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Abstract 

    This paper aims to study the asymptotic stability of the equilibrium points of the 

index 2 and index 3 Hesenberg differential algebraic equations. The problem 

reformulated to an equivalent explicit differential algebraic equations system, so the 

asymptotic stability is easily investigated. The singular points such as impasse points 

and singularity induced bifurcation points are identified in this kind of differential 

algebraic equations by using conclusion of the explicit differential algebraic 

equations. 
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 3و2الاستقرارية المطمقه لممعادلة التفاضمية الجبرية من نوع هسنبرك  ذات الدليل 
 

 *كمال حامد ياسر
 قسم عموم الرياضيات,كمية التربية,جامعة ذي قار,العراق

 
 الخلاصة

ات ييدف ىذا البحث الى دراسة الاستقرارية المطمقة لنقاط الاتزان لممعادلو التفاضلمية الجبريلة ملن نلون ىسلنبرك ذ
. تلم اعلادص اليااة المعادللة التفاضلمية الجبريلة اللى معادللة تفاضلمية جبريلة ضلمنية مكاي لة وبالتلال  3و 2الدليل 

يمن السيولو دراسة الاستقراريو المطمقو. كذلك باستخدام المعادلة التفاضمية الجبريلو الضلمنية المكاي لو تلم البحلث 
 الت  تولد تفرن الحل . عن النقاط المنفرده مثل النقاط المعيقو والنقاط

 
1.Introduction 
    We study the index-2 Hesenberg differential algebraic equations of the form  

                  
                         

Where the Jacobean  is non singular, and the index-3 Hesenberg differential algebraic 

equations of the form: 

                 

                 

                                  (1.2) 
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where the Jacobean  is non singular. As a shorthand notion for such kind of systems 

we often write Hesenberg (DAEs). This study includes investigating the asymptotic stability of the 

equilibrium point in this kind of systems. Also we study the case where  and  

are singular at a point (x*, y*, *) and (x*, y*, z*, *) respectively. 

In [1] the asymptotic stability of Euler Lagrange equations for constrained mechanical system studied 

by showing the equivalence of the direct linearization of the original system to that of corresponding 

state space form. We follow the idea of [1] by applying it to the general DAEs of Hesenberg form of 

higher index. This implies the asymptotic stability of the non- linear DAEs can be studied locally near 

the equilibrium point via its linearization. The basic idea here is to transform the DAEs (1.1) and (1.2) 

to another equivalent index-1 DAE system. 

         

         

where  is non-singular. Then the treatment of the asymptotic stability is more easily. In general 

the study of asymptotic stability in this paper depends on the linear part of the state space form of the 

DAEs. So first we try to obtain the formal state space of the DAEs by using implicit function theorem. 

Then we obtain the linearization which is a linear ODE. On the other hand the direct linearization of 

original DAEs is also linear ODE. Then the equivalence between these two linear ODE is obvious by 

using the property of the equilibrium solutions and the implicit function theorem. 

For the singular case, i.e.  and  are singular at the point (x*, y*, *) and (x*, 

y*, z*, *) respectively, we recognize two kinds of singular point on each of the singular surfaces 

 
and  

 

The first one is the impasse points (x*, y*)  S1 and (x*, y*, *)  S2 for which  and 

 respectively. The second one is the singularity indueed bifurcation (SIB) points 

(x*, y*, *)  and (x*, y*, *, *)  S2 for which  and  

respectively. 

We show that the well know result about impasse points given by Chua and Deng [2] cannot be 

applied directly to the Hesenberg DAE system. In other words this can be applied to the equivalent 

index lower one system so that we can get information about the impasse points in the DAEs (1.1) and 

(1.2). 

This paper is organized as follows: Section 2 is devoted to study the asymptotic stability of the index 2 

and index 3 Hesenberg DAE system. In Section 3 we consider the impasse points in Hesenberg DAE 

system. The SIB points are studied in Section 4. 

2. Hesenberg DAEs with Non-Singular Case 

In this section we will study the asymptotic stability of index 2 and 3 Hesenberg DAEs. 

2.1 Index 2  Hesenberg DAEs 

Consider the following explicit Hesenberg DAE system of the form. 
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where the product of the Jacobean matrix  is non-singular on R
n
×R

m 
. Then it is clear that the 

index of (2.1) is 2. Usually it is quite difficult to treat (2.1) directly so it is more convenient to 

transform (2.1) to another equivalently system with index one lower. Then the conclusion of index -1 

DAEs can be applied. Now by differentiating the second equation in (2.1) one get. 

