (    )                 
               

                                     (4) 

     For             and             in Eq. 4, three models are proposed to define them. Let us first 

consider an extended version of the adjacency matrix   (discussed in Section 2). A weighted 

adjacency matrix    is constructed using Eq. 5. 

  (   )  {
∑ (

 (   )

|  |  
)  (

 (   )

|  |
) 

         (   )   

                                                      
        

             (5) 

     The proposed heuristic operator,   , (see Algorithm 1), then, moves node   to another complex   , 
       and       where node   could maintain, there, the highest reliability assignment, i.e. 

with the highest difference between intra-connections and inter-connections impact. The proposed 

heuristic operator (  ), then, can be stated formally as in Eq. 5. Note that when more than one 

complex can receive node   with equal                value, then    randomly selects any one of 

these complexes.  

  (       )     
     

              (     )                                               (6) 

Now, three different heuristic models are proposed to reflect                
 and                

 

terms of               . The first model (           ) considers the difference between the 

accumulated impact of the weighted intra-connections of all proteins      and their inter-

connections, i.e.:  

 

               
 ∑   (   )         

                     (7) 

               
 ∑   (   )         

                     (8) 

     Equation 7 and 8 are also maintained in the next two heuristic models, however, to be combined 

with additional terms in an alternating fashion with equal probability.  For the second heuristic model 

(           ),                
 and                

, are computed with equal probability, to be 

either: 1) Eq.7 and Eq.8, respectively, or 2) to return accumulated impact of the intra-connections of 

neighbors of all proteins      and their inter-connections, i.e.: 

               
 ∑  (   )          (   )                      (9) 

               
 ∑  (   )          (   )                    (10) 

     Finally, the third model (           ) computes                
 and                

, with 

equal probability, to be either: 1) equal to Eq.7 and Eq.8, respectively, or 2) to reflect the accumulated 

impact of the intra-connections and inter-connections of all proteins     , i.e.:  

               
 ∑  (   )         

                   (11) 

               
 ∑  (   )         

                   (12) 
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Algorithm 1:    

Input: 1) chromosome phenotype   *       + ,  
            2) number of proteins  , 

            3) probability of heuristic operator     

Output: modified chromosome phenotype    *       +  

1 for           do 

2  if(        )  // apply heuristic movement to protein   

3    set           ( ); // return the current complex of protein   

4   compute                   ; // according to the heuristic model 

5   compute                   ; // according to the heuristic model 

6   set ,                 -            .              (    )/; //return complex 

   with maximum reliability assignment for protein   

7   if(               (                                     )) 

8    set        ( )    ; 

9   end if 

10  end if 

11 end for    

  

4.3 General EA layout 

     The overall component of the proposed EA with the proposed heuristic model is then presented in  

Algorithm 2. 

Algorithm 2: heuristic EA for complex detection problem in PPI networks 

Input: 1) PPI network:  (   ),  

            2) population size:  , and maximum number of generations      

            3) EA operators and their probabilities:  ,   ,   ,      ,   ,   , 

Output: Best individual solution    

1 initialize   *          +;  

2    ; 

3 evaluate modularity for each individual in the population  ( )  {          };  

4 while (      ) do 

5  for     to   do 

6       ( )        (  ( )); // select parent 1 for     

7       ( )        (  ( )); // select parent 2 for    

8     ( )    (    ( )     ( )   );    

9     ( )    (  ( )   );  

10     ( )    (  ( )   );  

11   evaluate  (  ( )); 

12  end for 

13       ; 

14 end while 

15 return    ( ) with maximum  ; 
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5 Results 

     The experiments include two commonly PPI networks, denoted by    and   .    has       

proteins with        interactions, while    has        proteins and        interactions. To 

validate  the quality of the predicted complexes generated by the tested EA without heuristic against 

with heuristic, two sets of golden standard complexes (         and        2) drawn from the 

Munich Information Center for Protein Sequence (MIPS) catalog [8] are used in the experiments.  

         contains    complexes, while        2 is made of     hand-curated complexes To 

evaluate the quality of the detected complexes obtained by the EA, several metrics are used. The 

predicted set of complexes   *          + obtained by EA is compared with the golden standard 

complexes    *  
    

       
 + of    complexes. A predicted complex    in the solution   overlaps      

a golden standard complex   
  by an overlapping score (  ). Then, the predicted complex    matches 

the golden standard complex   
  if    is equal or larger than a specified threshold,    ,  [9].  

