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Abstract 
     The applications of Ruscheweyh derivative are studied and discussed of class of 

meromorphic multivalent application. We get some interesting geometric 

properties, such as coefficient bound, Convex linear combination, growth and 

distortion bounds, radii of starlikenss ,  convexity and neighborhood property. 
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 شهيةالهندسية لرنف الدوال الميرومهرفية المعممة المرتبطة مع المذتقات العليا الر بعض الخرائص 
 

 قاسم عبدالحميد جاسم، عدنان عزيز حدين*
 العراق ،بغداد، جامعو بغداد ،كليو العلهم ،قدم الرياضيات

 الخلاصة
 دوال ميرومهفيةالرشهية ومشاقذتيالرشف يتزسن سذتقو ال ات, تم دارسو تطبيقالبحث الحاليفي      
 ت, التركيبةبعض الخرائص اليشدسية ألسثيره للاىتسام , مثل حدود السعاملاحرلشاعلى , ةالتكافؤمتعدد
 .و خاصية الجهار الشجسية والتحدبيةر اقطاف انراالتذهه,  وشسه خاصية ال, و  ةالسحدب ةالخطي

1. Introduction 

Let   denote the class of functions of the form: 

                                     f(w)=    ∑    
  

   ,         (         ,     -),                (1) 

which are analytic and meromorphic  in the punctured unit disk 

  =*             +=U\* +  
The Hadamard product (or convolution) of two functions : 

                                          f(w)=    ∑    
  

   ,      (w)=    ∑    
  

    . 

in   is defined by  

                                     (   )( )   ( )    ( )  =    ∑      
  

                    (2) 

Definition (1)[1, 2] :The Ruscheweyh derivative of f of order (     ) is denoted by       f 

,defined as following : 

      f(w)=
 

  (   )   
 .f(w) 

    ∑
 (       )

 (   )(   ) 
   

  
    ,     ,  w     

In particular , we have  

                     (        ( ))
́
=        ∑  

 (       )

 (   )(   ) 
   

    
    

(        ( ))
  
=  (    )      ∑  (   )

 (       )

 (   )(   ) 
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Definition (2): Let f   be given by (1) . The class   (       ) is defined 

  (       ) ={     |
     (        ( ))

   
  (   )  (        ( )) 

    (        ( ))
   

 (   )  (        ( )) 
|   } .                  (3) 

*                             *      +             , -+  
     This kind of study was carried out by several different authors such as Cho et al [3], Atshan and 

Buti[4], Altintas et al [5], Liu [6] Joshi et al. [7],  and Aouf and Shammaky[8], studied meromorphic 

univalent and multivalent functions for another class.   

2. Coefficient Bounds 

     We get a necessary and sufficient condition for f to be in the class    (       ). 

Theorem (1): Let     Then    (       ), if and only if 

∑
 (       )

 (   )(   ) 

  

(     ) 
[    

 (   )   (   )

   
]   

 

   

  

(     ) 

(   ) 
[ ((   )  (   ))   (   )] ,                          (4) 

for (                         *      +             * +  
sharpness of the result following by setting 

f(w)=   +

(     ) 
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[ ((   ) (   ))  (   )]
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1
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proof: Assume that the inequality (4) holds true and let |w|=   we have . 
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Hence by maximum modulus principle , f   (       )  

Conversely,suppose that f   (       )  
Hence 
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Since |Re(w)| |w| for all w, we have  

Re{
∑    
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}     

We can choose the value of z on the real axis, so that    (        ( )) is real, let w   . Through 

real values , we get the inequality (4) . sharpness of the result following by setting 

 ( )      
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the proof is complete. 

Corollary(1): Let f   (       )  Then 
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[ ((   )  (   ))   (   )]
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where  

(                            *      +             * +  
Theorem (2): The f   (       ) is closed convex linear combination. 

Proof: Suppose the function 

  (w)=    ∑
 (       )

 (   )(   ) 
   

  
    ,           , j=1,2, p      (6) 

 

be in the class f   (       ), Its sufficient is show that the function h(w)   (       )  defined 

byh(w)=(   )  (w) +  ( )    (       ) ,       

since h(w)=    ∑ [(   )          ]
 
      ,          (7)    

     

By making use of theorem (1) , we see that  
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Hence h(w)   (       ). 

The proof is complete. 

3.Distortion theorems  

   In the following theorem , we obtain growth and distortion bounds for the function   
  (       ). 

Theorem (3) : If the function    (       ),then for     0 |w|   . 
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The result is sharp and attained for  
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Proof: Let      (       ), then  
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Similarly, we have  
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Hence result (8) follows . The proof is complete. 

Theorem (4) : If the function     (       ), then for    |w|   , 
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The result is sharp and achieved for the function given by (9) 

Proof: Let     (       ) then  
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The proof is complete. 

4. Radii of starlikenss and convexity  
In the following theorem we obtain radii of starlikeness and convexity. 

Theorem (5):Let     (       )  then fis meromorphically multivalent starlike of order   

(     ) . In the disk |w|   ,where  
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Theorem (5) follows easily from (14). 

Theorem (6): Let     (       )  then f is  meromorphically multivalent convex of order   
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The last expression above is bounded by     if  
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In view (16) , it follows that (17) is true if  
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Theorem (6)follows easily from (18). 

5. Neighborhoods Property  

We defined the (i,  )-neighborhoods of functionsf(w)   (       ). 

Definition( 3)[ 9]:For f    (       ), of the from (1), and    . We define.    
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and private, for the identity function 
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     We will study neighborhood result of the    (       ),due to Goodman[10] and Ruscheweyh[11]  

Definition (4) : A function f   is saidto be in the class     (       ) if there exist a function  
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Proof : Let       ( ). Then we find from (1)  that 
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which implies the coefficient inequality  
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By definition (3), f   (       ) for   given by (21). 

This completes the proof.  
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