
Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

*Email:rana2005ra@yahoo.com

218

A secure Search over Distributed Data

Rana J. Mohammed
Department of Computer Science, College of Education of Pure Science, Basrah University, Basrah, Iraq.

Abstract
 In recent years, due to the economic benefits and technical advances of cloud
computing, huge amounts of data have been outsourced in the cloud. To protect the
privacy of their sensitive data, data owners have to encrypt their data prior
outsourcing it to the untrusted cloud servers. To facilitate searching over encrypted
data, several approaches have been provided. However, the majority of these
approaches handle Boolean search but not ranked search; a widely accepted
technique in the current information retrieval (IR) systems to retrieve only the top–k
relevant files. In this paper, propose a distributed secure ranked search scheme over
the encrypted cloud servers. Such scheme allows for the authorized user to search
the distributed documents in a descending order with respect to their relevance
documents and the contents of files be retrieved. To do so, each data owner builds
its own searchable index, and associates with each document in that index its weight
score, which facilitate document ranking. To ensure the privacy of these weights,
utilized the ranking. While preserving their capability to perform the ranking process
and to conducted several empirical analyses on a real dataset, all programs needed to
the propose system written using Matlab language.

Keywords: Cloud Computing, searchable encryption, Index Terms—Cloud
Computing, searchable encryption, filter.

 البحث الامن على البیانات الموزعة

 رنا جاسم محمد
 .العراق ،بصرة ،جامعة البصرة ،كلیة التربیة للعلوم الصرفة ،قسم علوم الحاسوب

 :الخلاصة

كمیة كبیرة من , نتیجة للاستفادة الاقتصادیة والتقدم التقني في الاحتساب السحابي , في السنوات السابقة
یشفرون بیاناتهم قبل لحمایة خصوصیة البیانات فان مالكي البیانات . البیانات تم نقلها الى هذا النموذج الجدید

ولتسهیل عملیة البحث في البیانات المشفرة فقد تم . نقلها الى خادمات الاحتساب السحابي غیر الموثوقة
كلة البحث البولیاني ولیس تطویر العدید من المناهج لاجراء هذه العملیة ولكن اغلب هذه المناهج تعالج مش

 .الاستخدام في انظمة استرجاع المعلومات الحدیثة الذي یعد تقنیة واسعة , لبحث الترتیبي ا
 .تصمیم نظام بحث توزیعي لبحث البیانات المشفرة في الخادمات السحابیة بصورة امنة في هذا البحث تم

كثر تشابه مع الاستفسار النموذج المقدم یتیح امكانیة بحث الملفات التوزیعیة وارجاع الملفات التي لها ا
بیانات یبني دلیل قابل للبحث ویربط مع كل ملف وزنه في الدلیل ال ذه االمهمة فان مالكلاجراء ه, المدخل

تم اجراء عدة لتسهیل عملیة الترتیب ولحمایة الاوزان فقد استخدمنا طریقة المقابلة الحافظة للخصوصیة
 .ح هي لغة ماتلاب اللغة المستخدمة لكتابة البرامجیات للنظام المقتر ,یانات حقیقیة تجارب على قواعد ب

