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Abstract  

     In this article, the lattice Boltzmann method with two relaxation time   (TRT)  for 

the  D2Q9 model is used to investigate numerical results for 2D flow. The problem 

is performed to show the dissipation of the kinetic energy rate and its relationship 

with the enstrophy growth for 2D dipole wall collision. The investigation is carried 

out for normal collision and oblique incidents at an angle of 30°. We prove the 

accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip 

conditions to simulate this flow. These conditions are under the effect of Burnett-

order stress conditions that are consistent with the discrete Boltzmann equation. 

Stable results are found by using this kind of boundary condition where dissipation 

of the kinetic energy is found to be proportional to 𝑅𝑒−1   in the first regime and it is 

∝ 𝑅𝑒−0.5  in the second part of the regime as expected. An excellent agreement with 

the benchmark data is observed. 

 

Keywords:. Lattice Boltzmann, moment-based boundary conditions,  Two 
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تحت تاثير برنيت تبديد الطاقة الحركية للتدفق ثنائي الابعاد  باستخدام طريقة الزخم الحدودية    
 باستخدام طريقة بولتزمان الشعرية 
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 الخلاصة 
لاستقصاء النتائج العددية للتدفق  D2Q9 الشعرية لنموذج    بولتزمان  ، يتم استخدام طريقة    بحثال ا  في هذ       

لمائع من  ثنائي الأبعاد. يتم تنفيذ المشكلة لإظهار تبديد معدل الطاقة الحركية وعلاقته بنمو مجموع التدويرات  
أثبتنا دقة شروط الحدودية مع    درجة.    30. يتم إجراء التحقيق لتصادم عادي وتصادم مائل بزاوية  نوع خاص 

لاق  ماكسويل و لمحاكاة هذا التدفق. تخضع هذه الشروط لتأثير ظروف إجهاد  ز ان  ووجودعدم وجود انزلاق  
ال تم  المنفصلة.  بولتزمان  معادلة  مع  تتوافق  التي  من    حصولبورنيت  النوع  هذا  باستخدام  مستقرة  نتائج  على 
عكسيه مع متغير ريمان في النصف الاول    بطرق   الشروط الحدودية حيث يوجد تبديد للطاقة الحركية متناسبًا

 ممتاز مع البيانات المعيارية   توافقمن المجال ومع معكوس الجذري لنفس المتغير كما هو متوقع. لوحظ وجود  
 
 

 

              ISSN: 0067-2904 

mailto:Seemaa.a@sc.uobaghdad.edu.iq


Mohammed                                               Iraqi Journal of Science, 2024, Vol. 65, No. 8, pp: 4550-4565 

4551 

1. Introduction 

    In the limit when the viscosity tends to zero, the dissipation of kinetic energy has been 

proposed mainly by Frag et al [1] for no-slip and free-slip boundaries. This study is carried 

out from numerical simulation to two-dimensional (2D) fluid flow, namely a dipole wall 

collision. In this numerical study, the dipole collided with the wall normally. Noting, many 

papers have investigated the dipole wall collision numerically for normal and oblique 

incidents for slip and no slip boundaries, like in [2-6]. The interaction between the two 

monopoles and the wall accompanies the generation of additional vortices at the wall. The 

production of small-scale vortices at the boundary leads to the decay of the kinetic energy 

caused by increasing the enstrophy at the wall. The study of this phenomena has been 

experimented on by a lot of authors. Clercx and Heijst [7] investigated the scaling of energy 

rate and the raise of the maximum enstrophy  and Palinstrophy 𝑃(𝑡)  for no slip bounded and 

unbounded domain. They show that owing to the production of the additional vortices at the 

wall, the energy scales proportional to 𝑅𝑒−0.5. The Reynolds number 𝑅𝑒 is defined as 𝑅𝑒 =
𝑈𝐻/𝜈 where 𝑈 is the characteristic velocity and 𝐻 is the half-width of the domain. Their 

examination happens for normal and oblique wall collisions in a range of Reynolds numbers 

between 500 and 128000. Keetels et al. [8] used an oscillating plate as a boundary layer to 

study the scales of enstrophy growth and Palinstrophy for no slip boundaries. Their 

investigation states that the enstrophy ∝ 𝑅𝑒0.75 and 𝑃(𝑡) ∝ 𝑅𝑒2.25  for 𝑅𝑒 < 20000. For 

𝑅𝑒 ≥ 20000 the growth of enstrophy ∝ 𝑅𝑒0.5 and  𝑃(𝑡) ∝ 𝑅𝑒1.5  . Following Frag et al [1] 

and . Clercx and Heijst [7], and Sutherland [9] employed slip and no slip boundary conditions 

to examine the energy dissipation structure.  Frag et al and Sutherland showed that Prandtl's 

theory [10] was satisfied for slip and various slip-length wall collisions. They showed that the 

slope ∝ 0.43 for slip equal to 4/𝑅𝑒 and no slip walls. For boundary with slip length equal to 

0.003, the slope is equal to -0.53±0.05 .  Clercx and Heijst [11] gave a detailed study and 

review of many investigations that deal with dipole wall collision and the scale of the 

dissipation of energy.  