                                                          
Define  

                                                  

then we obtain the DAEs:  

                                                

                                                     

The Jacobean matrix: 

                                                    

is non-singular on R
n
×R

m
 . Therefore (2.2) is an index-1 DAEs. 

Now let (x0, y0) be the equilibrium solution of (2.1). Then  

                                          

and by implicit function theorem there exist a neighborhood N of (x0, y0) and a differentiable function 

 such that in N we have y=  and 

                                                               

is holds for any  . Thus in N the constraint can be satisfied naturally and from (2.2) the reduced 

space is given by 

                                                    

Now without lose of the generality linearizing (2.3) along the zero equilibrium solution yields. 

                                     

                                         

                                          

where the partial derivatives all take values at the equilibrium point. The linearization is assured to 

give the correct local information about the equilibrium solution. 

Next we shall consider the direct linearization of (2.2) at the zero equilibrium solution which yields. 

                                              

                                              

since  solving for y using (2.5b) and insert it back into (2.5a) to obtain: 

                              

and since  in N, then we have 

                              

and the linearization (2.6) becomes: 
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from which, we can see that the linearization (2.7) and (2.4) are same. This conclude that linearizing 

DAE directly along the equilibrium solution is valid and will give the same asymptotic stability 

information as that of the state space from ODE problem. 

2.2   Index 3 DAEs 

Consider the following index-3 DAEs with explicit Hesenberg form: 

                        

                              

                               

where the product of the Jacobean matrices: 

 
is non-singular on  R

n
×R

m
×R

k
. 

Now differentiating the third equation in (2.8) we get: 

 
and denote 

                                                          

then the result is the DAEs given by  

                                 

                                 

                                  

We claim to transform the system (2.8) to another index-2 system in order to use the conclusion of 

section 2. For this purpose assume that X=(x, y)
T
 then the DAEs (2.9) can be written as: 

                                  

                                   

where 

                        

Now since 

                                       
and 

                                      

                                               

consequently we get: 

                   

which is non singular on R
n
×R

m
×R

k
. So the non-singularity of  is guaranteed by the non-

singularity of   . Therefore the system (2.8) is of index-2 Hesenberg form and the 

conclusion of Section 2 can be applied. 

Now consider the equivalent index-1 DAE given by: 
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where 

                              

                 

 And since  

                             
is non-singular so (2.12) is index-1 DAEs. Assume that (X0, z0) is an equilibrium point of the DAEs 

(2.12) then obviously (X0 , z0) is also an equilibrium point to the original system (2.8). 

Then by implicit function theorem there exists a neighborhood of (X0, z0) and a differential function 

 such that in  we have  and  holds for . In other words the 

constraint can be satisfied in and from (2.12) the reduced state space is given by: 

                               

         Linearizing (2.14) along the zero equilibrium solution yields: 

          

      =  

where the partial derivatives all take values at the equilibrium solution (0, 0) .  

On the other hand a similar application of the conclusion of Section 2 and direct linearization to the 

DAEs (2.12) one obtains: 

                   

                    

since   is non-singular , solve for z in (2.16b) and insert  back into (2.16a) and using the fact 

that  we get the direct linearization of (2.12) is given by:  

                                    

       From which we can see that linearizations (2.17) and (2.15) are the same and that means 

linearizing index -3 Hesenberg DAE directly along the equilibrium solutions will give the same 

asymptotic stability information. 

3. Hesenberg DAE Systems with Singular Case 

In this section we study the DAEs 

           

           

where the product of the Jacobean matrix: 

                                               

is singular at the point (x*, y*, *)  R
n 

×R
m
 ×R

r
 . The point (x*, y*, *) will belong to the singular 

surface: 

 
As we mentioned it is quite difficult to deal with DAEs (3.1) directly. In particular for investigating 

the singular points. Hence we need to transform the system (3.1) into another equivalent system with 

index lower. We want to identify the singular points in the Hesenberg DAE system (3.1). In particular 
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the so called "impasse points" [2] and "singularity induced bifurcation points" (SIB) [3] , [4]. Our goal 

is to transform the system (3.1) into another equivalent system. Then the theorems related to the 

equivalent DAE can be applied to identify those singular points. Hence firstly it is useful to show that 

the singular points of the original system are included in the set of singular points of the equivalent 

system which is given by: 

                                           
                                           

where  

Assume that the Jacobean matrix J given by (3.2) is singular at the point (x*, y*, *). The following 

lemma shows the relation between the singular points of the both two systems (3.1) and (3.3). 