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

219

Introduction
 Recently, due to the great advances in Internet technologies, large companies like Google, Yahoo,
and Amazon have adopted the Cloud Computing technology to support their consumers with an
efficient, large scale data management services [1]. However, outsourcing sensitive data such as health
records, personal e-mail, photos, and government documents to the cloud servers represents a great
barrier towards the wide adoption of Cloud Computing. To see way, in the cloud, the management of
users’ data will be under the control of untrusted cloud servers, and this may jeopardize data privacy.
To alleviate concerns, users usually encrypt their sensitive data before outsourcing it to combat
unsolicited access.
 Searchable symmetric encryption systems (SSES) [2-7] offer secure and efficient solution to
selectively retrieve the encrypted data through keyword search. Typically, these systems build a secure
index structure and outsource it along with the encrypted documents to the remote server. Authorized
users submit their requests as secret trapdoors that are integrated properly with the stored indexing
information. The server uses the received trapdoor to search over the stored index, and retrieves the
matching encrypted documents.
 However, almost all the previous SSES systems suffer from two main drawbacks. First, these
systems only support the search over a single source of encrypted documents, i.e. a document storage
server. To scale for a large amount of data, however it is desirable to search over multiple sources, i.e.
several distributed servers. Second, these systems are limited to the case of Boolean search model,
which uses the presence or absence of queried keywords as a measure to decide whether the searched
documents are relevant or not to the search request. Under such systems it is very cumbersome for
most users to express complex requests and control the number of retrieved documents. In contrast,
modern IR systems [8] utilized ranking model to score all retrieved documents according to some
relevant criteria. Such model enhances the efficiency of the system and provides precise answer by
retrieving only the top- k relevant documents from the whole document collection.
 This paper explores a ranked searchable encryption scheme of multi-keyword queries over
distributed cloud servers. Searching over distributed servers enhances the ability to move for large-
scale collections, and improve the search response time. In such setting, the computation required to
evaluate user query is distributed among several servers. All the available servers cooperate to
evaluate the same query. A ranker server is used to manage user’s request, which accepts search
request, broadcasts it to all the parallel servers, and then merges all partially responded results into a
final list. Searchable encryption schemes usually use a searchable structure to index their text
collection for speeding the search task. To facilitate the ranking task, we need to upgrade the task.
Searchable index into rank-oriented searchable index. To do so, we need to associate numerical
weighting scores with each keyword-document entry in the searchable index. However, unless secured
well, such scores leak important statistical information about the underlying keywords to the adversary
server. Thus, the main issue here is how we can encrypt these scores while preserving their ability to
rank the relevant documents. In the literature of secure keyword ranked search, the presented schemes
[9], [10] always use the order preserving symmetric encryption (OPSE) [11,12] primitive to encrypt
the numerical weighting scores. Unfortunately, such primitive leaks the relative order of the scores to
the adversary server. To tackle this problem, we instead utilized the privacy preserving mapping
(PPM) primitive [13] to secure the these values without leaking anything, while still having the ability
to order the relevant documents according to their secure weight scores.
 Our contributions can be summarized as the follows. Firstly, to provided a secure ranked symmetric
encryption search over distributed cloud servers. Secondly, for using the PPM primitive for preventing
the cloud servers from learning anything about the score values. Thirdly, provided new mechanism to
perform ranked search with multiple keywords. Fourthly, to develop a simple yet secure protocol for
collecting certain statistics from the private datasets of the individual data owners.
 The rest of this paper is organized as follows. Related works are reviewed and discussed in Section
II. Section III introduces the problem definition and the privacy requirements. Section IV introduces
the preliminary techniques, while Section V introduces the proposed scheme. Security analysis and
performance investigation are provided in Section VI, and conclusions are drawn in Section VII.
Related Works
Searchable symmetric encryption systems (SSES). The first practical kind of such systems is due to
Song et al. [2], where each word in the document is encrypted with a two-layer encryption scheme.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

220

Goh et al. [3] introduced the secure index notion, where a single index is dedicated for each file in the
collection. Chang et al. [4] provided new security definition of searchable symmetric encryption
systems. Later on, strong security definitions along with their efficient constructions have been
presented in [5], where a single index is constructed for the entire document collection. However, the
above listed schemes are neither suitable to search multiple servers, nor consider the ranked search
with multiple keywords. On contrary, our work addresses the above listed shortcomings figure 1.

Figure 1: The Basic design of the proposed framework.