 

      The papers above used traditional computational fluid dynamics (CFD) methods to 

investigate the scale of energy dissipation, which discretizes the Navier-Stokes equations 

directly, like finite difference, finite volume, finite elements and spectral methods and others 

[12-14].  Mohammed  [15] used a method that avoided the difficulties where CFD methods 

are faced and reached out to the same results as Frag et al and Sutherland. These difficulties 

are summarized by computational expenses or complicities by applying the boundary 

methods, especially with slip conditions. This method is called the Lattice Boltzmann method 

(LBM). The LBM is an alternative to the CFD methods. Thus, the LBM has been obtained 

from the velocity space and discretizing the Boltzmann equation (BE)[16][17]. The first 

model of this method is called the Bhanagar-Gross-Krook (BGK-LBM) collision operator 

[17][18]. Because of a shortcoming of the BGK operator in terms of higher Reynolds 

numbers, a generalization of this model is found by d’Humieres [19] namely, the multiple 

relaxation time (MRT- LBM) operator. This operator gave more stability and accuracy to the 

LBM. A special case of MRT is the two  relation time model (TRT-LBM). The stability of this 

model is ruled by one parameter the so called “magic parameter” 𝛬. For D2Q9 LB model by 

setting 𝛬 =
1

4
 ,  one can reach the numerical stability of the LBM  [20-22].  

 

      One of the most important distinguishing features of LBM is the ease of applying the 

boundary conditions for simple and complex boundaries. The simplest method is “bounce 

back” boundary conditions.  In this method, the velocity particles hit the wall and reverse their 

way to the fluid bulk [23][24]. However, for the accuracy of this method, a numerical error 

appeared with a second-order error if the wall is located midway between grid points and 
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first-order accuracy elsewhere. Alternatively, other methods were proposed as a modification 

of the bounce back method that depends on lattice velocity distribution function, like [25-28]. 

On the other hand,   another approach was proposed by Noble et al. [29] that depends on the 

hydrodynamic moments of the LBM. This method was modified by Bennett [30] for the 

D2Q9 model, the so-called “Moment-based “ boundary conditions. This method simulated 

simple and complex flows with slip and no slip boundaries accurately, like in [3][31-34]. The 

moment method is also employed to consider  conditions that are proportional to the 

deviatoric stress  which is used to estimate the non Navier-Stokes behavior for slip and no slip 

boundaries [35][36]. In this article, it is shown that the LBM with a consistent moment 

method with an effect of Burnett contribution can precisely compute and capture a dissipation 

of the kinetic energy with an enstrophy growth rate for slip and no slip boundaries for 2D 

bounded flow. 

 

This article is organaised  as follows: 

       In Section 2, we introduce the discrete Boltzmann equation (DBE). In Section 3,4 we 

show the macroscopic moments of DBE, then we discuss the lattice Boltzmann algorithm. 

The TRT-LBM scheme is proposed in Section 5. In Section 6, we explain the moment-based 

boundary condition with the Burnett effect. Finally, in Section 7 numerical results are 

provided for the dissipation of the kinetic energy by using the boundary method  from Section 

6.  

 

2. The discrete Boltzmann equation 

        In this section, the D2Q9 model will be presented for the discrete Boltzmann equation 

(DBE) as     
𝑑𝑓𝑗

𝑑𝑡
+ 𝑐𝑗 . ∇𝑓𝑗 = −

1

𝜏
(𝑓𝑗 − 𝑓𝑗

0),                           for  j = 0,… ,8.                                           (1) 

The advection part of the probability distribution function 𝑓𝑗 is given in the left hand side of 

equation (1) with the discrete particle velocity 𝒄𝑗 . The D2Q9 model has 9 particle velocities 

 𝑐𝑗, as shown in Figure 1.  

 

 
 

Figure 1:  The D2Q9 lattice 

 

      The right hand side is the collision part that relaxes the distribution function into their 

local equilibrium 𝑓𝑗
0 with single relaxation time 𝜏.  The stipulated equilibria 𝑓𝑗

0can be defined 

from Maxwell Boltzmann equation as a function of fluid density  𝜌 and macroscopic velocity 

𝒖 as [37], 

𝑓𝑗
0(x,t)=𝜔𝑗  𝜌(1 +

𝑐𝑗 ∙𝒖

𝑐𝑠
2 +

(𝑐𝑗 ⋅ 𝒖)
𝟐

2𝑐𝑠
4 −

𝒖2

2𝑐𝑠
2),                                                            (2) 
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        where 𝑐𝑠
2 = 1/3 is the speed of sound for  the D2Q9 LB model.  The D2Q9 model 

weights is given by: 

𝜔𝑗  =

{
 
 

 
 

4

9
, 𝑗 = 0,

 
1

9
,    𝑗 = 1, … ,4 ,

1

36
  ,   𝑗 =  5, … ,8,

                                                                   (3) 

while the discrete lattice velocity are calculated from 

𝒄𝒋 =

{
 

 
(0,0), 𝑗 = 0,

(𝑐𝑜𝑠
(𝑗−1)𝜋

2
, 𝑠𝑖𝑛

(𝑗−1)𝜋

2
) ,    𝑗 = 1,2,3,4 ,

√2 (𝑐𝑜𝑠
(2𝑗−1)𝜋

4
, 𝑠𝑖𝑛

(2𝑗−1)𝜋

4
) ,   𝑗 =  5,6,7,8.

