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Abstract  

    Survival analysis is a statistical method used to analyze time-to-event data. The 

existence of states where event results become invisible after a given time is one of 

the primary difficulties with this regulation. This is considered censorship. This 

kind of data may be found in a variety of applications, such as mechanical system 

failure rates, patient mortality rates during clinical trials, and the length of 

unemployment in a community. Assessing the so-called survival and hazard 

functions is one of the primary goals of survival analysis. Many learning-machine  

algorithms have also been developed to tackle censored data and other difficult 

problems with real-world data.  

Machine-learning techniques enhance survival analysis by incorporating flexible 

modeling approaches, handling high-dimensional data, capturing nonlinear 

relationships, and accounting for censorship. They provide powerful tools to extract 

meaningful insights and make accurate predictions in time-to-event analysis across 

various healthcare, finance, and engineering domains. The standard statistical 

approaches and machine learning techniques advanced for survival analysis are 

structured in this unified framework, as is the implementation of some machine 

learning techniques applying to the GBSG2 survival analysis dataset. 
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النماذج دمج  طريق  عن  الحياة  قيد  على  البقاء  تحليل  الآلات  تعلم  تقنيات  ذات  وتعزز  البيانات  ومعالجة   ،
قوية   أدوات  توفر  وهي  بالرقابة.  المتعلقة  والحسابات  الخطية،  غير  العلاقات  واستخلاص  العالية،  الأبعاد 
الرعاية   مختلف مجالات  معين عبر  إلى حدث  وقت  من  التحليل  في  دقيقة  وتوقعات  مفيدة  أفكار  لاستخراج 
التعلم   وتقنيات  الموحدة  الإحصائية  النُهج  تنظيم  الموحد  النظام  هذا  في  ويجري  والهندسة.  والتمويل  الصحية 

التي   الآلي  التعلم  تقنيات  بعض  وتنفيذ  الحياة،  قيد  على  البقاء  لتحليل  المتقدمة  مجموعة    طبقتالآلي  على 
  gbsg2.بيانات تحليل البقاء 

 
1. Introduction 

     The capacity to gather a large diversity of data and track observations over an extended 

period of time is now a fact in several dissimilar fields due to the advent of novel data 

collection and huge data technologies [1]. The essential goal of the popularity of these real-

world requests is to more accurately predict the time at which a certain interesting event 

occurs. One of the core issues with such time-to-event data is censored occurrences, where an 

important event is missed because of time constraints or becomes lost throughout the 

observation time, which is very prevalent [2]. Data on survival is often analyzed using 

statistical and machine-learning techniques. When these issues with censored data develop 

during the modeling of complicated data, survival analysis, an important part of statistics, 

offers several strategies to solve them. When simulating a specific event of interest is the 

primary goal, this is also known as time-to-event data, and it is particularly prevalent in real-

world application domains. Several scientists are now developing new computing methods to 

handle such difficult problems. Machine learning (ML) offers a collection of developed and 

efficient algorithms that either compete with or complement conventional statistical methods 

to solve these functional concerns [3]. Recent work has applied machine learning techniques 

to survival analysis issues. However, despite these issues’ significance and applicability to 

numerous real-world situations, research on this subject is still dispersed. Deep learning (DL) 

algorithms are a subfield of machine learning algorithms that enable researchers to extract 

discriminative characteristics with little domain expertise and manual labor. DL has already 

shown promise in a wide range of areas, including computer vision [4], image compression 

[5], [6], audio processing, natural language processing [7], robotics, biology and chemistry, 

medicine [8], video games, search engines, online advertising, detection systems [9], and 

finance [10]. 

 

     So, the main goal of this unification is to provide a structured evaluation of several 

machine learning techniques for survival analysis as well as a discussion of traditional 

statistical techniques. Show the commonly used estimation and evaluation metrics as well as 

the complex connected formulations that are often looked into in this area of study. Give a 

classification of all the survival analysis techniques that have been developed by the machine 

learning community recently as well as by statisticians in the past, and give a table with all 

the details about recent studies. The last is the implementation of some machine learning 

techniques applied to the GBSG2 survival analysis dataset. 

 

     The rest of this paper is arranged as follows: Section 2 presents the taxonomy of survival 

analysis and evaluates the survival probability and regression model used in this study. 

