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Abstract  

        In this study, we introduce a new application to a spectral approach for solving 

two-dimensional (2D) time-fractional Zakhrov-Kuznetsov equations (TFZKEs) with 

initial conditions (ICs) and boundary conditions (BCs). When the regular magnetic 

domain is present, this equation represents a model that illustrates the conduct of 

weakly nonlinear ionic phonetic waves in a plasma that provides cool ions and an 

electronically isothermal environment. The fundamental qualifiers of fractional 

derivatives are characterized in the Caputo concept. We propose a new numerical 

approach that relies on shifted Chebyshev polynomials (SCPs) as test functions and 

uniformly grid points for time and space. In the field of fractional calculus, we have 

to introduce several schemes to evaluate a solution to the nonlinear fractional 

problems. This new technique is a preferable attempt. The results show that the 

current method is quite effective, and robust which provides excellent accuracy, and 

is appropriate for implementation to solve many significant fractional differential 

equations. 

 

Keywords: Spectral Approach, Time-Fractional Zakhrov-Kuznetsov Equations, 

Shifted Chebyshev Polynomials, Maximum Error, Accuracy.  
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الخطية  غير  الكسرية  المسائل  لحل  فعالة  أساليب  الحالية  الطريقة  أن  المقترحة    التقنية  هذه  نتائج  أظهرت   .
  .للغاية، وتوفر دقة ممتازة، وهي مناسبة للتطبيق لحل المعادلات التفاضلية الكسرية

1. Introduction 

    Fractional calculus has been taken more attention and appreciation recently due to its 

effective contributions to the modeling of natural phenomena and its great role to extend the 

basis of its applications in the various fields such as solids mechanics, diffusion issues, 

control theory, biomedical engineering, viscoelasticity, and economics [1, 2, 3]. The majority 

of fractional differential equations (FDEs) are based on linear and nonlinear mathematical 

models that are absent or extremely complicated to fix analytically. As a result, numerical and 

approximation methods must be employed [4]. We will go through one of these numerical 

methods and strategies to solve these kinds of equations. 

 

      The spectral method is a potent mathematical technique for numerically resolving 

differential equations of fractional or integer order. It becomes one of the most recently used 

approximate methods because it requires fewer grid points and more accurate than other 

numerical methods. 

The calculation of weighting factors for the discretization of fractional or integer order spatial 

or temporal derivatives is one of the most important aspects of the spectral approach. The 

spectral approach utilizes a variety of orthogonal polynomials as test functions, which play an 

important role in determining the validity of numerical solutions and mesh points for evenly 

and unequally spacing grid points. 

 

      There are numerous studies that have employed collocation approach for various sorts of 

purpose and have used many formulas for solving FDEs that relate to large current research. 

Spline collocation methodologies are based on the Lagrange basic polynomials were 

employed by Pedas and Tamme [5] in 2011 to solve linear multi-term FDEs. To solve the 

fractional nonlinear Langevin equation, Bhrawy and Alghamdi [6] created shifted Jacobi-

Gauss-Lobatto polynomials in 2012. Khader [7] developed generalized Laguerre polynomials 

to find a rough solution for fractional delay differential equations (FDDEs) in (2013).  For 

solving the fractional advection–diffusion equation, Tian et al. [8] and Saeed with Rehman [3] 

in (2014) exploited the Legendre-Gauss-Lobatto and Chebyshev-Gauss-Lobatto polynomials 

in matrix notation, and suggested the Hermite wavelet polynomials to solve linear and 

nonlinear FDDEs. With regard to the operational matrix of fractional derivatives of shifted 

Jacobi polynomials, Bhrawy [9] in 2015 suggested an efficient method to solve nonlinear 

fractional sub-diffusion and response sub-diffusion equations. Jaleb with Adibi [10]. In 

(2016), Alshbool and Hashim [11] utilized shifted Legendre and Bernstein polynomials to 

obtain rigid numerical solutions to space fractional diffusion equations, fractional Riccati 

differential equations, and fractional-order systems. The operational matrix was proposed by 

Rahimkhani et al. [12] in (2017), who studied Bernoulli wavelet polynomial for discover 

numerical solution of FDDEs. In (2018), Agarwal as well as El-Sayed [13] and M. 

Bahmanpour et al. [14] used shifted Chebyshev polynomials of the second kind to solve the 

fractional order diffusion equation, and introduced Müntz wavelets by using Müntz Legendre 

and Jacobi polynomials as a test function to solve FDEs. In (2019), Ali et al. [15] applied the 

spectral collocation formula to propose solutions for FDDEs with Chebyshev operational 

form. Al-Humedi with Al-Saadawi [16] and Al-Humedi with Al-Saadawi [17] in (2020-2021) 

solved 1D and 2D time-space fractional bioheat models adopting shifted Jacobi-Gauss-

Lobatto polynomials and fractional shifted Legendre polynomials as test functions and 

spectral collocation methods. 
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     Spectral approaches are developed to present a new numerical solution for 2D nonlinear 

TFZKEs that relies on Chebyshev polynomials as test functions in this study. 

2. Basic Equation 

    Many observations demonstrate that the wave moves irregularly in time, and various 

characteristics of a nonlinear wave should be examined over different time scales, so the 

ZKE is a model defining the isotropic growth of a nonlinear ion wavefront. The primary flow 

feature of a tube flow can be described by the flow theory, however, the vortices near the 

boundary must be explained on a smaller time scale necessitating the use of a fractional 

model [18]. 