                     (4) 

 

      The hydrodynamic variables which are, density(𝜌), momentum (𝜌𝒖)  and momentum flux 

(𝚷), are defined via a discrete moments of the distribution functions 𝑓𝑗 

 

𝜌 = ∑ 𝑓𝑗  ;            𝑗  𝜌𝒖 = ∑ 𝑓𝑗  𝒄𝑗  ;           𝚷 = ∑ 𝑓𝑗  𝒄𝑗𝒄𝑗  ;                          𝑗   𝑗 (5) 

 

     The lasting three non-hydrodynamic moments (“ghost moments”) are presented by 

 

 𝑄𝑥𝑥𝑦 = ∑ 𝑓𝑗𝑐𝑗𝑦 𝑐𝑗𝑥
2  ,𝑗        𝑄𝑥𝑦𝑦 = ∑ 𝑓𝑗𝑐𝑗𝑥 𝑐𝑗𝑦

2  ,𝑗       𝑆𝑥𝑥𝑦𝑦 = ∑ 𝑓𝑗𝑐𝑗𝑦
2  𝑐𝑗𝑦

2  .𝑗                 (6) 

 

3. Macroscopic equations 

       The following evaluation equations are obtained by taking the zeroth, first and second 

order moment equations of the discrete Boltzmann equation (1), [24] 
𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝒖 = 0,                                                                     (7) 

𝜕𝜌𝒖

𝜕𝑡
+ ∇.𝚷 = 0,                                      (8) 

𝜕𝚷

𝜕𝑡
+ ∇.𝐐 = −

𝟏

𝜏
(𝚷 − 𝚷𝟎),      (9) 

     
       where 𝐐 = ∑ 𝑓𝑗  𝒄𝑗𝒄𝑗𝒋  𝒄𝒋  and  𝚷

𝟎=∑ 𝑓0
𝑗
 𝒄𝑗𝒄𝑗𝒋  declares that the momentum flux relaxes 

into its equilibrium which is obtained from equation (2), such that 

𝚷𝟎 =
𝜌

𝟑
𝑰 + 𝜌𝒖𝒖.        (10) 

 

The ideal equation of the state gives the pressure equation 𝑃 =
𝜌

3
.  

By using the Chapman–Enskog expansion [38], the equations of motion can be obtained from 

the Boltzmann equation, which aims for solution for a long timescale, extremely longer 

than 𝜏. In other way, the deviatoric stress  𝛀 =  𝚷 − 𝚷𝟎, which is the right hand side of 

equation (9), can be used by applying a methodology was  proposed by Maxwell to get the 

Navier-Stokes equations [15]. To do this, one can take moments regarding a velocity which is 

defined as a difference between the fluid velocity and the particle velocity, such that 𝝃 = 𝒄𝒋 −

𝒖 [39].  The deviatoric stress for D2Q9 according to Dellar [36] can be written for equation 

(9)  as  

Ωαβ + 𝜏(𝜕𝑡 Ωαβ + 𝑢𝛾 𝜕𝛾 Ωαβ + Ωαγ 𝜕𝛾𝑢𝛽 + Ω𝛽𝛾 𝜕𝛾𝑢𝛼 )=  

             𝜇(𝜕𝛽𝑢𝛼 + 𝜕𝛼𝑢𝛼),                                           (11) 

 



Mohammed                                               Iraqi Journal of Science, 2024, Vol. 65, No. 8, pp: 4550-4565 

4554 

       Where 𝜇 = 𝜌𝜏/3  is the dynamic viscosity and 𝛼, 𝛽   and  𝛾 are the Cartesian components 

of the vectors and tensors. Noting, the third order moment is equal to zero.  

Equation (11) gives three components of the stress which are 

Ωxx + 2𝜏 Ω𝑥𝑦  
𝜕𝑢𝑥

𝜕𝑦
= 0,     (12) 

Ω𝑦𝑦 = 0,       (13) 

Ωxy − 𝜇  
𝜕𝑢𝑥

𝜕𝑦
= 0.               (14) 

        The normal component and the shear stress are given in equations (13) and (14), 

respectively. These two stresses are the same as in Navier-Stokes equations. However, the 

tangential stress from equation (12) is not as in the Navier-Stokes equations which should be 

vanished. Instead, it is proportional to the square of the shear stress at Ο(𝜏2) which is 

identical to  the stress of  the Burnett equation. Owing to this fact, a special treatment of the 

tangential stress at the boundary is considered in the lattice Boltzmann simulations. 