Section 3 introduces regularized Cox regression. Section 4 is a review of machine learning 

for survival analysis. Section 5 presents performance evaluation metrics for survival analysis. 

Section 6 presents the experimental results of machine learning techniques for survival 

analysis. The last part is the conclusion of this paper. 

 

2. Survival analysis 
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      A subfield of statistics known as survival analysis concentrates on the analysis of time-to-

event data, also known as survival times [11]. Data from prospective group studies or data 

gathered for clinical trials are two examples of data collected prospectively that are typically 

analyzed using survival analysis methods [12]. It is necessary to specify the time of origin. 

For instance, the time point of diagnosis for a particular form of cancer might be used as the 

time origin if the survival time of patients with that kind of cancer is being examined. The 

last point or event of interest should be adequately characterized so that the times taken into 

account are clearly understood. In the aforementioned case, cancer research may be to blame 

for this death. The time taken to go from the time origin to the terminus might then be 

determined. The presence of scenarios where the outcomes of an event become difficult to 

observe beyond a certain point in time is one of the main challenges. This is what is referred 

to as “right censorship.” Righteous censorship is the most general type and, therefore, the 

most straightforward to analyze. When someone is pursued from a time origin (𝜏0) up to a 

late time point (𝜏𝑐), right censoring happens since the person hasn't experienced the relevant 

event. As a result, all that is known about them is that their event hasn't happened as of the 

censoring time (𝜏𝑐). Left censorship is another form of censorship. When a person is left 

censored, it means that the event occurred before the censoring time; however, it may have 

happened at any moment in the past. Interval censoring is another option, where a person is 

only recognized to have experienced the event between two time periods, but the actual 

event's chosen time remains unrecorded [13]. Events and censorship [14] are shown in 

Figure-1. 

 
Figure 1: Event and censoring times 

 

2.1.  Survival and Hazard Function 

     The survival function stands for 𝜁(𝜏), which performs the probability that a person will 

live at minimal until time t, where 0 ≤ 𝜁(𝜏)≤ 1. If the survival function is understood through 

notion or experimental observation, then it may be utilized to comprehend the population's 

survival experience across time [15].  

The survival function has the following properties:  

• The definition range of time is 𝜏 ∈ [0, ∞).  

• 𝜁(𝜏)is non-increasing, i.e., 𝜁(𝜏1) ≥ 𝜁(𝜏2) for 𝜏1 ≤ 𝜏2  

• At time 𝜏 = 0, 𝜁(𝜏 = 0) = 1, i.e., the probability of surviving past time 0 is 1. 

The hazard function ɦ(𝜏) is also known as the force of mortality, the instantaneous death rate, 

or the conditional failure rate. The hazard function indicates the probability of the event 

happening at the time 𝜏 assuming that no event has happened before time 𝜏 rather than the 

chance that the important event will happen [16]. 

The hazard function ɦ(𝜏) has the following properties [17]:  
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• ɦ(𝜏)≥ 0 for all 𝜏.  

• ɦ(𝜏) has no upper bound. 

• ɦ(𝜏) can assume any shape. 

 

2.2.  Taxonomic of Survival Analysis Methods 

     The main two categories of primary survival analysis techniques are machine learning-

based and statistical techniques. Statistical and machine learning techniques aim to predict 

and evaluate the likelihood of survival at the expected time. Machine learning (ML) 

techniques are often used to tackle high-dimensional issues, although statistical techniques 

are typically advanced to deal with low-dimensional data. ML techniques for survival 

analysis disclose more effective algorithms since they can assess survival problems using 

both statistics and machine learning methods. As a result, they can benefit from reducing 

technologies like machine learning and improving them to discover the dependency between 

covariates and survival times in various pathways [18]. 

 

     The statistical approaches may be split into three groups: nonparametric, semiparametric, 

and parametric, which are models depending on the hypothesis made and how parameters are 

employed in the paradigm. In the last few years, machine learning methods like support 

vector machines (SVM), neural networks, and survival trees have become increasingly 

popular. Many have developed machine learning techniques, for example, multitask learning, 

transfer learning, active learning, and ensemble learning. Figure 2 shows statistical methods 

for survival analysis. 

 

 
Figure 2: Statistical methods 

 

2.3.  Cox Proportional Hazard (CPH) model 

     A semi-parametric regression model called the CPH model is the most commonly applied. 