 

      The time-fractional form of 2D unsteady state nonlinear TFZKE (𝛽1, 𝛽2, 𝛽3) with an 

arbitrary positive real order derivative  𝛼 ∈ (0,1] has been studied: 

𝐷𝑡
𝛼𝑢 + 𝛾1(𝑢

𝛽1)
𝑥
+ 𝛾2(𝑢

𝛽2)
𝑥𝑥𝑥

+ 𝛾3(𝑢
𝛽3)

𝑥𝑦𝑦
= 0,   0 ≤ 𝑥 ≤ 𝑁1, 0 ≤ 𝑦 ≤ 𝑁2, 0 ≤ 𝑡 ≤ 𝑁3     (1) 

 subject to the following ICs and BCs  
𝑢(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦), 0 ≤ 𝑥 ≤ 𝑁1,   0 ≤ 𝑦 ≤ 𝑁2 ,                                                                (2) 
𝑢(0, 𝑦, 𝑡) = 𝑓1(𝑦, 𝑡),          0 ≤ 𝑦 ≤ 𝑁2,   0 ≤ 𝑡 ≤ 𝑁3,                                                                     (3) 
𝑢(𝑁1, 𝑦, 𝑡) = 𝑓2(𝑦, 𝑡),        0 ≤ 𝑦 ≤ 𝑁2,   0 ≤ 𝑡 ≤ 𝑁3 ,                                                                    (4) 
𝑢(𝑥, 0, 𝑡) = 𝑓3(𝑥, 𝑡),           0 ≤ 𝑥 ≤ 𝑁1,   0 ≤ 𝑡 ≤ 𝑁3,                                                                     (5) 
𝑢(𝑥, 𝑁2, 𝑡) = 𝑓4(𝑥, 𝑡),        0 ≤ 𝑥 ≤ 𝑁1,   0 ≤ 𝑡 ≤ 𝑁3 .                                                                     (6) 

 

Where  𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝛾1, 𝛾2 and 𝛾3 are random constants. In the systematic electric field, the 

integers  𝛽1, 𝛽2 and 𝛽3 are responsible for the conduct of weak nonlinear acoustic ion 

vibrations in a plasma containing cool ions and hot exothermic electrons [19].  

 

3. Notes and Prelims 

       This part focuses mostly on the fundamental definitions of fractional calculus that might 

be employed in our study. 
 

 

Definition 3.1.  The Riemann-Liouville fractional integral operator of order 𝛼 > 0  is defined 

by [20]: 

𝐼𝛼𝜑 (𝑥) =  
1

𝛤 (𝛼)
  ∫ (𝑥 − 𝑠)𝛼−1

𝑥

0

 𝜑 (𝑠)𝑑𝑠,   α >  0,

 𝐼0 𝜑 (𝑥) =  𝜑 (𝑥) .                                                               

                                                                   (7) 

 

Definition 3.2. The Riemann-Liouville fractional differential operator (FDO) is given as 

follows [21]: 

𝐷𝛼𝜑 (𝑥) =

{
 

 
1

 𝛤 (𝑛 − 𝛼)
  
𝑑𝑛

𝑑𝑥𝑛
∫

𝜑 (𝑠)

(𝑥 − 𝑠)𝛼−𝑛+1

𝑥

0

 𝑑𝑠, 𝛼 >  0, 𝑛 −  1 ≤  𝛼 <  𝑛,

 
𝑑𝑛𝜑 (𝑥)   

𝑑𝑥𝑛
                                                                                    , 𝛼 =  𝑛.

                                 (8) 

 

Definition 3.3. The Caputo FDO is defined as follows [22]:   

𝐷𝛼𝜑 (𝑥)  = {

1

 𝛤 (𝑛−𝛼)
  ∫

𝜑(𝑛) (𝑠)

(𝑥−𝑠)𝛼−𝑛+1
𝑥

0
 𝑑𝑠, 𝑛 −  1 ≤  𝛼 <  𝑛,

 
𝑑𝑛𝜑 (𝑥)   

𝑑𝑥𝑛
                                                   , 𝛼 =  𝑛.

                                                            (9)  

 

      The expressions describe the relationship between the Riemann-Liouville fractional 

integral and Caputo differential operators [23]: 
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𝐷𝛼 𝐼𝛼   𝜑 (𝑥) =  𝜑 (𝑥),                                   

𝐼𝛼𝐷𝛼  𝜑 (𝑥) =  𝜑 (𝑥) −∑𝜑(𝑘) (0+ )

𝑛−1

𝑘=0

𝑥𝑘

𝑘!

                                                                                     (10) 

for 𝛽 ≥  −1, 𝛼 ≥  0, and 𝐶 is constant. The Caputo FDO possesses several important 

features that are required in this situation. They are as follows [24]:   
𝑖) 𝐷𝛼 𝐶 =  0,                                                                                                           

𝑖𝑖) 𝐷𝛼 𝑥𝛽 = {

0                                           for 𝛽 ∈  𝑁0 and  𝛽 <  ⌈𝛼⌉,
𝛤 (𝛽 +  1)

𝛤 (𝛽 + 1 − 𝛼)
𝑥𝛽−𝛼,     for 𝛽 ∈  𝑁0 and 𝛽 ≥  ⌈𝛼⌉,

           

𝑖𝑖𝑖)  𝐷𝛼 (∑𝑐𝑖

𝑛

𝑖=0

𝜑𝑖(𝑥)) =∑𝑐𝑖𝐷
𝛼

𝑛

𝑖=0

𝜑𝑖(𝑥),   where {𝑐𝑖}𝑖=0
𝑛   are constants.

                            (11) 

 

4. The shifted Chebyshev Polynomials for Fractional and Ordinary Derivatives 

     The first kind of Chebyshev polynomials 𝑇𝑖(𝑡) are orthogonal polynomials of degree 𝑖 in 𝑡 
defined on [−1,1] 

𝑇𝑖(𝑡) = cos 𝑖𝜃, 

      where 𝑡 = cos 𝜃 and 𝜃 ∈ [0, 𝜋]. By using the following recurrence relation, the 

polynomials 𝑇𝑖(𝑡)  can be constructed [25]  
𝑇𝑖+1(𝑡) = 2𝑡𝑇𝑖(𝑡) − 𝑇𝑖−1(𝑡), 𝑖 = 1, 2, …,   𝑇0(𝑡) = 1,   𝑇1(𝑡) = 𝑡.                              (12) 

To employ these polynomials on interval 𝑥 ∈ [0, 𝑁1], we defined SCPs by applying the 

variable change 𝑡 =
2𝑥

𝑁1
− 1. Let SCPs, 𝑇𝑖(

2𝑥

𝑁1
− 1) which is characterized by 𝑇𝑁1,𝑖(𝑥). Then 

𝑇𝑁1,𝑖(𝑥) can be generated by using equation (12) such that [26]: 

𝑇𝑁1,𝑖+1(𝑥) = 2 (
2𝑥

𝑁1
− 1)𝑇𝑁1,𝑖(𝑥) − 𝑇𝑁1,𝑖−1(𝑥), 𝑖 = 1, 2, …  , 

where 𝑇𝑁1,0(𝑥) = 1 and 𝑇𝑁1,1(𝑥) =
2𝑥

𝑁1
− 1. The analytic form of SCPs, 𝑇𝑁1,𝑖(𝑥) of degree 𝑖 is 

given by 

𝑇𝑁1,𝑖(𝑥) = 𝑖∑(−1)𝑖−𝑘
𝑖

𝑘=0

(𝑖 + 𝑘 − 1)! 22𝑘

𝑁1
𝑘(𝑖 − 𝑘)! (2𝑘)!