 

4. The BGK lattice Boltzmann equation 

Equation (1) is integrated for both sides along characteristic for time,Δ𝑡, to get  

𝑓𝑗(𝒙 + 𝒄𝑗Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑗(𝒙, 𝑡) = −
1

𝜏
∫ (𝑓𝑗 − 𝑓𝑗

0)𝑑𝑠
Δ𝑡

0
.      (15) 

 

      The left side is evaluated exactly.  By using the trapezoidal rule, the right hand side is 

approximated to get a second order with implicit system of equations 

𝑓𝑗(𝒙 + 𝒄𝑗Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑗(𝒙, 𝑡) = −
Δ𝑡

2𝜏
(𝑓𝑗(𝒙 + 𝒄𝑗Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑗

0(𝒙, 𝑡)) 

−
Δ𝑡

2𝜏
(𝑓𝑗(𝒙, 𝑡) − 𝑓𝑗

0(𝒙, 𝑡)) + Ο(Δ𝑡3).     (16) 

 

      Transformed functions are proposed by He et al. [40], to convert the second order implicit 

system of equations (16) to explicit algorithm, thus 

𝑓 ̅𝑗 = 𝑓𝑗(𝒙, 𝑡) +
Δ𝑡

2𝜏
(𝑓𝑗(𝒙, 𝑡) − 𝑓𝑗

0(𝒙, 𝑡)).    (17) 

Substitute equation (17) into equation (16), the Lattice Boltzmann equation is recovered in 

term of 𝑓 ̅𝑗  

𝑓 ̅𝑗(𝒙 + 𝒄𝑗Δ𝑡, 𝑡 + Δ𝑡) − 𝑓 ̅𝑗(𝒙, 𝑡) = −
Δ𝑡

(𝜏+
Δ𝑡

2
)
(𝑓 ̅𝑗(𝒙, 𝑡) − 𝑓 ̅

0
𝑗
(𝒙, 𝑡)) + Ο(Δ𝑡3).  

                                                                                         (18) 

Mention that the lattice speed connect the grid space and time step by 𝑐 = (∆𝑥/∆𝑡) ≫ 1 

The zeroth moment of equation (17) gives the density 𝜌, 

𝜌 = ∑ 𝑓𝑗 = ∑ 𝑓 ̅𝑗  ;            𝑗             𝑗      (19) 

The first moment of equation (17) yields the momentum equation of motion in terms of  𝑓 ̅𝑗 

𝜌𝒖 = ∑ 𝑓𝑗  𝒄𝑗 = ∑ 𝑓 ̅𝑗  𝒄𝑗  .        𝑗         𝑗      (20) 

While the non-conserved momentum flux is given by  

   𝚷̅ = ∑ 𝑓 ̅𝑗 𝒄𝑗𝒄𝑗 = (1 +
Δ𝑡

2𝜏
 )𝚷 −

Δ𝑡

2𝜏
𝚷𝟎.          𝑗    (21) 

      Consequently, the deviatoric stress 𝛀 =  𝚷 − 𝚷𝟎   is given in terms of barred distribution 

functions as             

𝛀 =  𝚷 − 𝚷𝟎 =
2𝜏(𝚷𝟎−   𝚷̅)

(2𝜏+Δ𝑡)
.   (22) 

 

5. Two Relaxation time lattice Boltzmann equation 

       The BGK-LBE model is an accurate model to simulate different kinds of numerical 

simulations.  However, sometimes this model experienced a lack of numerical stability, 
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particularly with a high Reynolds number; because of  𝑓 ̅𝑗 over relax their equilibria [41]. To 

solve this problem, instead of using one rate of collision time 𝜏, one can use two relaxation 

times. The two Relaxation time (TRT) is a special model of multiple relaxation time (MRT) 

[19][41-43] . In general, the discrete Boltzmann equation gives the two relaxation time 

equations as follows 
𝑑𝑓𝑗

𝑑𝑡
+ 𝒄𝑗   . ∇𝑓𝑗 = −

1

𝜏+
 ( 
1

2
 (𝑓𝑗 + 𝑓𝑗

−) − 𝑓𝑗
0+)  

                          −
1

𝜏−
 ( 
1

2
 (𝑓𝑗 + 𝑓𝑗

−) − 𝑓𝑗
0−).                                                   (23)

    

      Equation (23) relaxes the odd and even moments at various rates. The even relaxation 

time 𝜏+ relaxes the even moments to its equilibria and 𝜏− is the relaxation rate for the odd 

moments. Moreover, 𝑗 ̅ is the opposite way to 𝑗 where 𝒄𝑗̅ = −𝒄𝑗 .  The equilibrium function is 

divided into odd and even components 𝑓𝑗
0+ and 𝑓𝑗

0− [44].  The Reynolds number controls the 

even relaxation time while 𝜏− is calculated by using the “magic parameter” Λ = 𝜏+𝜏−. For 

numerical stability we set Λ = 1/4 [22].  

Similar to Section 4, one can discretise equation (23)  to get Two relaxation lattice Boltzmann 

equation  ( TRT-LBE) 

𝑓 ̅𝑗(𝒙 + 𝒄𝑗Δ𝑡, 𝑡 + Δ𝑡) = 𝑓 ̅𝑗(𝒙, 𝑡) −
Δ𝑡

(𝜏++Δ𝑡 /2)
(
1

2
 (𝑓 ̅𝑗(𝒙, 𝑡) + 𝑓 ̅𝑗

−(𝒙, 𝑡)) − 𝑓𝑗
0+(𝒙, 𝑡))

 −
Δ𝑡

(𝜏−+Δ𝑡 /2)
(
1

2
 (𝑓 ̅𝑗(𝒙, 𝑡) + 𝑓 ̅𝑗

−(𝒙, 𝑡)) − 𝑓𝑗
0−(𝒙, 𝑡)).                                                 (24)

  

Noting if 𝜏+ = 𝜏−  in equation (24), BGK-LBM will be obtained. 