Secure ranked search systems. Unlike searching plaintext data, much less attention has been paid to
explore the secure ranked search problem over the encrypted data. For efficiency, all presented
schemes for ranked search weaken the security guarantee of current SSES by leaking the relative
relevance order to the adversary server. Both [9] and [10] have used OPSE primitive to encrypt the
weight scores. However, OPSE primitive leaks to the cloud server important information with respect
to the score values. Such leakage may lead to serious frequency attacks if that adversary has certain
background knowledge about the underlying collection. Furthermore, the work of [10] allows only
searching with single keyword queries. Our work replaces OPSE with PPM primitive to encrypt the
score values without leaking anything about the underlying scores, and allow users to provide multi-
keyword queries.
Problem definition and privacy requirements
 This section gives an overview about our problem and illustrate its goals along with its privacy
requirements.
A. Problem Definition
 Consider that we have n connected yet distinct data owners (individuals or companies) 퐷푂 (i = 0,
n - 1 ˄ n > 2), each owner holds a document collection 퐷 = {푑 ,푑 , … ,푑 } of 푛 text documents.
We also have m (m ≤ n) cloud servers, where the n data owners’ collections are mapped to these m
cloud servers. Figure.1 illustrates the overall architecture of our scheme. Each data owner extracts, in
the off-line stage, the keyword set 퐾푤 = {푤 ,푤 , … ,푤 } from the sub-collection 퐷 assigned to it,
then it builds its searchable index 퐼푛푑 from 퐾푤 set. Finally, each data owner encrypts its own
collection 퐷 and its searchable index 퐼푛푑 and then uploads them together to their dedicated cloud
server퐶푠 . To search the m remotely cloud servers with a multi keyword query
푄 = {푠푤 , 푠푤 , … , 푠푤 }, the authorized user generates the secret trapdoor
푇푟 = {푇푠푤 ,푇푠푤 , … ,푇푠푤 }from the above query, and then sends Tr to the ranker server. The latter
broadcasts the received trapdoor set to all the m parallel cloud servers. Once receiving Tr, each server
searches its secure indices 퐼푛푑 (one or more) with the presented trapdoors. Once finding some
matching, each server retrieves the posting list together with the label of the corresponding keyword to

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

221

the ranker server. The ranker server collects the local lists from all the participant servers, merges
them together, sorts the final list according to the private weights, and finally, it returns the encrypted
files of the top - k relevant scores to the cloud user.
B. Privacy Requirements
 For enhancing the efficiency, the security definition of all presented ranked searchable encryption
schemes allows to leak some important information to the adversary server. Such information includes
the relative-order of the weight scores, access pattern (the identifiers of the relevant files), and search
pattern (whether the keyword w has been searched before or not). Our scheme tightens the privacy
requirements by preventing the cloud servers from learning anything about the weight scores. The
privacy requirements of our searchable encryption scheme can be illustrated as follows:
1. (Documents privacy) the proposed encryption scheme does not leak anything to the cloud server
pertaining to the stored documents more than their number, sizes, and file ids.
2. (Trapdoor privacy) without learning the secret key, cloud servers could not be able to generate a
valid trapdoor.
3. (Index Privacy) secure index does not leak anything about its contents.
4. (Global weights privacy) To get globally consistent document scores, the participant data owners
need to get the union set of their private weight scores. For such a process, no data owner is allowed to
learn the source of each item in the resulted union set.
 Assuming that all participant parties (servers and data owners) are semi-honest parties and not
colluding with each other. In this model, all parties are supposed to follow the protocol faithfully, but
they are curious to the private information of the others.
Preliminary Techniques
A. Information Retrieval (IR)
 Most of the current IR systems [8] use an index on the document collection to speedup search. The
inverted index structure is the most popular one. This index is represented as a set of entries, where
each entry includes a keyword (term) and the set of file identifiers (posting list) that contain the
corresponding keyword. To make the ranking process more feasible, each file in the posting lists is
assigned with a numerical weight. Such weights are used to decide which file is more relevant to the
corresponding keyword. The TF-IDF scheme is widely used to compute the weighting scores. For the
given term w and the document d, TF (term frequency) refers to the number of times in which w
appear in the document d. While IDF (inverse document frequency) denotes the ratio of the whole
number of files in the collection to the number of files that include the term w. figure. 2 illustrates a
simple example of the inverted index.
B. Privacy Preserving Mapping (PPM)
 PPM [13] is a deterministic encryption scheme that allows for mapping numbers into encrypted
images, such that the <, =, > relations among the plaintext numbers are preserved. The author has
presented three privacy definitions along with their constructions, namely ideal privacy, level-2
privacy, and level-3 privacy. We adapt the first one, which prevents leaking any additional
information to the adversary server beyond the comparison result. Suppose that we have a set 푋 =
{푥 , 푥 , … , 푥 } of distinct integer numbers, key-based hash function H1 () with a secret key kp,
another H2 hash function. The PPM encryption is run in the data owner side and goes as follows:

Figure 2: Rank-oriented inverted index.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

222

1) Generate the mapping list:
 푀푙푖푠푡 = {퐻2(퐻1 푥)‖퐻1 (푥))|푥 < 푥 ˄ 1 ≤ 푖, 푗 ≤ 푟 (1)
2) For each number 푥 휖 푋 generate its secret image as:
 푇 = 퐻1 (푥) (2)
3) Send the public parameters (H2, Mlist) along with the secret images 푇 (1 ≤ i ≤ r) to the adversary
server.
4) Given two images 푇 and 푇 , the adversary server can compare between them as follows:

 Cpmpare (Tx Ty)
0 if Tx = Ty
1 if H2(Tx‖Ty) ∈ M list
−1 if outher wise

 (3)

C. Bloom filter
 Brie fly, Bloom filter BF [14] is a space-efficient data structure for storing a large amount of items.
It is defined as a bit array of q bits, where all bits are initially set to 0. It also defines t independent
hash functions, 휑 ,휑 , … ,휑 , to map items into a domain between 0 and q - 1. In order to store the
item 푏 , all the indices obtained from the t hash functions are set to 1. To check whether the item 푏 is
found in the filter, we feed it to all the t hash functions to generate t positions. If all these positions are
set to 1, then the item is found. Otherwise, it is not found. A false positive is possible which can be
controlled by changing the filter length q as follows:

 ……………..(4)
 Where r is the total number of items to be stored, p is the user defined false positive probability.
The Distributed Ranked Searchable Symmetric Encryption Scheme (Drsse)
 The proposed DRSSE scheme is composed of seven algorithms that are scattered between two
phases, namely the indexing phase and the retrieving phase. The indexing phase includes four
algorithms: Keygen, Index construction, Weight collection, and Document encryption, while the
retrieving phase includes three algorithms: Trapdoor generation, Search, and Ranking.
A) Indexing phase
 Key generation: The system administrator (any one of the involved data owners) runs the Keygen
algorithm to initialize the system. This algorithm takes the security parameter (λ) as input, and
generates the secret key K that is securely shared among all the n participant data owners.
 Index construction: Each data owner 퐷푂 runs Index construction algorithm to construct its secure
document index 퐼푛푑 . This algorithm is composed of two steps, index building, and index protection.

 (5)
 Index building step: In this step, each data owner preprocess its local collection and creates its own
searchable index 퐼푛푑 . In this paper, we use a multiple-keyword query Q to search multiple servers.
Among several TF-IDF formulas, we choose the following one to compute the weight of the document
푑 with regards to the keyword푤 :
 Where |푑 | is the length of the document 푑 , which represents the total number of its terms,
functioning as a normalization factor, 푡푓 , is the term frequency of term 푤 in document 푑 . To rank-
order the documents, during the retrieval phase, we need to measure the overall relevant score for each
file 푑 with respect to the query Q, hence we need to sum the weight values of each keyword in Q
correspondig to the file 푑 :
 푆푐표푟푒 푄,푑 = ∑ 푊푒푖푔ℎ푡 ,∈ ………………(6)
 Index protection step: In this step, each data owner turns its own searchable index into a secure
index before shipping it to the cloud server. Such process is achieved by encrypting the individual
components of the inverted index. The inverted index is protected through the following steps:
1. (Keyword set protection) keyword set has to be encrypted such that only the authorized users can
generate them during the trapdoor generation step. We suggest using a key-based hash function,
휋 (.), where sk is a secretly shared key among all the involved data owners. In practice we have used
the SHA-1 one-way function as instance of 휋 with output of 160 bit.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