𝑥𝑘 ,                                                                                 (13) 

where 𝑇𝑁1,𝑖(0) = (−1)
𝑖 and 𝑇𝑁1,𝑖(𝑁1) = 1. The requirement for orthogonality is  

∫ 𝑇𝑁1,𝑗(𝑥)

𝑁1 

0

𝑇𝑁1,𝑘(𝑥)𝓌𝑁1
(𝑥)𝑑𝑥 = 𝛿𝑗𝑘ℎ𝑘,                                                                                             (14) 

where 𝓌𝑁1 = (𝑁1𝑥 − 𝑥
2)− 

1

2 and ℎ𝑘 =
𝒞𝑘

2
𝜋, with 𝒞0 = 2, 𝒞𝑘 = 1, 𝑘 ≥ 1. 

The first order derivative depends on SCPs of the vector 
 

 𝜓(𝑥) = [𝑇𝑁1,0(𝑥),𝑇𝑁1,1(𝑥),… ,𝑇𝑁1,𝑀1(𝑥)]ˊ  can be expressed by  

𝑑𝜓(𝑥)

𝑑𝑥
= 𝒟(1)𝜓(𝑥)                                        (15) 

 𝒟(1) is the (𝑀1 + 1) × (𝑀1 + 1) shifted Chebyshev operational matrix (SCOM) of 

derivative [27]: 

𝒟(1) = 𝑑𝑖𝑗 = {

4𝑖

𝒞𝑗𝑁1
,    𝑗 = 0,1,… , 𝑖 = 𝑗 + 𝑘, {

𝑘 = 1,3,5,… ,𝑀1,                𝑖𝑓 𝑁1 𝑖𝑠 𝑜𝑑𝑑,
𝑘 = 1,3,5,… ,𝑀1 − 1,       𝑖𝑓 𝑁1 𝑖𝑠 𝑒𝑣𝑒𝑛,

0,        𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒,                                                                                                       

 

when 𝑁1 is even, 𝒟(1) can be given as follows 
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𝒟(1) =
2

𝑁1

[
 
 
 
 
 
 
 
 

0
1
0
3
0
5
⋮

𝑀1 − 1
0

0
0
4
0
8
0
⋮
0
2𝑀1

0
0
0
6
0
10
⋮

2𝑀1 − 2
0

0
0
0
0
8
0
⋮
0
2𝑀1

0
0
0
0
0
10
⋮

2𝑀1 − 2
0

⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
0
0
0
⋮
0
2𝑀1

0
0
0
0
0
0
⋮
0
0]
 
 
 
 
 
 
 
 

 

We utilize equation (15) to generalize SCOM of derivatives for fractional calculus 
𝑑𝑛𝜓(𝑥)

𝑑𝑥𝑛
= (𝒟(1))

𝑛
𝜓(𝑥),                                                                                                          (16) 

where 𝑛 ∈  ℕ  represents the  matrix powers for integer calculus. Thus 

𝒟(𝑛) = (𝒟(1))
𝑛
, 𝑛 = 1,2, …                                                                                              (17) 

 

Lemma  4.1. Assume 𝑇𝑁1,𝑖(𝑥) is an SCPs, then we have  𝒟(𝛼)𝑇𝑁1,𝑖(𝑥) = 0, 𝑖 =

0,1,2, … , ⌈𝛼⌉ − 1, 𝛼 > 0.  
Proof. The lemma can be demonstrated by plugging attributes (ii) and (iii) from equation (11) 

into equation (13) □  

The following theorem applies the fractional calculus to the operational matrix of SCP 

derivatives that is given in equation (15). 

 

Theorem [28] 4.2. Let 𝜓(𝑥) be a shifted Chebyshev vector defined in 𝜓(𝑥) =
[𝑇𝑁1,0(𝑥),𝑇𝑁1,1(𝑥),… ,𝑇𝑁1,𝑀1(𝑥)]ˊ and  𝛼 >  0.  Then 

 𝐷𝛼𝜓(𝑥) ≅ 𝒟(𝛼)𝜓(𝑥) ,                                                                                                                              (18) 

 𝒟(𝛼) is the (𝑀1 + 1) × (𝑀1 + 1) SCOM of order 𝛼 derivatives in the Caputo concept which 

is defined as follows: 

𝒟(𝛼) =

[
 
 
 
 
 
 
 
        0                 0                 0        ⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0

ℬ𝛼(⌈𝛼⌉, 0)
⋮

ℬ𝛼(𝑖, 0)
⋮

ℬ𝛼(𝑀1, 0)

0
ℬ𝛼(⌈𝛼⌉, 1)

⋮
ℬ𝛼(𝑖, 1)

⋮
ℬ𝛼(𝑀1, 1)

0
ℬ𝛼(⌈𝛼⌉, 2)

⋮
ℬ𝛼(𝑖, 2)

⋮
ℬ𝛼(𝑀1, 2)

⋯
⋯
⋯
⋯
⋯
⋯

0
ℬ𝛼(⌈𝛼⌉,𝑀1)

⋮
ℬ𝛼(𝑖,𝑀1)

⋮
ℬ𝛼(𝑀1,𝑀1)]

 
 
 
 
 
 
 

 

where 

ℬ𝛼(𝑖, 𝑗) = ∑
(−1)𝑖−𝑘2i(𝑖 + 𝑘 − 1)! Γ(𝑘 − 𝛼 +

1

2
)

𝒞𝑗(𝑁1)
𝛼Γ(𝑘 +

1

2
)Γ(𝑘 − 𝛼 − 𝑗 + 1)Γ(𝑘 + 𝑗 − 𝛼 + 1)(𝑖 − 𝑘)!