  (     
 )  

|     
 |

 

|  ||  
 |

                                 (13) 

     where |     
 | is the number of proteins common to both a predicted complex and a golden 

standard complex. 

 

     (     
 )  {

       (     
 )     

                          
                               (14) 

 

     At both complex and protein levels, the three standard metrics of recall, precision, and F measure 

are evaluated. The complex/protein levels,       /       ,          /          , and cumulative  -

       /   are defined. In       , the fraction of golden complexes/proteins that are matched to any 

predicted complex is determined. On the other hand,           refers to the fraction of predicted 

complexes/proteins that are matched to any golden standard complex. A harmonic mean of both 

      ,and           is reflected by  -       . 

 

       
|  

     
    ⋀            (  

    )|

                                 (15) 

          
|         ⋀   

          .     
 /|

  
                                            (16) 

 -        
                  

                
                                (17) 

        
∑ |  |

  

    

∑ |  
 |  

   

                                                            (18) 

where |  |         |     (  
    ). 

           
∑ |  |

  
   

 

∑ |  |
  
   

                                                            (19) 

 where |  |       
    |     (     

 ). 

    
                    

                  
                                 (20) 

     Other measures can be computed with no dependency to the overlapping score (   ). These are 

general sensitivity (           ), general positive predictive value (   ),  and          [9]. General 

sensitivity (           ) between the set of complexes    *  
    

       
 + and the set of detected 

partitioning solution   *          + is the weighted average of complex-wise sensitivity of all 

reference complexes (Eq. 21). Similarly, general    , with respect to the detected complexes (Eq. 

22).  

            
∑       

  (   )

  
 

  

   

∑   
   

   

                  (21) 

    
∑       

   (   )

   
   

   

∑ ∑  (   )  
   

 
   

                                                      (22) 
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     where     represents the marginal sum of column  . The tradeoff between             and     can 

be represented by the geometric         . High accuracy (Eq. 23) value requires a high performance 

for both             and    . 

         √                                              (23)  

     Results for all mentioned metrics are reported in Tables-(1 – 7) and Figures-(2, 3). The reported 

results (given in bold) clearly reveal the positive impact of the proposed heuristic operator with the 

three different versions of models. The proposed heuristic operator extends the applicability of the 

well-known modularity function ( ) to partition a given PPI network.   

 

Table 1-Performance in terms of         for    and    when   is adopted without heuristic, in one 

hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     is 

varied from     to     in step of     . 

    

    2 

           
          

                  
          

       

                                                                              

    0.8500 0.8949 0.8538 0.8744 0.9287 0.9267 0.9167 0.9193 

     0.7910 0.8359 0.7795 0.8141 0.8493 0.8493 0.8307 0.8420 

    0.7244 0.7872 0.7256 0.7538 0.7860 0.7860 0.7613 0.7653 

     0.6872 0.7449 0.6782 0.7077 0.7260 0.7307 0.7013 0.7147 

    0.6462 0.7090 0.6551 0.6731 0.6580 0.6573 0.6307 0.6467 

     0.6269 0.7038 0.6359 0.6603 0.5767 0.5813 0.5660 0.5787 

    0.5936 0.6872 0.6064 0.6244 0.5333 0.5367 0.5340 0.5413 

     0.5577 0.6538 0.5808 0.6000 0.4633 0.4673 0.4660 0.4773 

    0.5423 0.6346 0.5603 0.5872 0.4440 0.4467 0.4467 0.4520 

 

Table 2-Performance in terms of          for    and    when   is adopted without heuristic, in 

one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     is 

varied from     to     in step of     . 