The hazard function is calculated by: 

                                      ɦ(𝜏, 𝜘)  =  ɦ0(𝜏) 𝑒𝛽𝑖𝑋                                                  (2) 

 
     The baseline hazard is denoted here as ɦ0(𝜏). The baseline hazard may take on any 

functional form [19]. The Cox model for survival function can be considered using the 

formula below.  

                                        𝜁(𝜏)  =  𝑒−𝐻0(𝜏)𝑒𝑋𝛽
 =  𝜁0(𝜏)𝑒𝑋𝛽                                                (3) 
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• ℋ0(𝜏) Is the accumulative baseline hazard function. 

• 𝜁(𝜏)  =  𝑒−ℋ0(𝜏) . Perform the baseline survival function. 
Because the baseline hazard function is not specified, the model cannot be fitted with the 

traditional likelihood function. The Cox model, on the other hand, is free of annoying 

parameters and applies the partial likelihood function [20], which only depends on the 

parameter of interest (the baseline hazard). To estimate the coefficient vector, the negative 

log-partial likelihood is minimized by considering the formula (4): 

 

                          ℒ(β) = − ∑  𝛿𝑗(X𝑗β 𝐿𝑜𝑔(∑  𝑒X𝑖β))
 

𝑖∈𝑅𝑗

𝑁

𝑗=1
                            (4) 

 

The numerical Newton-Raphson approach can be used with the Maximum Partial Likelihood 

Estimator (MPLE) to iteratively discover an estimator β̂ that minimizes ℒ(β) [21]. 

 

2.4. Regularized Cox models 

     The majority of real-world fields frequently amass high-dimensional data because 

methods for gathering and analyzing it are always evolving. The number of variables (V) in 

the given data will sometimes be nearly equal to or higher than the number of instances (I). 

Therefore, it is a contest to develop the best forecast model that incorporates all of the 

features available, and in specific instances, the model does yield incorrect data due to 

overfitting trouble [22], [23]. The related studies for the widely used regularized Cox models 

are presented in Table 1. Regularized Cox regression is applied in formula (5): 

                                    β̂ =  argminβ  ℒ(β) +  𝜆 ∗ 𝑃(β)                                            (5) 

𝑃(β) Is a sparsity-inducing criterion, and 𝜆 is the regularization parameter.  

 

Lasso-Cox: The ℓ1-norm regularizes Lasso is effective at simultaneously doing feature 

selection and calculating the regression coefficients [24]. Lasso-Cox, considering the formula 

(6): 

                    β̂ =  argminβ  ℒ(β) +  𝜆 ∗ ∑ ⃒β
𝑣

𝑣

𝑣=1

⃒                                                              (6) 

Ridge-Cox: A ℓ2-norm regularization was used in ridge regression to choose the related 

features and reduce their values toward one another [25] [26]. Ridge-Cox, considering the 

formula (7): 

                                β̂ =  argminβ  ℒ(β) +  
𝜆

2
 ∑  β𝑣

2𝑣

𝑣=1

 
                                                       (7) 

 

EN-Cox: Elastic net (EN), which mixes ℓ1 and squared ℓ2 penalties, can concurrently handle 

feature selection and feature correlation [27]. Elastic Net-Cox considering the formula (8): 

 

                                β̂ =  argminβ  ℒ(β) + λ ∗ [α∑  𝑣
𝑣=1  ⃒β𝑣⃒ +  

1

2
 (1 + α) ∑  𝑣

𝑣=1 β𝑣
2 ]         (8) 

 

OSCAR-Cox: The basic Cox model incorporates the modified graph Octagonal Shrinkage 

and Clustering Method for Regression (OSCAR) regularization [28] [29] as the OSCAR-Cox 

algorithm, which may carry out the variable selection for strongly correlated features in 

regression problems. The key benefit of the OSCAR regularization is that it frequently has 

equivalent coefficients for features that relate to the result in predictable ways. OSCAR -Cox, 

considering the formula (9): 
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(9)                           argmin
β

ℒ(β) + λ1  ‖ β ‖ 1  +  λ2 ‖ 𝑇β ‖ 1  =  β̂                              

 