223

2. (File IDs protection) For protecting the file IDs we suggest encrypting these values with any
semantically secure encryption scheme such as (Paillier cryptosystem) [15]. Such scheme guarantees
that if the same file ID is encrypted multiple times, it will produce different ciphertexts but all
decrypted to the same value.
3. (Posting list length concealing) The number of file IDs in the posting lists should also be concealed
to prevent the leakage of important information, which may be used by some statistical attacks. To do
so, we can pad all the posting lists with faked pairs of (random file IDs, zero weight) to fit the MAX_
L, where MAX_ L is the length of the longest posting list in the collection.
4. (Keywords number hiding) Similarly, we can add some faked records composed of faked keywords
along with their faked posting lists to hide the actual number of stored keywords.
5. (Weight scores protection) However, the major problem is to encrypt the weight numbers while
preserving their functionality to rank the retrieved documents. To solve this problem, we utilize the
appealing feature of the recently developed PPM primitive.

 Global weights collection: The participant data owners cooperate together to run Weight collection
algorithm to get the union set of their private weights . To keep the globally consistent document
scores, we have to collect all the weight values from all the distributed data owners, and merge them
together into a single set. Thus we perform the following modifications:
 1) Each data owner prepares its unique set of weight values
 Xi = unique{(푊푒푖푔ℎ푡 ,)}.
2) Collect the set X of global weight values from all the n distributed 퐷표 푠. 푡 푋 = ∪ 푋 ,∀푖 =
1, … ,푛.
3) Generate the mapping list Mlist from the set X as in (1).
4) Each data owner encrypts its own set 푋 = {푥 } to generate their secure images as in (2).
5) Send (H2, Mlist) to the ranker server as public parameters .
Similarly, the ranker server uses the Mlist together with H2 to compare any received pair of images as
in (3). However, the privacy requirement for this step is how the distributed 퐷푂 can find the union set
X of their local sets 푋 without revealing which weight belongs to which data owner. We preset a
simple approach to calculate the union of the individual weight values belonging to distributed owners
without revealing the source of these values.
 Given n data owners 퐷푂 ,퐷푂 , … ,퐷푂 of n local weigh sets 푋 ,푋 ,푋 . We wish to compute
∪ X while preserving the privacy of the participant data owners. Initially, the involved parties arrange
themselves into a ring. Then, each party generates its local random vector 푅 of length |푋 |, and then
performs the term-wise addition between the generated vector and the original vector weights 푋 to
produce the new vector 푅푥 . The proposed protocol goes into two rounds. In the first round, 퐷푂
starts the work by sending its 푅푥 vector to its successor. The from its predecessor party, merges it
with its local set 푋 , permutes the result, and passes the resulted vector to the next party. To prevent
퐷푂 from learning the number of scores in 퐷푂 , 퐷푂 pad its random vector 푅푥 with a fake vector of
c random values. At the end of the first round we get the union of noisy weights. When the 퐷푂 gets
back a vector, it starts the second round, which removes the noise from the resulted union set.
Algorithm 1 Global weights collection
Input: 퐷푂 ,퐷푂 , … ,퐷푂 : n data owners, each one have a local set 푋 of weight value.
Output: X: the global (union) set of the local sets 푋 .
1: Set X = , Set = 푋 = ∅
2: Each data owner 퐷푂 generates its own local vector 푅 of |푋 | random numbers.
3: 퐷푂 generate the faked vector F of c random numbers.
4: Each 퐷푂 computes: 푅푥 = 푋 + 푅
5: 퐷푂 merge its vectors 푅푥 and F as : 푅푥 = {푅푥 ,퐹}
6: 퐷푂 sends 푅푥 to 퐷푂 .
7: { round 1}
8: for i=1 to n - 1 do
9: Receive : 푅푥 from 퐷푂
10: 푋 = {푋 , 푅푥 || 푅푥 }
11: 푋 = permute(푋)