 

6. Slip and no slip moment based boundary conditions based on Burnett contribution 

      For straight and aligned boundaries with grid points, there are three unknown distribution 

functions ( the dash red lines in Figure 2)  after every streaming  step needed to be found at 

each boundary for the  D2Q9 model, see Figure 2. 

 

 
Figure 2: Distribution functions at the boundaries 

 

     To do this ,  Bennett [30] followed Noble et al.[29] by finding these unknown functions by 

imposing  conditions on  the three hydrodynamic moments at the boundary. This method is 

called  “ moment-based boundary condition” . Here we will explain this method for slip first 

then no slip conditions. 
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      To understand the method let us investigate the tangential north wall.  At the wall, the 

𝑥 −components of the velocity can be formulated with the Navier-Maxwell condition [45]. 

This condition illustrates that the tangential velocity is proportional to the shear stress at the 

planer wall, as 

𝑢𝑠 = 𝜀
𝜕𝑢𝑥

𝜕𝑦 
|
𝑤𝑎𝑙𝑙

,      (25) 

where 𝜀 indicates to slip length and  𝑦 is the normal direction to the boundary.  

 

Table 1: Combination of unknown at the north boundary 

Moments Combination of unknown at the north wall 

𝜌,̅ 𝜌𝑢̅𝑦 , Π̅𝑦𝑦 𝑓 ̅4 + 𝑓 ̅7 + 𝑓 ̅8 

𝜌𝑢̅𝑥, Π̅𝑥𝑦, 𝑄̅𝑥𝑦𝑦 𝑓 ̅7 − 𝑓 ̅8 

Π̅𝑥𝑥 , 𝑄̅𝑥𝑥𝑦 , 𝑆𝑥̅𝑥𝑦𝑦  𝑓 ̅7 + 𝑓 ̅8 

 

At the north wall, the three incoming functions that indicate into fluid domain 

𝑓 ̅4, 𝑓 ̅7 and  𝑓 ̅8   need to be determined.  In summary, since we have three unknown functions 

then three linearly independent moments should be used. It can be seen in Table-1, the 

unknown 𝑓 ̅𝑗 appear   in three linear combinations equations. In the moment method, one 

moment at each row will be picked and apply constraint on it, depending on the condition we 

use (slip, no slip, or free slip conditions).  The moments will be appeared in terms of “barred” 

quantities. Since we simulate the Navier-Stokes equations, the rational choice is the 

hydrodynamic moments in lieu of higher-order moments. For slip walls, we will select from 

the first and second rows in the table  𝜌𝑢𝑦 and 𝜌𝑢𝑥 and apply conditions on them as  

  𝜌𝑢𝑦 = 0,  𝜌𝑢𝑥 = 𝜌𝑢𝑠 ,      (26) 

while from the third row we will pick the tangential stress Π𝑥𝑥.  

To deal with the stresses we should mention that since this work includes TRT-LBE, the 

relaxation time depends on the even and odd rates, for more details see [35]. Applying 

equation (14) into equation (12)  yields  the tangential stress at the wall  

 

                                                   Ω𝑥𝑥 = −
2 𝜏−  

 𝜇 
  Ω𝑥𝑦

2 ,                                                (27) 

where 𝜇 =
𝜌𝜏+

3
. 

By the definition of equation (22), the tangential momentum flux can be defined as a 

relationship between the deviatoric stress and the tangential one as follows: 

𝛱𝑥𝑥 =
𝜌

3
+ 𝜌𝑢𝑠

2 +
2𝜏−

 𝜇 
Ω𝑥𝑦
2 ,     (28) 

 Using the transformation of  𝑓 ̅  (17) gives the three converted hydrodynamic moments in 

equations as  

𝜌𝑢̅𝑦 = 0,   

𝜌𝑢̅𝑠 =
3𝜆𝐻

𝜌(2 𝜏++1)
Π̅𝑥𝑦,  

𝛱𝑥𝑥 =
𝜌

3
+ 𝜌𝑢𝑠

2 +
6𝜏−

𝜌(𝜏++
1

2
) 
𝛱𝑥𝑦
2 ,              (29) 

 

     where  𝜆 = 𝜀/𝐻 is the dimensionless slip length and the width of the domain is defined in 

terms of LB discretization as  𝐻 = 𝐻𝑛 = (𝑚𝑙𝑏 − 1)Δ𝑥.  It should be mentioned that the 

number of grid points is denoted by 𝑚𝑙𝑏 and the grid spacing is Δ𝑥.  
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By solving the above three equations, the three unknown function𝑠 𝑓 ̅4, 𝑓 ̅7, 𝑓 ̅8 can be found 

in terms of known  𝑓 ̅𝑗  

𝑓 ̅4 = 𝑓 ̅1 + 𝑓 ̅3 + 𝑓 ̅2 + 2(𝑓 ̅5 + 𝑓 ̅6) −
𝜌

3
− 𝜌𝑢𝑠

2 −
6𝜏−

𝜌(𝜏++
1

2
) 
𝛱𝑥𝑦
2 ,    

𝑓 ̅7 = −𝑓 ̅3 − 𝑓 ̅6 +
𝜌

6
+
1

2
𝜌𝑢𝑠

2 −
1

2
𝜌𝑢𝑠 +

3𝜏−

𝜌(𝜏++
1

2
) 
𝛱𝑥𝑦
2 ,  

𝑓 ̅8 = −𝑓 ̅1 − 𝑓 ̅5 +
𝜌

6
+
1

2
𝜌𝑢𝑠

2 +
1

2
𝜌𝑢𝑠 +

3𝜏−

𝜌(𝜏++
1

2
) 
𝛱𝑥𝑦
2 .    (30) 