Table 1: Related Studies of Regularized Cox Regression 
Authors(Year) Algorithms 

Robert Tibshirani. (1997)[30] Adaptive Lasso-Cox 

Robert Tibshirani, et al. (2005)[31] Graphical Lasso-Cox 

Hao H Zhang and Wenbin Lu, (2007)[32] Fused Lasso-Cox 

Noah Simon, et al. (2011)[33] Elastic Net-Cox 

Jelena Bradic, et al. (2012)[34] Lasso-Cox 

Ying-Wooi Wan, et al. (2013)[35] Lasso and Elastic Net-Cox 

Bhanukiran Vinzamuri and Chandan K 

Reddy. (2013)[36] 
KEN-Cox 

Martin Sill,et al. (2014)[37] Lasso and Elastic Net-Cox 

Hokeun Sun, et al. (2015)[38] Lasso-Cox 

Yong Liang, et al. (2016) [39] L1/2 regularization Cox 

Yan Li, et al. (2016)[40] Transfer-cox 

Mansoor Sheikh, et al. (2019)[41] Ridge-Cox 

Susana Vinga. (2020)[42] Elastic Net-Cox 

Xinghao Yu, et al. (2020)[43] Lasso-cox, EN-Cox, mixed-effects Cox model (coxlmm) 

RUILIN LI. (2020)[44] Fast Lasso-cox 

J. Kenneth Tay, et al. (2021)[45] Lasso and Elastic Net-Cox 

 

2.5.  Performance Evaluation Metrics 

     The traditional measures for regression assessment, for instance, the root of mean squared 

error (MSE) and 𝑅2, are not appropriate for performance evaluation in survival analysis since 

censoring is present in survival data. For a survival analysis, there are three specific 

evaluation metrics: 

2.5.1 Concordance index (C-index): Its definition is the ratio of concordant pairs to all 

similar pairs, and it acts as a rank-order statistic for predictions compared to actual outcomes. 

Assume the comparable instance pair (𝑖, 𝑗) with (𝜏𝑖)  and (𝜏𝑗) are the observed times, and 

𝜁(𝜏𝑖) and 𝜁(𝜏𝑗) are the forecast survival times. 

• The pair𝑠(𝑖, 𝑗 ) is concordant if 𝜏𝑖 > 𝜏𝑗 and 𝜁(𝜏𝑖)> 𝜁(𝜏𝑗). 

• The pair𝑠(𝑖, 𝑗) is discordant if 𝜏𝑖 > 𝜏𝑗 and 𝜁(𝜏𝑖)< 𝜁(𝜏𝑗). 

Then, the concordance probability: 

                                             C = PR ( 𝜏̂𝑖 <  𝜏 ̂𝑗  ⃒ 𝜏𝑖 < 𝜏𝑗)                                             (10) 

identifies the level of concordance between the ranks of actual values and predicted values 

[46]. 

 

2.5.2 Brier Score: is employed to evaluate forecast models when the output to be predicted is 

either binary or categorical in form. According to the censoring data, the individual 

contributions to the empirical Brier score are reweighted: 

                                BS (𝜏) =
1

𝑁
+ ∑ 𝑤𝑖(𝜏)[

𝑁

𝑖=1
𝑌̂𝑖(𝜏) − 𝑌𝑖(𝜏)]2                                       (11) 

 𝑤𝑖(𝜏) Is used to indicate the weight for the 𝑖𝑡ℎ instance [47]. 

 

2.5.3 Mean Absolute Error: The average of the dissimilarities between the predicted time 

values and the actual observation time values is the mean absolute error (MAE), which refers 

to issues with survival analysis. 

                            MAE = 
1

𝑁
+ ∑  (𝛿𝑖 ⃒𝑌𝑖 −  𝑌̂𝑖⃒)

𝑁

𝑖=1
                                                      (12) 

where 𝑌𝑖 the actual observation times. 𝑌̂𝑖 The predicted times. 



Fadhil and Al-Sarray                           Iraqi Journal of Science, 2024, Vol. 65, No. 11, pp: 6660- 6675 

 

6666 

     In this measure, only the samples for which the event happens are taken into 

consideration. The mean absolute error may only be used to evaluate survival models that can 

provide the event time as the forecast target value [48]. 

3. A review of machine learning for Survival analysis 

     Significant successes have been made over the past several years in a variety of practical 

fields due to the benefits of machine-learning techniques. In survival analysis, the main 

challenges for machine learning algorithms are their ability to model non-linear relationships 

and the accuracy of their general predictions. Other challenges include how hard it is to work 

with censored data and how well the model can predict the future. A huge number of 

instances in comprehensible dimensional feature areas are needed for machine learning to be 

effective, although this is not always the case for survival analysis issues [49]. 