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

224

12: Send X noisy to 퐷푂 mod n.
13: end for
15: for i=0 to n - 1 do
16: Remove 푅푥 from X noisy
17: Set X = permute{ X, 푋 ‖푋 푛표푖푠푦 }
18: Send X to 퐷푂 mod n
19: end for
20: 퐷푂 refines X as: X = unique(X)
Here each party subtracts the added random values 푅 from its random set 푅푥 in the received union
set, and then passes the new set to its successor. This work repeats until 퐷푂 receives the pure union
set. Having done that, it removes the duplicated values to get the set X. Algorithm 1 depicts the
operations of this protocol. Once doing that, 퐷푂 generates Mlist and then sends it to the ranker server.
 Security improvement and efficiency enhancement:
 Paillier-PPM: As we said before, PPM primitive is a deterministic encryption. Such property leaks
additional information that may be utilized from the cloud servers to conduct some statistical attacks.
This is because, the distribution of the original weights will be preserved in the encrypted images. To
overcome this problem, we need to make PPM a probabilistic primitive. Such new setting encrypts the
duplicated weights into different ciphers. To do so, we encrypt the secure images 푇 of each party with
another layer of probabilistic encryption enc. So that푇 = 푒푛푐 (퐻1 (푥)), where kprob is a
securely shared key among all the n parties. Particularly, we utilize the probabilistic asymmetric
Paillier cryptosystem to implement enc encryption function. The ranker server has to decrypt each
received image before performing its comparison process.
 Efficiency enhancement: The global Mlist list needs a storage capacity of () to store the
generated hash values, where r = |X|. Particularly, for some large r value, this amount of data seems to
be problematic. Our solution to solve this problem is to use a single Bloom filter for storing the Mlist
list. For this new setting, secure images of X set are stored in the Bloom filter BF as:
 BF(φ (H2(H1 (x) H1 (x))) = 1 x < x ˄1 ≤ k, j ≤ r,∀ = 1, … , t (7)
Algorithm 2 Secure indices generation
Input: λ : the security parameter, 퐷푂 (푙 = 0, … ,푛 − 1): data owners, each with its own document
collection 퐷 , 휑 , . . . , 휑 : hash functions for the Bloom filter BF, 퐻1 and H2: two hash functions
for the PPM primitive, prop: the desired false positive probability, 퐸푛푐 (): AES symmetric encryption
function, MAX_ L: the maximum length of posting lists, Max_keyword : the maximum number of
keywords that could occur in a collection, (Enc, Dec): the encryption and decryption functions of
Paillier cryptosystem.
Output: 퐼푛푑 : secure index for each data owner 퐷푂 , Mlist: the global mapping list.
 Keygen

 - Use λ to generate sk, pk, and Kcoll secret keys, two key pairs (pai_enc_푘푒푦 ; pai_dec_푘푒푦),
(pai_enc 푘푒푦 , pai_dec_푘푒푦) for Paillier cryptosystem.
for all 퐷푂 , l = 0, . . . , n - 1 do
 - Set 푋 = .
 - Extract the distinct keyword set 퐾푊 = {w1, w2, . . . , 푤 }.
 for all 푤 ∈ 푘푤 do

 - Build the 퐼퐷 set, which include the set of files ids that include the keyword 푤 , 퐼퐷 ={ 푖푑 , 푖푑 , . . . ,
푖푑 }.
 for all 푖푑 퐼퐷 do

- Calculate the weight score 푥 , as in (5).
- 푋 = {푋 , 푥 , }
- 퐸푛푐푟푦푝푡 푖푑 푎푠: 퐸푖푑 = 퐸푛푐 _ _ (푖푑)
- 퐸푛푐푟푦푝푡 푥 , 푎푠 ∶ 퐸푛푐퐸푛푐 _ _ (퐻1 (푥 ,))

end for
 - Set 푃표푠푡푖푛푔 = {퐸푖푑 ,퐸푥 , },∀푗 = 1, … , |퐼퐷 |.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

225

 - Pad 푃표푠푡푖푛푔 with 푀퐴푋 − 푛푓푖푙푒 pairs:
 퐸푛푐 (푟푛),퐸푛푐 _ _ (표)) , 푤ℎ푒푟푒 푟푛 푖푠 푎 푓푟푒푠ℎ 푟푎푛푑표푚 푛푢푚푏푒푟
 - Store {휋 (푤푖),푃표푠푡푖푛푔 } in 퐼푛푑
 end for
 - Pad 퐼푛푑 with Max_keyword faked records.