𝑖

𝑘=⌈𝛼⌉

.                                        (19) 

 

5. Fractional Differentiation in Shifted Chebyshev Operational Matrix   

In terms of SCPs, a function 𝑢(𝑥) defined for 0 ≤ 𝑥 ≤ 𝑁1 can be written as 

𝑢(𝑥) =∑𝑐𝑖

∞

𝑖=0

𝑇𝑁1,𝑖(𝑥),                                                                                                                              (20) 

where 𝑐𝑖 denote the coefficients which are given by 

𝑐𝑖 =
1

ℎ𝑖
∫ 𝑢(𝑥)

𝑁1

0

𝑇𝑁1,𝑖(𝑥)𝓌𝑁1
(𝑥)𝑑𝑥 , 𝑖 = 0,1,2,….                                                                             (21) 

we study the (𝑀1 + 1)-term SCPs in practice, so that 
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𝑢𝑀1(𝑥) ≈∑𝑐𝑖

𝑀1

𝑖=0

𝑇𝑁1,𝑖(𝑥) = 𝐶ˊ𝜓(𝑥),                                                                                                           (22) 

where 𝐶 and  𝜓(𝑥)  are the shifted Chebyshev coefficient and vector, respectively. They are  

given by 

𝐶ˊ = [𝑐0, 𝑐1, … , 𝑐𝑁], 𝜓(𝑥) = [𝑇𝑁1,0(𝑥),𝑇𝑁1,1(𝑥), … ,𝑇𝑁1,𝑀1(𝑥)]ˊ,respectively.  

 

     We may simulate a function 𝑢(𝑥, 𝑡) defined for 0 ≤ 𝑥 ≤ 𝑁1 and  0 ≤ 𝑡 ≤ 𝑁3 which relies 

on double SCPs by expanding the above property of the two variable functions as 

𝑢(𝑥, 𝑡) =∑∑𝑎𝑖𝑗

∞

𝑗=0

∞

𝑖=0

𝑇𝑁1,𝑖(𝑥)𝑇𝑁3,𝑗(𝑡),                                                                                                   (23) 

where 

𝑎𝑖𝑗 =
1

ℎ𝑖ℎ𝑗
∫ ∫ 𝑢(𝑥, 𝑡)

𝑁3

0

𝑇𝑁1,𝑖(𝑥)𝑇𝑁3,𝑗(𝑡)𝓌𝑁1,𝑁3
(𝑥, 𝑡)𝑑𝑡𝑑𝑥,

𝑁1

0

                                                            (24) 

such that 𝓌𝑁1,𝑁3
(𝑥, 𝑡) = 𝓌𝑁1,𝑖(𝑥)𝓌𝑁3,𝑗(𝑡). 

 

     In practice, we consider the (𝑀1 + 1) and (𝑀3 + 1)-terms double SCPs with regard to 𝑥, 𝑡  
such that  

𝑢𝑀1,𝑀3(𝑥, 𝑡) ≈∑∑𝑎𝑖𝑗

𝑀3

𝑗=0

𝑀1

𝑖=0

𝑇𝑁1,𝑖(𝑥)𝑇𝑁3,𝑗(𝑡) = 𝜓(𝑥)ˊ𝐴 𝜓(𝑡),                                                           (25) 

where the shifted Chebyshev coefficient matrix and vector 𝐴 and 𝜓(𝑡)  are given by 

𝐴 = {𝑎𝑖𝑗}𝑖,𝑗=0
𝑀1,𝑀3  ,  𝜓(𝑡) = [𝑇𝑁3,0(𝑡), 𝑇𝑁3,1(𝑡), … , 𝑇𝑁3,𝑀3(𝑡)]ˊ, respectively. 

Therefore, to approximate a three-variable function 𝑢(𝑥, 𝑦, 𝑡) defined for 0 ≤ 𝑥 ≤ 𝑁1, 0 ≤
𝑦 ≤ 𝑁2 and  0 ≤ 𝑡 ≤ 𝑁3 that  depends on the triple Chebyshev series as follows 

𝑢(𝑥, 𝑦, 𝑡) =∑∑∑�̃�𝑘𝑖𝑗𝑇𝑁1,𝑖(𝑥)𝑇𝑁2,𝑗(𝑦)𝑇𝑁3,𝑗(𝑡),

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

                                                                       (26) 

where 

 �̃�𝑘𝑖𝑗 =
1

ℎ𝑖ℎ𝑗ℎ𝑘
∫ ∫ ∫ 𝑢(𝑥, 𝑦, 𝑡)

𝑁3
0

𝑇𝑁1,𝑖(𝑥)𝑇𝑁2,𝑗(𝑦)𝑇𝑁3,𝑘(𝑡)𝓌𝑁1,𝑁2,𝑁3
(𝑥, 𝑦, 𝑡)𝑑𝑡𝑑𝑦𝑑𝑥,

𝑁2
0

𝑁1
0

        (27) 

such that  𝓌𝑁1,𝑁2,𝑁3
(𝑥, 𝑦, 𝑡) = 𝓌𝑁1,𝑖(𝑥)𝓌𝑁2,𝑗(𝑦)𝓌𝑁3,𝑘(𝑡). 