 

     The study of algorithms and statistical models that computer systems apply to perform a 

specific task without being explicitly programmed is known as machine learning (ML). 

Machine learning is used to train computers to handle data more effectively. At times, after 

examining the data, it is impossible to explain the information that was extracted from it. In 

this scenario, machine learning is used. The number of datasets available is increasing 

the demand for ML. The objective of ML is to learn from the data. Various mathematicians 

and programmers use a variety of techniques to solve this problem, which makes use of huge 

amounts of data [50]. 

 

     Unsupervised machine learning and supervised machine learning are the two basic 

classifications of machine learning. Unsupervised machine learning, or unsupervised 

learning, is the method of concluding datasets that contain input data without labeled 

responses. The objective of supervised machine learning algorithms is to determine the link 

between input attributes (also known as independent variables) and a target attribute (also 

known as a dependent variable). Regression and classification are the two basic categories to 

which supervised techniques belong. While the output variable in classification uses class 

labels, the output variable in regression uses continuous values [51]. Although there are many 

other machine learning approaches available, classification is the one that is most frequently 

employed. In machine learning, classification is a widely respected problem, especially in the 

areas of knowledge extraction and prediction [52] and [53]. Machine learning methods for 

survival analysis are shown in Figure 3. 

 
Figure 3: Machine Learning Methods 
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     In many different domains, including survival analysis, the machine learning community 

has created several highly efficient approaches for high-dimensional settings. The latest 

studies have extended deep learning with survival analysis methods to select dissimilar data 

modalities and allow more accurate predictions. For instance, the Deep Convolutional Neural 

Network (CNN) uses lung cancer data [54]. This study uses diseased images to create a deep 

convolutional neural network for survival analysis. Asset Health Management Combining 

deep learning and survival analysis using a dataset of mining haul trucks [55], In order to 

combine feature extraction and prediction as a single optimization job, this research suggests 

stacking a three-layer model as a deep learning framework. DeepSurv [56] proposed a 

method that uses a survival technique based on a Cox proportional hazards deep neural 

network to model the relationship between a patient's variables and the success of therapy to 

make personalized treatment recommendations. WSISA [57] presents an efficient 

methodology for Whole Slide Histopathological Images Survival Analysis (WSISA) to 

address the aforementioned issues. Cox-nnet [58] is a novel ANN framework  developed for 

predicting patient prognosis from high-throughput transcriptomics data. Comparing Cox-nnet 

to Cox-proportional hazards regression, random forest survival, and CoxBoost in ten TCGA 

RNA-Seq data sets using Multi-Task Logistic Regression (MTLR) [59], this study introduces 

the Neural Multi-Task Logistic Regression (N-MTLR) model as a novel model. Although 

this model uses MTLR, its deep learning architecture serves as its main core. A scalable 

discrete-time survival model for neural networks [60] introduces Nnet-survival, a discrete-

time survival model that theoretically naturally handles non-proportional hazards and can be 

trained quickly using mini-batch gradient descent. CXR-risk based on CNN [61] In the 

present study, a single chest radiograph was used to stratify long-term death risk using the 

deep learning CXR-risk score. Deep learning-based survival prediction of oral cancer patients 

[62]: This review used a deep learning-based survival prediction approach for patients with 

oral squamous cell carcinoma (SCC), confirmed its efficacy, and included 255 patients who 

were suitable for analysis and had surgical treatment in our department from 2000 to 2017. 

Dynamic-DeepHit [63] presents a revolutionary deep-learning method that successfully 

overcomes the current limitations of joint modeling and landmarking by applying their 

method to a real-world longitudinal dataset from the UK Cystic Fibrosis Registry, which 

comprises a diverse cohort of 5,883 adult patients with yearly follow-ups between 2009 and 

2015. Salmon [64], in this study, uses deep learning-based networks to ascertain the 

relationship between gene expression data and Cox regression survival in breast cancer. Deep 