The moment density can be found by using  the known 𝑓 ̅𝑗 and the normal velocity 𝜌𝑢̅𝑦 

𝜌 = 𝑓 ̅0 + 𝑓 ̅1 + 𝑓 ̅3 + 2(𝑓 ̅2 + 𝑓 ̅5 + 𝑓 ̅6) − 𝜌𝑢̅𝑦,   (31) 

where at the horizontal northern wall,  𝜌𝑢̅𝑦 = 0. 

   

      The shear stress can be constructed at the boundary by applying the known 𝑓 ̅𝑗 and the 

horizontal velocity 𝜌𝑢̅𝑥 

Π̅𝑥𝑦 = −𝜌𝑢𝑥 + 𝑓 ̅1 − 𝑓 ̅3 +2(𝑓 ̅5 − 𝑓 ̅6 ).    (32) 

Thus, together the shear stress of  equation  (32) and known distribution functions  (31) can be 

used to find the tangential  velocity at the wall 

𝑢̅𝑠 =
6 𝜆 𝐻(𝑓 ̅1−𝑓 ̅3+2(𝑓 ̅5−𝑓 ̅6 ))

𝜌(2 𝜏++1+6 𝜆 𝐻)
.      (33) 

For no slip case, if we apply 𝑢𝑥 = 0  at the wall, the no slip moment based boundary 

conditions with Burnett contribution will be found. 

 

      Finally for  both cases, slip and no slip conditions, at the corners we need five constraints 

to find the unknown distribution functions. In our work, the no slip boundary conditions will 

be applied at the intersecting walls, For more details see [4] [33]. 

 

7. Numerical simulation of two-dimensional bounded flow 

      In this section, our aim is to show the scaling of the kinetic energy  and the growth of the 

enstrophy for 2D  flow using the boundary method that is  presented in Section 6.  To do this, 

firstly  we will give a brief numerical study of  dipole wall collision. This study is inserted to 

give an overview about the effect of the wall collision on the dissipation of the energy and its 

relationship with  the increasing of the vortices production at the wall.  

 

7.1 Initial setup and simulation parameters   for 2D flow 

     The initial setup given here is similar to [2][3] as follows: 

In a square box on a 2D domain with a size [−1,1] × [−1,1], the dipole wall collision has 

been studied by using TRT-LBE. This study is carried out with slip and no slip boundary 

conditions by using moment based with Burnett's contribution from section (6). Following 

[2], the initial characteristic velocities are defined by 𝑈 =
1

4
∬|𝑢|

2
𝑑𝑥 𝑑𝑦 = 1. The half width 

of the domain is considered to define the Reynolds number  𝑅𝑒 =
𝑈𝐻

𝜈
 . In the center of the 

cavity box, the initial two monopoles are located with the initial velocities  

 

𝑢𝑥0 = −
1

2
|𝜔𝑒|(𝑦 − 𝑦1) exp (− (

𝑟1

𝑟0
)
2
) +

1

2
|𝜔𝑒|(𝑦 − 𝑦2) exp (− (

𝑟2

𝑟0
)
2
),                  (34) 

𝑢𝑦0 =
1

2
|𝜔𝑒|(𝑥 − 𝑥1) exp (−(

𝑟1

𝑟0
)
2
) −

1

2
|𝜔𝑒|(𝑥 − 𝑥2) exp (−(

𝑟2

𝑟0
)
2
),                     (35) 
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       where  𝑟1 = √(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2, 𝑟2 = √(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 ,  𝑟0 = 0.1. Also, 

(𝑥1, 𝑦1), (𝑥2, 𝑦2)  is the position of the vortex at the center of the domain, according to the 

angle of the incident while the strength of the vortices is set to be |𝜔𝑒| = 299.5. Since our 

work shows  the relationship between the kinetic energy and the total enstrophy by using the 

presented boundary method, then the following definitions are used 

 

Total kinetic energy:   𝐸(𝑡) =
𝟏

𝟐
∫ ∫ |𝒖2|(𝒙, 𝑡)𝑑𝑥 𝑑𝑦,

1

−1

1

−1
   (36) 

Total enstrophy    : :   Ω(𝑡) =
𝟏

𝟐
∫ ∫ |𝜔2|(𝒙, 𝑡)𝑑𝑥 𝑑𝑦,

1

−1

1

−1
   (37)  

 

     where the vorticity  𝜔 = 𝜕𝑥𝑢𝑦 − 𝜕𝑦𝑢𝑥 . Noting, to normalise these to values, we set 

𝐸(0) = 2 and Ω(0) = 800.  The convergent number of grid points  𝑚𝑙𝑏  is similar to the 

one in [3] . In [3][4] detailed explanations have been shown   to the evaluation of  two 

symmetric monopoles that collided with slip and no slip walls. These papers investigated the 

collision at normal and oblique incidents for different values of  Reynolds numbers and 

boundary conditions. An evaluation of the flow is shown in Figure 3.  