    

    2 

          
          

                 
          

       

                                                                              

    0.8582 0.8936 0.8835 0.8970 0.6062 0.6070 0.6121 0.6116 

     0.8180 0.8498 0.8300 0.8505 0.5833 0.5790 0.5800 0.5856 

    0.7575 0.8137 0.7866 0.8016 0.5571 0.5507 0.5459 0.5518 

     0.6983 0.7635 0.7100 0.7466 0.5220 0.5155 0.5101 0.5126 

    0.6163 0.7091 0.6779 0.6765 0.4717 0.4707 0.4542 0.4650 

     0.6011 0.7049 0.6535 0.6668 0.4026 0.4113 0.4138 0.4301 

    0.5478 0.6860 0.6029 0.6157 0.3576 0.3740 0.3783 0.3916 

     0.4964 0.6288 0.5524 0.5601 0.3040 0.3211 0.3215 0.3403 

    0.4718 0.5845 0.5180 0.5382 0.2783 0.2881 0.2904 0.3042 
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Table 3 Performance in terms of            for    and    when   is adopted without heuristic, in 

one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     is 

varied from     to     in step of     . 

    

    2 

          
          

       
          
          

       

                                                                              

    0.7735 0.7588 0.7859 0.7799 0.5932 0.5964 0.6125 0.6049 

     0.7361 0.7212 0.7533 0.7431 0.5656 0.5698 0.5897 0.5872 

    0.7332 0.7175 0.7533 0.7402 0.5403 0.5458 0.5643 0.5634 

     0.7226 0.7097 0.7485 0.7343 0.4964 0.4945 0.5169 0.5235 

    0.7002 0.6931 0.7421 0.7224 0.4913 0.4814 0.5068 0.5199 

     0.6866 0.6880 0.7343 0.7163 0.4694 0.4548 0.4878 0.4924 

    0.6718 0.6844 0.7172 0.7059 0.4559 0.4331 0.4751 0.4764 

     0.6452 0.6653 0.7016 0.6869 0.4178 0.4039 0.4441 0.4428 

    0.6288 0.6477 0.6802 0.6735 0.4103 0.3956 0.4378 0.4339 

 

Table 4-Performance in terms of             for    and    when   is adopted without heuristic, 

in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     

is varied from     to     in step of     . 

    

   
 2 

           
          

       
           
          

       

                                                                              

    0.6338 0.7185 0.6683 0.6779 0.6829 0.6976 0.6890 0.6974 

     0.6302 0.7138 0.6653 0.6743 0.6768 0.6929 0.6853 0.6944 

    0.6300 0.7107 0.6653 0.6715 0.6672 0.6841 0.6735 0.6829 

     0.6097 0.7037 0.6511 0.6653 0.6510 0.6607 0.6509 0.6687 

    0.5692 0.6779 0.6359 0.6325 0.6429 0.6328 0.6241 0.6465 

     0.5596 0.6743 0.6194 0.6260 0.6106 0.6082 0.6146 0.6246 

    0.5297 0.6719 0.5867 0.6067 0.5826 0.5710 0.5910 0.5894 

     0.4906 0.6282 0.5501 0.5588 0.5259 0.5312 0.5331 0.5510 

    0.4688 0.5845 0.5180 0.5382 0.5078 0.5100 0.5138 0.5294 
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Table 5-Performance in terms of           for    and    when   is adopted without heuristic, 

in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     

is varied from     to     in step of     . 

    

   
 2 

           
          

       
           
          

       

                                                                              

    0.8095 0.8209 0.8178 0.8241 0.7238 0.7255 0.7342 0.7296 

     0.7621 0.7737 0.7655 0.7765 0.6787 0.6818 0.6895 0.6918 

    0.7281 0.7498 0.7385 0.7467 0.6401 0.6440 0.6478 0.6489 

     0.7041 0.7260 0.7110 0.7204 0.5894 0.5895 0.5948 0.6042 

    0.6716 0.7002 0.6954 0.6965 0.5624 0.5554 0.5615 0.5762 

     0.6550 0.6950 0.6811 0.6866 0.5172 0.5098 0.5234 0.5319 

    0.6298 0.6849 0.6568 0.6622 0.4912 0.4789 0.5022 0.5066 

     0.5980 0.6587 0.6351 0.6401 0.4391 0.4329 0.4543 0.4592 

    0.5821 0.6400 0.6140 0.6269 0.4262 0.4191 0.4418 0.4426 

 

Table 6-Performance in terms of     for    and    when   is adopted without heuristic, in one 

hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     is 

varied from     to     in step of     . 