Lemma  3.1.  If the point (x*, y*, *) is singular point of the system (3.1) then  (x*, y*, *) is singular 

point of the system (3.3). 

Proof : Consider the singular surface of the equivalent DAE system (3.3) defined by : 

 

Now if (x*, y*, *) is a singular point in S2 then we have g(x*, *) =0 and detJ(x*, y*, *) =0. From g(x*, 

*) =0 we have gx(x* , *) f(x,y, ) =0 . In particular g(x*, *) =0 implies (x*, y*, *) = gx(x*, *) f(x*, 

y*, *) =0.        Also since y(x, y, ) = J(x, y, ) so det y(x*, y*, *) =0. Then (x*, y*, *) is a singular 

point belongs to the singular surface . In other words we conclude that  . 

Hence it is clear that the investigating of the singular points in the Hesenberg DAEs (3.1) can be 

covered by investigating of the singular points in the equivalent DAE system (3.3). 

In particular the impasse points (x*, y*)  of the Hesenberg DAE system (3.1) is also an impasse 

point of the equivalent DAE system belongs to S1. In [2] Chua and Deng found a relation between the 

impasse points (x*, y*) of the DAE (3.3) and the limit points (0, y*) of the non-linear equation: 

               

where f  and  as defined in (3.3). That is (x*, y*) is an impasse point of the DAE (3.3) if and only if 

(0, y*) is a limit point of (3.4). This result cannot be applied directly to the Hesenberg DAE system 

(3.1). Hence the transformation of the system (3.1) into the equivalent DAE system is necessary in 

order to identify the impasse points in the Hesenberg DAE system (3.1) by using Chua's result as 

given in the following theorem. 

Theorem 3.2. Consider the Hesenberg DAE system (3.1). The point (x*, y*)  S2 is an impasse point if 

(0, y*) is a limit point to the induced solution curve 

      

   

Proof: Assume that (x*, y*)  S2 is an impasse point to the system (3.1). Then by Lemma 4.1 (x*, y*)  

S1 is an impasse point to the system (3.3). And by Chua's result applied to the system (3.3) we get (0, 

y*) is a limit point to the induced solution curve given by  . Then 

the Proof is follows by using the definition of the function  . 

The inverse of Theorem 4.2 is not valid. This is because the impasse points of the equivalent DAE 

system (3.3) may not impasse points to the original DAE system (3.1). 

4. SIB Points in Hesenberg DAEs 

We consider the singularity induced bifurcation points (SIB),  (x*, y*, *) in the system (3.1), the 

points which are solutions to the system 
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In other words the system (3.1) will bifurcate at * for which the conditions 

     

are satisfied. Evidently the conditions (4.2) imply (x*, y*, *)   , the singular surface. In [3] , [4] 

the authors introduce the SIB theorem for the DAEs of the form (3.3). We want to apply this theorem 

to the system (3.1). Therefore it is needed to transform the system (3.1) into another system which is 

given by (3.3). Obviously identifying of the SIB point in the system (3.1) can be covered by that of the 

system (3.3) according to Lemma 4.1. 

Now consider the following Hesenberg DAE system of the form 

          

          

          

where the product of the Jacobean matrices: 

                                                    

is singular at the point (x*, y*, *)  defined by:  

     

Also to identify the singular points in such system we need to transform the DAE system (4.5) into an 

equivalent system for which the set of singular points consist of the set of singular points of the 

original system. For this purpose we shall use the transformation given by (2.10). 

                                        
                                        

where 

 
The following lemma shows the relation between the singular points of the system (4.5) and the 

system (4.6). 

Lemma 4.1. If the point (x*, y*, z*, *) is a singular point of the system (4.5) then it is a singular point 

of the system (4.6). 

Proof. Consider the singular surface of the equivalent DAE system (4.6) defined by. 

 

Now if (x*, y*, z, *) is a singular point in S3 then we have h(y*, *) = 0 and det H(x*, y*, z, *) = 0. 

From h(y , ) = 0 we have hy(y, ) g(x, y, ) =0 . In particular h( y*, *) = 0 implies (x*, y* , *) = 

hy(y*, *) g(x*, y*, *) = 0 . Also since (x, y, ) = H(x, y, ) so det (x*, y*, *) = 0  . Then (x*, y*, 

*) is a singular point belongs to the singular surface S4. In other words we conclude that   

Hence the identifying of the singular points in the system (4.5) can be covered by that of the system 

(4.6). Obviously the system (4.6) is similar to the system (3.3) and then the conclusion of the 

identifying of impasse points and SIB point can be applied to the system (4.6). 
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