 

(a) 𝑡 = 0

 

(b) 𝑡 = 0.2

 
 

(c) 𝑡 = 0.3 

 

Figure 3: Vorticity contours of  dipole wall collision at an angle of 0 for Re = 2500 . 
 

     This figure includes the initial stage at 𝑡 = 0 until the first collision with no slip wall 

around 𝑡 = 0.3 for 𝑅𝑒 = 2500 as an example.  The two isolated monopoles are released from 

their shelf normally in the center of the domain at 𝑡 = 0 towards 𝑥 = 1.  At the first wall 

collision, secondary dipoles are created at the same time the kinetic energy declines while the 

total enstrophy reaches its peak. In [4] we can notice that the total energy decreases by 
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increasing   the slip length and the maximum enstrophy declines after the first wall collision 

with a higher slip length.  

This leads to the following relationship for two-dimensional incompressible bounded flow. 

Within the slip wall, the relationship between the kinetic energy and the growth of the 

enstrophy is given by the following dimensionless equation [4] 

 
𝑑𝐸

𝑑𝑡
= −

2

𝑅𝑒
Ψ−

1

𝑅𝑒
∫ (𝜔 × 𝒖). 𝒏  𝑑𝑆,
⬚

𝑆
     (38) 

 

While for no slip walls, the above relationship will be reduced to not including the velocity 

part as 

 
𝑑𝐸

𝑑𝑡
= −

2

𝑅𝑒
Ψ         (39) 

 

7.2 Dissipation of the kinetic energy scale for 2D flow  

      Farge  et al. [1], one of the first authors who investigated the  dissipations of the kinetic 

energy and its relationship with the growth of the enstrophy . They applied that the dissipation 

of the energy persists in the vanishing viscosity limit. From the evaluation of the dipole wall 

collision, one can see two regimes. The first one appears before the first wall collision, from 

𝑡 = 0 until a boundary layer at the wall appears where the dipole is close to the wall 

around 𝑡 = 0.3. Here, the effects of the boundary layer are neglected. So according to 

equation (38), the energy dissipation scales fulfill the following 

 

𝐸(𝑡2) − 𝐸(𝑡1) ∝
1

𝑅𝑒
.       (40) 

       

The second regime is placed when the two cores of vortices are close to the boundary where 

the secondary vortices start to induce by the effect of the first wall collision around 𝑡 = 0.3. In 

this regime, the Prandtl’s theory is satisfied [10]. From this theory, we can see the boundary 

layer of thickness scales of order 𝑅𝑒−0.5.  Thus in the second regime, the dissipation of the 

energy scale is 

𝐸(𝑡2) − 𝐸(𝑡1) ∝ 𝑅𝑒
−
1

2.     (41) 

 

      The growth of the enstrophy scale will depend on the relationship of equations (38) and 

(39)  thus 

Ψ(𝑡2) − Ψ(𝑡1) ∝ 𝑅𝑒       (42) 

 

     In this section, we present two cases of incidents, the normal wall collision and an oblique 

wall collision at an angle of  30∘ . 
 

7.2.1  Dissipation of the kinetic energy for normal wall incident 

     In this section, we study the energy dissipation rate of the dipole that collides with the wall 

normally. For the two regimes, as a function of Reynolds number in a range of 𝑅𝑒 = 250  to 

𝑅𝑒 = 10000, the dissipation of the kinetic energy will be investigated. When the dipole is at a 

long distance from the wall, the first regime is identified in the time interval 𝑡 ∈ [0: 0.2]. The 

study of average dissipation is carried out for no slip and slip boundaries   for various values 

of slip length. As can be seen in Figure 4,  For different  values of slip length the dissipation 

of the energy collapses in one line on a scale of 𝑅𝑒−1. Noting, that the energy dissipation and 

the growth of the enstrophy will be divided by Δ(𝑡) = (𝑡2 − 𝑡1).  
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Figure 4: Energy dissipation for normal collision in the first regime, 𝟎 < 𝒕 < 𝟎. 𝟐. The 

dissipation for slip length: λ=0.004, λ =4/Re and no slip cases are shown. 

 

     When the dipole reaches the wall, the second regime will be chosen. In this area, the 

boundary layer will be induced as a result of the interaction between the two monopoles and 

the boundary. Therefore Prandtl’s theory will be satisfied. Following [9][15], we choose the 

time interval that satisfies  Prandtl’s theory  when the dipole starts to collide with the wall. 

Once we identify the time period, we start to investigate the dissipation of the energy and the 

growth of the enstrophy. The investigation shows that the dissipation of the energy fulfills 

Prandtl’s theory. First, we considered 𝜆 = 0.004.  The best choice of time interval is when the 

boundary layer appears near the wall at 𝑡 = 0.23 and it ends when the dipole separates from 

the wall at 𝑡 = 0.47.  After we choose the correct time interval, we test the validation of the 

theory. As a results, we found that the decay of the energy rate is 
Δ𝐸

Δ𝑡
 ∝ 𝑅𝑒−0.5. Thus Prandtl’s 

theory is achieved. For the corresponding enstrophy growth for 𝜆 = 0.004  we show it 

satisfies  
ΔΨ

Δ𝑡
 ∝ 𝑅𝑒  for Reynolds numbers higher than 2500. The results are shown in Figure 

5.   