Hazard with a binary variable dataset [65] suggests DeepHazard, a neural network for time-

varying hazards, as a novel, flexible strategy for predicting survival. A flexible 

implementation that supports several optimization techniques without any normative penalty 

is created. On well-known actual datasets such as METABRIC, GBSG, and ACTG, the same 

result is shown. In Vale-Silva [66], this research develops an end-to-end discrete-time 

multimodal DL-based survival prediction technique for estimating patient prognosis. The 

suggested approach also makes use of a separate network architecture and a distinct data 

fusion layer. Six input data modalities and 33 different cancer types were combined in 

MultiSurv. The proposed method, called the Survival Recurrent Network [67], uses all 

available clinical, pathologic, and therapy data to create a unique deep learning-based 

survival model (called the Survival Recurrent Network [SRN]) for patients with GC. In this 

paper, DeepPAMM [68] suggests a new way to handle continuous time-to-event data that 

works well for many common survival tasks, such as right-censored, left-truncated, 

competing risks, or multi-state data, as well as recurrent events, the estimation of inherently 

interpretable feature effects, learning from multiple data sources, time-variy learning, and 

learning from continuous time-to-event data. 
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Table 2:  Recent studies’ explanation 

Authors(Year) 
Languag

es 
Dataset Techniques Results 

Xinliang Zhu 

et.al, (2016)[54] 
Python Pathological Images 

CNN (convolutional neural 

network) 
62% with C-Index 

Linxia Liao 

et.al, (2016)[55] 
Python 

the dataset was 

collected from a fleet 

of mining haul 

trucks 

Long Short Term Memory 

(LSTM) model 

training and testing 

are 87% and 72% 

with confusion 

matrix 

Jared L. 

Katzman et.al, 

(2017)[56] 

Python real clinical data 
Cox proportional hazards with 

deep neural network 
95% with C-Index 

Safoora Yousefi 

et.al, (2017)[69] 

 

Python 

and R 

package 

clinical and 

molecular data 

Comparing Bayesian 

optimization with Cox elastic 

net and random survival forests 

90% with C-Index 

Xinliang Zhu 

et.al, (2017)[57] 
Python 

Whole Slide Images 

(WSIs) 

Deep Convolutional Survival 

CNN and K-mean 
70% with C-Index 

Travers Ching 

et.al, (2018)[58] 

Python 

and R 

package 

omics data 

(10 TCGA) 

Cox-nnet (Cox-PH model with 

the neural network) 

85% of C-IPCW 

scores 

Stephane Fotso, 

(2018)[59] 
Python 

Worcester Heart 

Attack Study 

(WHAS) dataset and 

(veteran) dataset 

Multi-Task Logistic Regression 80% with C-Index 

Michael F. 

Gensheimer 

et.al, (2019)[60] 

Python 
MNIST and Real 

data 

nnet-survival using mini-batch 

stochastic gradient descent 

(SGD),Cox-nnet and Deepsurv 

73% with C-Index 

 

 

Michael T. Lu 

et.al, (2019)[61] 
Python 

Screening from  

Prostate, Lung, 

Colorectal, and 

Ovarian Cancer 

Screening Trial 

(PLCO) and 

National Lung 

Screening Trial 

(NLST) 

CXR-risk based on  CNN 

PLCO (87%) and 

NLST (93%) with 

C-Index 

 

Anika Cheerla 

et.al, (2019)[70] 

Python 

and shell 

clinical, mRNA, 

microRNA, and 

WSIs) 

CNN (convolutional neural 

network) 

 

78% with C-Index 

 

Dong Wook 

Kim et.al, 

(2019)[62] 

Python 

Clinical 

characteristics of the 

overall dataset 

DeepSurv compared with 

random survival forest (RSF) 

and CPH model 

81% with C-Index 

Changhee Lee 

et.al, (2019)[63] 
Python 

real-world 

longitudinal dataset 
Dynamic-DeepHit 

96% with C-Index 

 

Zhi Huang et.al, 

(2019)[64] 

Python 

and R 

package 

gene expression 

(mRNA) and 

miRNA data 

SALMON 

 

72% with C-Index 

 

Havard 

Kvamme et.al, 

(2019)[71] 

Python real-world data sets 
Cox proportional 

Hazards (CPH) with (SGD) 

79% with C-Index 

 

Lian-Zhen 

Zhong et.al, 

(2020)[72] 

Python 
magnetic resonance 

(MR) images 

multivariable Cox proportional 

hazards 

78% with C-Index 

 

Liwen Zhang 

et.al, (2020)[73] 
R 

computed 

tomography (CT) 

images 

CNN (convolutional neural 

network) 

 

78% with C-Index 

Denise Rava 

et.al, (2020)[65] 
Python 

METABRIC, 

GBSG, and ACTG 

Deep Hazard compared with 

Additive Hazards, Deep Surv, 

METABRIC  66% 

GBSG  68% 
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with a binary 

variable dataset 

RSF ACTG 82% with C 

Index 

Jie Hao et.al, 

(2020)[74] 
Python 

histoPAthological 

Images and Genomic 

Data (PAGE-Net) 

CNN (convolutional neural 

network) 

 

70% with C-Index 

Luís A. 