In reality, we evaluate the triple SCPs (𝑀1 + 1), (𝑀2 + 1) and (𝑀3 + 1)-terms with respect 

to 𝑥, 𝑦, 𝑡  so that 

𝑢𝑀1,𝑀2,𝑀3(𝑥, 𝑦, 𝑡) ≈∑∑∑�̃�𝑘𝑖𝑗𝑇𝑁1,𝑖(𝑥)𝑇𝑁2,𝑗(𝑦)𝑇𝑁3,𝑘(𝑡)

𝑀3

𝑘=0

𝑀2

𝑗=0

𝑀1

𝑖=0

 = 𝜓(𝑡)ˊ �̈� 𝜓(𝑥)⨂𝜓(𝑦)               (28) 

where the Kronecker tensor product is ⊗, the shifted Chebyshev vectors 𝜓(𝑥), 𝜓(𝑦) and 𝜓(𝑡) 
are given by 

𝜓(𝑥) = [𝑇𝑁1,0(𝑥), 𝑇𝑁1,1(𝑥),… , 𝑇𝑁1,𝑀1(𝑥)]ˊ        

𝜓(𝑦) = [𝑇𝑁2,0(𝑦), 𝑇𝑁2,1(𝑦),… , 𝑇𝑁2,𝑀2(𝑦)]ˊ        

   𝜓(𝑡) = [𝑇𝑁3,0(𝑡), 𝑇𝑁3,1(𝑡),… , 𝑇𝑁3,𝑀3(𝑡)]ˊ                

}.                                                          (29) 

 
The block structure of the shifted Chebyshev coefficient matrix �̈� is: 

�̈� =

[
 
 
 
�̃�000
�̃�100
⋮

�̃�𝑀300

�̃�001
�̃�101
⋮

�̃�𝑀301

…
…
⋱
…

�̃�00𝑀2
�̃�10𝑀2
⋮

�̃�𝑀30𝑀2

�̃�010
�̃�110
⋮

�̃�𝑀310

�̃�011
�̃�111
⋮

�̃�𝑀311

…
…
⋱
…

�̃�0𝑀1𝑀2
�̃�1𝑀1𝑀2

⋮
�̃�𝑀3𝑀1𝑀2]

 
 
 

                         (30) 
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6- Methodology Description  

     The choice of collocation points has a major effect on the spectral solution's efficiency and 

convergence. One of the most significant elements that is used in approximation is the equally 

spaced mesh points 𝑥𝑖 =
𝑖𝑁1

𝑀1
, 𝑖 = 0,1, … ,𝑀1. It should be noted that one cannot utilize the 

collocation strategy with equally spaced nodes for a differential equation with the 

discontinuity at 𝑥 = 0 and 𝑥 = 𝑁1  in the area [0, 𝑁1], because the associations abscissas 0 

and 𝑁1 must be utilized as 2 points from the collocation nodes. We utilize the collocation 

approach with 𝑥𝑖 = 𝑥1, 𝑥2, … , 𝑥𝑁−1 nodes to treat the 2D nonlinear TFZKEs; i.e., just by 

gathering, this equation only at 𝑀3 × (𝑀1 − 1) × (𝑀2 − 1) is equally spaced grid 

points(0, 𝑁3), (0, 𝑁1) and (0, 𝑁2), respectively. These equations together with ICs and BCs 

can be solved using one of the iteration methods to produce  (𝑀1 + 1) × (𝑀2 + 1) × (𝑀3 +
1) nonlinear system of equations. 

Put,  𝑷𝑀1(0, 𝑁1) = 𝑠𝑝𝑎𝑛{𝑇𝑁1,0(𝑥), 𝑇𝑁1,1(𝑥),… , 𝑇𝑁1,𝑀1(𝑥)}.We recall the equally spaced grid 

depends on the  Chebyshev generators, 𝑷𝑀1(0, 𝑁1) represents the group of all algebraic 

polynomials of order 𝑀1 which is any positive number.  

We will use equation, 𝑥𝑖 =
𝑖𝑁1

𝑀1
, 𝑖 = 0,1, … ,𝑀1 to design the numerical solution procedure for 

(1) relying on SCPs, according to the specified conditions, in a series or matrix form into the 

shifted Chebyshev vectors 𝜓(𝑥), 𝜓(𝑦) and 𝜓(𝑡) define by equation (29). Similarly, the shifted 

Chebyshev coefficient matrix �̈� is given by equation (30). 

The space - time fractional derivatives of linear and nonlinear functions can be approximated 

as follows: 
𝜕𝛼𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡𝛼
= [𝐷𝑁3

(𝛼)
𝜓(𝑡)] ˊ �̈�𝜓(𝑥)⨂𝜓(𝑦),                     

𝜕𝑢𝛽1(𝑥, 𝑦, 𝑡)

𝜕𝑥
= 𝜓ˊ(𝑡)(�̈�)

𝛽1
[𝐷𝑁1

(1)
𝜓(𝑥)]⨂𝜓(𝑦),             

𝜕3𝑢𝛽2(𝑥, 𝑦, 𝑡)

𝜕𝑥3
= 𝜓ˊ(𝑡)(�̈�)

𝛽2
[𝐷𝑁1

(3)
𝜓(𝑥)]⨂𝜓(𝑦),           

𝜕3𝑢𝛽3(𝑥, 𝑦, 𝑡)

𝜕𝑥𝜕𝑦2
= 𝜓ˊ(𝑡)(�̈�)

𝛽3
[𝐷𝑁1

(1)
𝜓(𝑥)]⨂ [𝐷𝑁2

(2)
𝜓(𝑦)] .

}
 
 
 
 

 
 
 
 

                                                                  (31) 

 

     By applying the proposed method for 2D nonlinear TFZKEs based on equally spaced grid 

points in the matrix form that is given in equation (1), we have 

𝜓ˊ(𝑡)[𝐷𝑁3
(𝛼)
]ˊ �̈�𝜓(𝑥)⨂𝜓(𝑦) + 𝛾1𝜓ˊ(𝑡)(�̈�)

𝛽1 [𝐷𝑁1
(1)𝜓(𝑥)]⨂𝜓(𝑦) + 𝛾2𝜓ˊ(𝑡)(�̈�)

𝛽2 [𝐷𝑁1
(3)
𝜓(𝑥)]⨂𝜓(𝑦)

+ 𝛾3𝜓ˊ(𝑡)(�̈�)
𝛽3 [𝐷𝑁1

(1)
𝜓(𝑥)]⨂ [𝐷𝑁2

(2)
𝜓(𝑦)] = 0.                                                                   (32) 

We collocate (32) at 𝑀3 × (𝑀1 − 1) × (𝑀2 − 1) points, as 

𝜓ˊ(𝑡𝑘)[𝐷𝑁3
(𝛼)
]ˊ �̈�𝜓(𝑥𝑖)⨂𝜓(𝑦𝑗) + 𝛾1𝜓ˊ(𝑡𝑘)(�̈�)