 

 

(a)  Energy dissipation

 

(b)  Enstrophy growth

 

Figure 5:      
𝚫𝑬

𝚫𝒕
 and 

𝚫𝚿

𝚫𝒕
 at 𝝀 = 𝟎. 𝟎𝟎𝟒 for normal wall collision 
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Second, we test the theory for no slip wall and a boundary with slip length that depends on the 

Reynolds number such that 𝜆 = 4/𝑅𝑒. The last value of slip length is chosen for sake of 

comparison with Sutherland  [9], Mohammed [15] and Frag et al. [1] .  We found an excellent 

agreement between our results and the findings in these papers.  For both cases, the time 

interval will be between  𝑡 = 0.2 and  𝑡 = 0.49 . Noting, that the same technique is used for 

all slip lengths to find the best time interval for the second regime. Figures 6  and 7 show the 

kinetic energy dissipation and growth of enstrophy scales for these two cases. These figures 

illustrate that the dissipation of the energy scale is proportional to 𝑅𝑒−𝜅 where 𝜅 ∝ 0.5 for 

𝑅𝑒 ≥ 1252 and 0.43 for 𝑅𝑒 < 1252.  These results synchronize with the difference of 

enstrophy growth such that ΔΨ ∝ 𝑅𝑒  for higher Reynolds numbers. 

 

(a) ) Energy dissipation  

 

(b) Enstrophy growth

 

Figure 6: 
Δ𝐸

Δ𝑡
 and 

ΔΨ

Δ𝑡
  for no-slip for normal dipole wall collision. 

 

(a) ) Energy dissipation 

 

(b) Enstrophy growth 

 

Figure 7:       
Δ𝐸

Δ𝑡
 and 

ΔΨ

Δ𝑡
  at  𝜆 =

4

𝑅𝑒
 for normal dipole wall collision. 

 

7.2.2  Dissipation of the kinetic energy for oblique −𝟑𝟎∘ wall collision case 

       In this subsection, the dissipation of the kinetic energy with the growth of the enstrophy 

rates will be performed  for dipole wall collision at an angle of  30ο with an initial location 

(0.0839,0.0866);(0.1839, -0.086).  In this case, as at normal wall collision, the rate will be 
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discussed for no slip and slip walls with slip length 𝜆 = 0.004  and  𝜆 =
4

𝑅𝑒
 . For an oblique 

collision, The first regime is located from 𝑡 = 0 until 𝑡 = 0.2 which is before the boundary 

layer appears near the east wall. Similar to the normal collision, three lines for various slip 

lengths collapse in one  slop where Δ𝐸(𝑡) ∝ 𝑅𝑒−1, see Figure 8 

 

 
Figure 8:  Energy dissipation for oblique-𝟑𝟎∘ collision in the first regime, 0<t<0.2. The 

dissipa tion for slip length: λ=0.004, λ =4/Re  and no slip cases are shown. 

 

     At the second regime, the two monopoles reach the wall approximately around 𝑡 = 0.3. 

We use the same time intervals that we applied for normal wall collision since the bottom 

core of the vortices hit the wall at this time step. Figure 9 shows the dissipation of the kinetic 

energy and the growth of enstrophy rates  for an oblique case close to the wall for 𝜆 =
0.004, 4/𝑅𝑒 and no slip cases for 𝑡 ∈ [0.21,0.48]. As a result, the dissipation of the kinetic 

energy is consistent with Prandtl’s theory and the growth of enstrophy increases linearly with 

𝑅𝑒 at higher Reynolds numbers. 

 

(a) Energy dissipation 

 

(b) Enstrophy growth 

 
Figure 9:  Energy dissipation and enstrophy growth for for oblique-30◦ dipole wall collision 

for the second stage of collision. 
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Conclusions 

     The lattice Boltzmann method with two relaxation time model  has been used to examine 

the dissipation of the kinetic energy and the growth of enstrophy for 2D fluid flow. For 

precision reasons, we set the “magic parameter Λ =
1

4
  in the TRT-LBE model. No slip and 

Maxwell slip velocity conditions under the effect of Burnett- order deviatoric stress 

conditions were imposed on stationary walls using the Moment-based method. The numerical 

study was implemented for median and higher Reynolds numbers. Also, it was performed for 

fixed slip length and 𝜆 = 4/𝑅𝑒 for the sake of comparison. The given approach captured the 

dissipation rate accurately for two angles of collisions and proved that the dissipation of the 

energy is proportional to enstrophy. The examination includes two regimes. The first one 

showed that the dissipation rate is proportional to 𝑅𝑒−1 while  
𝑑𝐸

𝑑𝑡
∝ 𝑅𝑒−0.5 when the 

boundary layer appearance is dominant.  In this stage and according to the relationship in 

equation (38) we found ∆Ψ ∝ 𝑅𝑒.  This method showed an excellent agreement with other 

benchmark methods. 
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