Vale‑Silva et.al, 

(2021)[66] 

Python 

and 

Jupiter 

Noteboo

k 

clinical, imaging, 

and different high-

dimensional omics 

data modalities 

MultiSurv (CNN, Adam 

stochastic gradient descent) 

80% with C-Index 

 

 

Jeeyun Lee et.al, 

(2022)[67] 
Python 

clinical and 

pathologic data 

Survival Recurrent 

Network (SRN) 
92% with C-Index 

Philipp Kopper 

et.al, (2022)[68] 
Python 

tabular and imaging 

data 
DeepPAMM 

80% with an 

integrated Brier 

score (IBS) 

 

4.  Selecting optimization approach and deep learning model  

     This part discusses the optimization method (ADMM) and the deep learning algorithm 

(LSTM) and explains the steps of the two algorithms. They were applied to the survival data 

set, and the results will be presented in the implementation part. 

 

4.1.  Alternating Direction Method of Multipliers (ADMM) 

     The ADMM optimization approach is commonly used to solve convex optimization issues 

with decomposable objective functions or constraints [75]. It was developed as a method for 

effectively handling optimization problems involving both smooth and non-smooth 

components. 

 

     By splitting the larger problem into smaller sub-problems that may be handled separately, 

the ADMM method is able to solve problems. A sequence of augmented Lagrangian updates 

alternates between updating the variables related to each sub-problem and taking information 

from the other variables. 
Algorithm 1: pseudocode of ADMM 
Input: Dataset 

Output: Return x             

Step 1: Initialize variables: 

    Set x, z, u to initial values 

    Set step size parameters rho and the maximum number of iterations N 

Step 2: Repeat until convergence or maximum iterations are reached: 

                   For k = 1 to N: 

                   # Update x 

                   x = argmin_x L(x, z, u) 

                   # Update z 

                   z = argmin_z L(x, z, u) 

                  # Update u (Lagrange multipliers) 

                  u = u + rho * (Ax + Bz - c) 

                  # Check for convergence 

                  if ||Ax + Bz - c||_2 <= tolerance: 

              break 

 

      The augmented Lagrangian function is represented by L(x, z, u) in the pseudocode above. 

The updates argmin_x and argmin_z are used to minimize the augmented Lagrangian with 

respect to x and z, respectively. The constraints of the optimization problem are represented 

by the matrices and vectors A, B, and c. The dual update step is controlled by the penalty 

parameter rho, and tolerance is a small value that represents the preferred convergence 

threshold. 
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4.2.  The Long Short-Term Memory (LSTM) Model 

LSTM models are part of the deep recurrent neural network family that has been extensively 

applied in a variety of fields [76]. It was first introduced by Hochreiter and Schmidhuber 

[77].  

LSTMs use a memory cell that can store data over time to understand long-term 

dependencies in sequential data. Three types of gates—input, forget, and output—control the 

memory cell. Information entering a cell is controlled by the input gate; information staying 

in the cell is controlled by the forget gate; and information leaving the cell is controlled by 

the output gate. Sigmoid activation functions that can accept values between 0 and 1 operate 

the gates. The LSTM may selectively remember or forget data from earlier time steps 

because of the sigmoid functions. The gates also take input from the previous and current 

time steps, allowing the LSTM to learn links between the current and past inputs. 