    

   
 2 

           
          

       
           
          

       

                                                                              

    0.7286 0.7962 0.7609 0.7721 0.6422 0.6489 0.6480 0.6516 

     0.7115 0.7757 0.7383 0.7517 0.6264 0.6305 0.6281 0.6353 

    0.6873 0.7584 0.7205 0.7302 0.6071 0.6099 0.6027 0.6104 

     0.6506 0.7322 0.6792 0.7031 0.5791 0.5789 0.5716 0.5802 

    0.5917 0.6930 0.6562 0.6536 0.5438 0.5396 0.5255 0.5408 

     0.5796 0.6891 0.6359 0.6456 0.4847 0.4904 0.4940 0.5093 

    0.5385 0.6788 0.5946 0.6111 0.4426 0.4517 0.4607 0.4704 

     0.4934 0.6285 0.5512 0.5594 0.3848 0.3999 0.4005 0.4206 

    0.4702 0.5845 0.5180 0.5382 0.3591 0.3677 0.3705 0.3860 
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Table 7 Performance in terms of            ,    ,         ,     and          for    and 

   when   is adopted without heuristic, in one hand, and with the proposed heuristics. 

 

    2 

          
          

       

          
          

       

                                                                              

            0.9621 0.9613 0.9772 0.9752 0.6420 0.6411 0.6531 0.6527 

    0.6345 0.7201 0.6688 0.6790 0.2785 0.2810 0.2778 0.2832 

         0.7810 0.8317 0.8081 0.8134 0.4229 0.4244 0.4259 0.4299 

    559.6000 589.3500 576.9000 579.8000 875.4500 876.9000 885.2500 890.1000 

         0.6647 0.6635 0.7435 0.7312 0.5647 0.5636 0.6098 0.6311 

 

     Two additional metrics are also included in Table 7. These are Cross Common Fraction (   ) and 

Strength of complex structure.     compares each pair of complexes, in which one comes from the 

golden data (  ) and the second comes from the detected result (  ), to find the maximal shared 

parts.         measures the intensity of the detected complexes (  ). This measure comes after 

Radicchi et al. [10] well-known community definition. They showed that a community structure 

usually seems correct, strong, and valid if most members with their neighbors are inside one 

community.  

    
 

 
∑ |     | 

     

    
 

 
∑ |     | 

    
                                 (24) 

         
 

 
∑      (  )

 
                        (25) 

where: 

     (  )  {

          |        |
    

 |        |    

      ∑ |        |
    

     
 ∑ |        |    

      

          

                                 (26) 

     Generally, all reported results reveal consistent effectiveness of the proposed heuristic models and 

the proposed operator when coupled with the modularity function to partition a PPI network into 

different complexes. The detected complexes have satisfactory aggregation of intra connections where 

more intra-group connections appear than inter-group connections. This occurs much clearly in the 

first PPI network than in the second network. This is mainly due to the fact that the second network 

contains several overlapping proteins.      
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Figure 2-Performance at the complex and protein levels for    when   is adopted without heuristic, 

in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     

is varied from     to     in step of     . 
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Figure 3-Performance at the complex and protein levels for  2 when   is adopted without heuristic, 

in one hand, and with the proposed heuristics, on the other hand. Threshold of overlapping score     

is varied from     to     in step of     . 
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6 Conclusions 

     The results reported in this paper show the importance on explicitly considering neighboring 

relations and heuristic movement models to improve the detection reliability of the modularity based 

EA. The proposed heuristic models emphasize the complex oriented structures where dense intra 

connections and sparse inter connections are declared. Generally, the results provided in this paper are 

encouraging, especially for the future of the proposed heuristic operators and models, and their 

extensions in the application to other complex detection models (e.g. community score, normalized 

cut, and ratio cut) and difficult mining problems in complex networks, for example for community 

detection problem in weighted networks and overlapping complex detection. 
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