𝛽1 [𝐷𝑁1
(1)𝜓(𝑥𝑖)]⨂𝜓(𝑦𝑗) + 𝛾2𝜓ˊ(𝑡𝑘)(�̈�)

𝛽2 [𝐷𝑁1
(3)
𝜓(𝑥𝑖)]⨂𝜓(𝑦𝑗)

+ 𝛾3𝜓ˊ(𝑡𝑘)(�̈�)
𝛽3 [𝐷𝑁1

(1)
𝜓(𝑥𝑖)]⨂ [𝐷𝑁2

(2)
𝜓(𝑦𝑗)] = 0                                                              (33) 

For 𝑖 = 1,2, … ,𝑀1 − 1, 𝑗 = 1,2, … ,𝑀2 − 1 and 𝑘 = 1,2, … ,𝑀3. 
 

     where 𝑥𝑖 (0 ≤ 𝑖 ≤  𝑀1) and 𝑦𝑗 (0 ≤ 𝑗 ≤ 𝑀2) are roots of SCP for the space of 𝑇𝑁1,𝑖(𝑥) 

and 𝑇𝑁2,𝑗(𝑦), respectively, while 𝑡𝑘 (0 ≤ 𝑘 ≤ 𝑁3) are the roots of 𝑇𝑁3,𝑘(𝑡), that construct a 

system of 𝑀3 × (𝑀1 − 1) × (𝑀2 − 1) , the nonlinear system of equations with unknown 

extension coefficients �̃�𝑘𝑖𝑗 that are derived from ICs  and BCs by utilize equations ((2)-(6)), 

as follows 
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𝜓ˊ(0)�̈�𝜓(𝑥𝑖)⨂𝜓(𝑦𝑗) = 𝑓0(𝑥𝑖, 𝑦𝑗), 0 ≤ 𝑖 ≤ 𝑁1, 0 ≤ 𝑗 ≤ 𝑁2 

𝜓ˊ(𝑡𝑘)�̈�𝜓(0)⨂𝜓(𝑦𝑗) = 𝑓1(𝑦𝑗, 𝑡𝑘), 0 ≤ 𝑗 ≤ 𝑁2, 0 ≤ 𝑘 ≤ 𝑁3  

𝜓ˊ(𝑡𝑘)�̈�𝜓(𝑁1)⨂𝜓(𝑦𝑗) = 𝑓2(𝑦𝑗, 𝑡𝑘), 0 ≤ 𝑗 ≤ 𝑁2, 0 ≤ 𝑘 ≤ 𝑁3

𝜓ˊ(𝑡𝑘)�̈�𝜓(𝑥𝑖)⨂𝜓(0) = 𝑓3(𝑥𝑖, 𝑡𝑘), 0 ≤ 𝑖 ≤ 𝑁1, 0 ≤ 𝑘 ≤ 𝑁3   

𝜓ˊ(𝑡𝑘)�̈�𝜓(𝑥𝑖)⨂𝜓(𝑁2) = 𝑓4(𝑥𝑖, 𝑡𝑘), 0 ≤ 𝑖 ≤ 𝑁1, 0 ≤ 𝑘 ≤ 𝑁3}
 
 

 
 

                   (34) 

 

     This results in (𝑀3 + 1) × ((𝑁1 + 1) × (𝑁2 + 1)) a nonlinear mathematical model, which 

may be solved using the Levenberg-Marquardt process with �̈� as the variable and an initial 

estimate of all zeros to minimize formulas (33)-(34). Consequently, the approximate solution 

𝑢𝑁3,𝑁1,𝑁2(𝑥, 𝑦, 𝑡) at the point (𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) given in equation (28) can be calculated. 

 

      The same approach as in [22] can be used to estimate an upper bound of the maximum 

absolute errors obtained for the approximation. Therefore, the error bound is an important 

aspect of the method's convergence. 

 

7- Illustrative Examples 

     In this section, we apply the approach which has been presented in section 6 for solving 

the 2D nonlinear TFZKEs in the two cases based on the first kind SCPs. TFZKEs were 

initially converted into non-linear algebraic equations (33) and (34). By applying the 

Levenberg-Marquardt approach to minimize those equations as a collection of least squares 

solutions, using �̈� as the variable. The estimated surface of u is then obtained using this �̈� in 

(38) 𝑢(𝑥, 𝑦, 𝑡).  
 

     In these two cases, we take 𝛾1 = 1, 𝛾2 = 𝛾3 =
1

8
 and 2,  𝑁1 = 𝑁2 = 𝑁3 = 1, 𝛽1 = 𝛽2 =

𝛽3 = 2 and 3, and using equally spaced mesh points. Tables 1 and 3 show that the maximum 

errors are evaluated by solving (2,2,2) and (3,3,3) of TFKZE under SCPs study on 𝑥 ∈
[0, 𝑁1], 𝑦 ∈ [0, 𝑁2] and 𝑡 ∈ [0, 𝑁3] at 𝛼 = 0.67 and 𝛼 = 0.75 when 𝑀1 = 𝑀2 = 𝑀3  = 2 −
10, but Tables 2 and 4 show that the numerical solutions of TFKZE (2,2,2) and TFKZE 

(3,3,3) under SCPs study on 𝑥 ∈ [0, 𝑁1], 𝑦 ∈ [0, 𝑁2] and 𝑡 ∈ [0, 𝑁3] 𝛼 = 0.67 and 𝛼 = 0.75 

when 𝑀1 = 𝑀2 = 𝑀3 = 10 and the results compare with the optimal homotopy asymptotic 

method (OHAM) [29], perturbation iteration algorithm (PIA) [30] and variational iteration 

method (VIM) [31].  
 