 
Algorithm 2: LSTM algorithm steps 

Input: dataset 

Output: build model 

Step1: Initialize LSTM parameters: 

            ( input_size, hidden_size, output_size, learning rate, epochs) 

Step2: Initialize LSTM weights and biases 

          (Wi, Wf, Wo, Wu, bi, bf, bo, bu)          

Step3: Initialize LSTM states 

           ht_prev = zeros(hidden_size) 

           ct_prev = zeros(hidden_size) 

Step4: Training loop 

           for epoch in range(epochs): 

          # Forward pass 

          for t in range(sequence_length): 

          xt = input_data[t] 

          # Compute activation 

          it = sigmoid(W * xt + b + W * ht_prev + b) 

          # Compute cell state 

          ct = ft * ct_prev + it * ut 

         # Compute hidden state 

          ht = ot * tanh(ct) 

         # Compute output 

           output = softmax(Wh * ht + bh) 

Step5: # Compute loss 

           loss = calculate_loss(output, target_data[t]) 

 

5. Experimental Results of machine learning techniques for survival analysis 

     Machine learning techniques have been widely applied in survival analysis to improve the 

prediction and understanding of survival outcomes. Survival analysis deals with time-to-

event data, often in the context of studying the time until an event of interest occurs, such as 

death, disease progression, or the failure of a system. 

 

     This implementation will explore several techniques that integrate machine learning with 

survival analysis. These techniques include the Cox proportional hazards model, the Cox 

proportional hazards model with penalized estimation, deep learning models, and ADMM. 

Each technique offers unique advantages and can contribute to improved predictions and 

understanding of survival outcomes by implementing some techniques and applying machine 

learning results to the GBSG2 dataset for survival analysis, as shown in Table 3. The GBSG2 

(German Breast Cancer Study Group 2) dataset is a well-known benchmark dataset used for 

survival analysis in machine learning. It contains data on 686 breast cancer patients who 
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underwent surgery between 1978 and 1982 at the University of Munich. The dataset includes 

10 covariates (age, menopausal status, tumor size, etc.) and a response variable indicating 

whether the patient survived for at least five years following surgery. The dataset was 

originally used to develop and evaluate prognostic models for breast cancer survival using 

Cox regression and other survival analysis techniques. The GBSG2 dataset has since been 

widely used for testing and comparing different machine learning models for survival 

analysis, including deep learning approaches [78].  

The chart of machine learning techniques in survival analysis can be seen in Figure 4. 

 

 
Figure 4: Chart of machine learning techniques in survival analysis 

 

Table 3: Machine Learning Techniques with Survival Analysis 

Techniques 
Partial Log-Likelihood 

 

Mean Percentage 

Error (MPE) 

Mean Absolute 

Error (MAE) 

C-index 

 

Cox Proportional 

Hazard model 
-8602.907878652857 98.43828556268775 

0.50364963503649

64 
0.691 

Lasso Cox model -8330.533493499 99.97966834953958 
0.54522363890404

1 
0.664 

Ridge Cox model -8463.913708486532 99.94981821978323 0.63719125595535 0.689 

Elastic Cox model -8386.601526220662 99.96368645458143 
0.58092516407778

3 
0.686 

ADMM -8599.444123949035 99.99780980054268 
0.72065250662904

98 
0.691 

LSTM 0.1387 99.99568961513981 0.43886545 0.801 

 

Conclusion.  

     Machine learning techniques have significantly advanced the field of survival analysis, 

providing powerful tools to analyze time-to-event data and make accurate predictions. These 

techniques offer several benefits, including handling high-dimensional data, capturing 

complex relationships, and incorporating censored information. 
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     These techniques have been successfully applied in various healthcare, finance, and 

engineering domains, enabling researchers and practitioners to gain valuable insights and 

make informed decisions. Survival analysis models that use machine learning could improve 

risk prediction, treatment selection, and resource allocation in personalized medicine. They 

could also help improve survival outcomes in clinical trials and figure out how covariates 

affect survival times. However, it is important to consider certain challenges and limitations 

associated with these techniques. These include the need for appropriate feature engineering, 

addressing bias and overfitting, handling missing data, and interpreting the complex models 

generated by deep learning approaches. The main objective of this unified text is to offer a 

structured evaluation of several machine learning techniques for survival analysis, together 

with a discussion of conventional statistical techniques. Illustrate the widely employed 

estimation and evaluation metrics as well as the sophisticated connected formulations that are 

generally explored in linking with this study area, give a classification of all the survival 

analysis techniques advanced by the machine learning community more recently as well as 

traditionally by statisticians, and provide a table with all the details about recent studies. The 

last is the implementation of some machine learning techniques applied to the GBSG2 

survival analysis dataset. 
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