Case 1: 

Consider the 2D nonlinear TFKZE (2,2,2) [29]: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) + (𝑢2(𝑥, 𝑦, 𝑡))

𝑥
+
1

8
(𝑢2(𝑥, 𝑦, 𝑡))

𝑥𝑥𝑥
+
1

8
(𝑢2(𝑥, 𝑦, 𝑡))

𝑥𝑦𝑦
= 0,    0 < 𝛼 ≤ 1      (35) 

 So, the exact solution is  

𝑢(𝑥, 𝑦, 𝑡) =
4

3
𝜆𝑠𝑖𝑛ℎ2(𝑥 + 𝑦 − 𝜆𝑡)                                                                                                        (36) 

under the ICs and BCs:  

𝑢(𝑥, 𝑦, 𝑡) =
4

3
𝜆𝑠𝑖𝑛ℎ2(𝑥 + 𝑦)                                                                                                                  (37) 

𝑢(0, 𝑦, 𝑡) =
4

3
𝜆𝑠𝑖𝑛ℎ2(𝑦 − 𝜆𝑡)                                                                                                                (38) 

𝑢(𝑁1, 𝑦, 𝑡) =
4

3
𝜆𝑠𝑖𝑛ℎ2(𝑁1 + 𝑦 − 𝜆𝑡)                                                                                                   (39) 

𝑢(𝑥, 0, 𝑡) =
4

3
𝜆𝑠𝑖𝑛ℎ2(𝑥 − 𝜆𝑡)                                                                                                                 (40) 
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𝑢(𝑥, 𝑁2, 𝑡) =
4

3
𝜆𝑠𝑖𝑛ℎ2(𝑥 + 𝑁2 − 𝜆𝑡)                                                                                                   (41) 

 

       Figure 1 compares the numerical as well as exact solutions of Case 1 at 𝛼 = 0.67, 0.75 

whereas Figure 2 shows the maximum error values for all data sets, with the best quality for 

𝑀1 = 𝑀2 = 𝑀3 = 10 at almost 3.7 × 10−5 at 𝛼 = 0.67 and 3.6 × 10−5at 𝛼 = 0.75, and the 

worst quality for 𝑀1 = 𝑀2 = 𝑀3 = 2 at well under 2.3 × 10−5. 

 

 

Table 1: Maximum errors obtained for Case 1 (TFKZE(2,2,2)-SCPs) at 𝜆 = 0.001. 

𝑴𝟏 = 𝑴𝟐 = 𝑴𝟑 
Maximum Error 

𝛼 = 0.67 

Maximum Error 

𝛼 = 0.75 

   

2 2.344918451282476e-05 2.297312760942793e-05 

3 2.749039955281599e-05 2.699780172533799e-05 

4 3.097769048145214e-05 3.028499685707410e-05 

5 3.257643191689145e-05 3.185477927975053e-05 

6 3.413182884638623e-05 3.333157156296118e-05 

7 3.485303128310073e-05 3.403341670914391e-05 

8 3.573894703296030e-05 3.488457255431884e-05 

9 3.612858609417912e-05 3.526198003008744e-05 

10 3.671049747537743e-05 3.582855564614271e-05 

 

Table 2: Numerical solutions obtained for Case 1 (TFKZE(2,2,2)-SCPs) at λ=0.001. 

x y T 

PIA  

[30] 

OHAM 

[29] 

 

TFKZE-

SCPs 

Error 

TFKZE-

SCPs 

𝛼
= 0.67 

PIA [30] 
OHAM 

[29] 

TFKZE-

SCPs 

Error 

TFKZE-

SCPs 

𝛼
= 0.75 

 𝛼 = 0.67   𝛼 = 0.75  

0.

1 

0.

1 

0.

2 

5.31854e

-05 

5.39424e-

05 

5.14440e

-05 

1.40235e

-06 

5.32747e

-05 

5.39530e-

05 

5.18111e

-05 

2.12764e

-06 

  
0.

3 

5.28631e

-05 

5.39094e-

05 

5.05438e

-05 

2.49475e

-06 

5.29757e

-05 

5.39191e-

05 

5.09304e

-05 

2.95369e

-06 

  
0.

4 

5.25777e

-05 

5.38798e-

05 

4.97274e

-05 

3.34028e

-06 

5.27039e

-05 

5.38881e-

05 

5.01132e

-05 

3.71622e

-06 

0.

6 

0.

6 

0.

2 

2.95493e

-03 

3.02730e-

03 

3.02718e

-03 

5.30583e

-06 

2.96356e

-03 

3.02837e-

03 

3.02870e

-03 

7.80483e

-06 

  
0.

3 

2.92662e

-03 

3.02397e-

03 

3.02345e

-03 

9.32833e

-06 

2.93717e

-03 

3.02496e-

03 

3.02506e

-03 

1.07232e

-05 

  
0.

4 

2.90307e

-03 

3.02099e-

03 

3.02007e

-03 

1.23286e

-05 

2.91448e

-03 

3.02182e-

03 

3.02167e

-03 

1.33788e

-05 

0.

9 

0.

9 

0.

2 

1.06822e

-02 

1.14179e-

02 

1.15237e

-02 

7.74379e

-06 

1.07716e

-02 

1.14303e-

02 

1.15262e

-02 

1.07509e

-05 

  
0.

3 

1.04487e

-02 

1.13792e-

02 

1.15174e

-02 

1.33227e

-05 

1.05488e

-02 

1.13907e-

02 

1.15201e

-02 

1.44666e

-05 

  
0.

4 

1.02777e

-02 

1.13447e-

02 

1.15117e

-02 

1.71773e

-05 

1.03736e

-02 

1.13543e-

02 

1.15144e

-02 

1.77393e

-05 
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𝛼 = 0.67                                                                                                 𝛼 = 0.67 

 
𝛼 = 0.75 

 

Figure 1: Numerical solution and exact solution for Case 1 at 𝑁3 = 𝑁1 = 𝑁2 = 1,𝑀1 =
𝑀2 = 𝑀3 = 10. 

  

Figure 2: Error for Case 1 at 𝛼 = 0.75, 𝑁3 = 𝑁1 = 𝑁2 = 1, 𝑀1 = 𝑀2 = 𝑀3 = 10. 

 

Case 2: 

Consider 2D nonlinear TFKZE (3,3,3) [19]: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) + (𝑢3(𝑥, 𝑦, 𝑡))

𝑥
+ 2(𝑢3(𝑥, 𝑦, 𝑡))

𝑥𝑥𝑥
+ 2(𝑢3(𝑥, 𝑦, 𝑡))

𝑥𝑦𝑦
= 0,    0 < 𝛼 ≤ 1      (42) 
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 So, the exact solution  

𝑢(𝑥, 𝑦, 𝑡) =
3

2
𝜆𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑦 − 𝜆𝑡))                                                                                                 (43) 

under ICs and BCs : 

𝑢(𝑥, 𝑦, 0) =
3

2
𝜆𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑦))                                                                                                          (44) 

𝑢(0, 𝑦, 𝑡) =
3

2
𝜆𝑠𝑖𝑛ℎ (

1

6
(𝑦 − 𝜆𝑡))                                                                                                         (45) 

𝑢(𝑁1, 𝑦, 𝑡) =
3

2
𝜆𝑠𝑖𝑛ℎ (

1

6
(𝑁1 + 𝑦 − 𝜆𝑡))                                                                                            (46) 

𝑢(𝑥, 0, 𝑡) =
3

2
𝜆𝑠𝑖𝑛ℎ (

1

6
(𝑥 − 𝜆𝑡))                                                                                                         (47) 

𝑢(𝑥, 𝑁2, 𝑡) =
3

2
𝜆𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑁2 − 𝜆𝑡))                                                                                            (48)   

Figure 3 shows a comparison of the numerical and exact solutions of Case 2 at 𝛼 = 0.67, 

0.75 and while Figure 4 shows the maximum error values for all data sets, with the greatest 

result for  𝑀1 = 𝑀2 = 𝑀3 = 10 at well under 2.6 × 10−7 at 𝛼 = 0.67 and 𝛼 = 0.75, and the 

worst achievement for 𝑀1 = 𝑀2 = 𝑀3 = 2 at almost 2.5 × 10−7. 
 

Table 3: Maximum errors obtained for Case 1 (TFKZE(3,3,3)-SCPs) at 𝜆 = 0.001. 

𝑴𝟏 = 𝑴𝟐 = 𝑴𝟑 
Maximum Error 

𝛼 = 0.67 

Maximum Error 

𝛼 = 0.75 

2 2.534725168110781e-07 2.534725885772931e-07 

3 2.561893359584975e-07 2.561893928360146e-07 

4 2.578436190190780e-07 2.578436970204854e-07 

5 2.589316778409925e-07 2.589317506534084e-07 

6 2.596969405678235e-07 2.596970219645185e-07 

7 2.602632199962289e-07 2.602632983050076e-07 

8 2.606986545373546e-07 2.606987372997648e-07 

9 2.610437364801931e-07 2.610438169214349e-07 

10 2.613238086275247e-07 2.613238916645633e-07 

 

Table 4: Numerical solutions obtained for Case 2 (TFKZE(3,3,3)-SCPs) at λ=0.001. 

x y t 

VIM [31] 
OHAM 

[29] 

TFKZE-

SCPs 
Error 

TFKZE-

SCPs 

𝛼 = 0.67 

VIM [31] 
OHAM  

[29] 

TFKZE-

SCPs 
Error 

TFKZE-

SCPs 

𝛼 = 0.75 
 

𝛼
= 0.67 

  
𝛼
= 0.75 

 

0.

1 

0.

1 

0.

2 

5.000912

783e-05 

5.00091

e-05 

5.000925

835e-05 

5.002632

799e-08 

5.000914

105e-05 

5.00091

e-05 

5.000925

855e-05 

5.002652

923e-08 

  
0.

3 

5.000907

777e-05 

5.00090

e-05 

5.000925

786e-05 

7.503969

096e-08 

5.000909

430e-05 

5.00091

e-05 

5.000925

807e-05 

7.503990

303e-08 

  
0.

4 

5.000903

250e-05 

5.00090

e-05 

5.000925

741e-05 

1.000530

859e-07 

5.000905

153e-05 

5.00091

e-05 

5.000925

762e-05 

1.000532

977e-07 

0.

6 

0.

6 

0.

2 

3.020038

194e-04 

3.02003

e-04 

3.020040

024e-04 

5.100174

542e-08 

3.020038

425e-04 

302004

e-04 

3.020040

026e-04 

5.100194

666e-08 

  
0.

3 

3.020037

5160-04 

3.02003

e-04 

3.020040

019e-04 

7.650271

211e-08 

3.020037

779e-04 

302004

e-04 

3.020040

021e-04 

7.650292

418e-08 

  
0.

4 

3.020036

895e-04 

3.02003

e-04 

3.020040

014e-04 

1.020036

408e-07 

3.020037

195e-04 

302004

e-04 

3.020040

017e-04 

1.020038

526e-07 

0.

9 

0.

9 

0.

2 

4.567801

885e-04 

4.56780

e-04 

4.567804

387e-04 

5.226524

736e-08 

4.567802

187e-04 

45678e-

04 

4.567804

389e-04 

5.226544

860e-08 

  
0.

3 

4.567800

915e-04 

4.56780

e-04 

4.567804

383e-04 

7.839790

053e-08 

4.567801

293e-04 

45678e-

04 

4.567804

385e-04 

7.839811

260e-08 

  
0.

4 

4.567800

089e-04 

4.56780

e-04 

4.567804

378e-04 

1.045304

727e-07 

4.567800

482e-04 

45678e-

04 

4.567804

380e-04 

1.045306

845e-07 
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𝛼 = 0.67                                                                                                            𝛼 = 0.67 

 
𝛼 = 0.75 

Figure 3: Numerical solution and exact solution for Case 2 at 𝑁3 = 𝑁1 = 𝑁2 = 1,𝑀1 =
𝑀2 = 𝑀3 = 10. 

 

Figure 4: Error for Case 2 at 𝛼 = 0.75, 𝑁3 = 𝑁1 = 𝑁2 = 1, 𝑀1 = 𝑀2 = 𝑀3 = 10. 
 

8. Conclusions 

     An approximate strategy for successfully solving 2D nonlinear TFZKEs is proposed in this 

paper. The Caputo formula describes the fractional derivatives. The proposed operational 
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matrix formulation technique is based on the collocation method of SCPs. The numerical 

results for (2,2,2) and (3,3,3) of TFKZE -SCPs show that the present approach has accurate 

results and good convergence relying on Figures 1-4 by utilizing fewer grid points than other 

analytic techniques. The provided numerical technique for solving linear and nonlinear 

fractional order models is shown to be very efficient and convenient. 
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