 - Encrypt the document collection 퐷 with 퐸푛푐2 () encryption to get the encrypted collection 퐶
 - Upload 퐶 collection along with 퐼푛푑 to the 퐶푆 server that is dedicated to 퐷푂 party.

 - 푋 = unique(푋)
end for
- Use Algorithm 1 to get the global set X of the local sets 푋 (l = 0, . . . , n-1).
- 퐷푂 compute Mlist from X as in (1).
- Compute the length q of the Bloom filter BF as in (4).
- Initialize the Bloom filter BF of q zero-bits.
- Store Mlist items into BF as in (7).
- Send (H2, BF,휑1, … ,휑푡,푝푎푖_푑푒푐_푘푒푦)) to the ranker server.
- Publish (sk, kcoll) keys to the authorized users.
The comparison function will be modified as follows:

퐶퐵퐹 푇 ,푇
0 푖푓 푇 = 푇

−1 푖푓 퐵퐹 (휑푖 (퐻2(푇 푇))) = 1, 푖 = 1, … . . , 푡
1 푖푓 표푡ℎ푒푟푤푖푠푒

 (8)

 Algorithm 2 illustrates our protocol for generating the secure indices.
 Document encryption: To protect the privacy of their document contents, each 퐷푂 runs Document
encryption algorithm to encrypts its collection 퐷 with a pseudo-randomness against chosen plaintext
attack (PCPA) encryption Enc2 () before uploading it to the cloud. In particular, we use (AES
with CTR mode) as an instance of Enc2 ().Given the document 푑 and its identifier id(푑), the
encrypted collection will be 퐶 = {(푖푑(푑), Enc2 (푑)}∀푑 ∈ 퐷 .
Algorithm 3 Ranking
Input: Merge List: a set of encrypted posting lists of length L.
Output: FileID: a set of relevant file 푖푑 ,Pscore: a set of weight scores, both sets of length L.
- Set Efileid to capture the file ids in MergeList: Efileid = {퐸푛푐 (푖푑)}of length L.
- Use pai_enc_key1 to decrypt each file id in Efileid to get: FileID = {푖푑 , 푖푑 , … , 푖푑 }.
- Define Escore set to capture all the weight values in MergeList:
Escore = {퐸푛푐 퐻1 (푥) } of length L.
- Initialize the zero matrix M of (L*L) dimensions.
- Decrypt each item in the Escore set with the pai_dec_key2 to get the Image set: Image = {퐻1 (푥)}
of length L.
for i1=1 to L do
 for j1=1 to L do
 if i1 < j1 then
 - M(i1; j1)=CBF(Image(i1),Image(j1)) as in (8)
 else if i1 > j1 then
 M (i1,j1)=-M(j1,i1)
 end if
 end for
end for
- Pscore = {sm1, . . . , smL}, where 푠푚 is the summation of row j in M .
B. Retrieving phase
 Trapdoor generation: System administrator shares some secret information with the authorized users
to enable them searching the encrypted documents. Such information includes :
1) sk: For generating the secure trapdoors for the given keywords search.
2) Kcoll: For decrypting the retrieved encrypted documents.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

226

Given the query Q = {푤푠 ,푤푠 , … ,푤푠 }of z keywords, the authorized user U runs Trapdoor
generation algorithm to generate the secret trapdoor 푇푟 = 휋 푤푠 , 푘 ,∀푗 = 1, … , 푧 for his
multiple keyword query, where k is a user defined parameter controlling the number of retrieved files.
 Distributed searching: The ranker server accepts the search request Tr from the end users and
broadcasts the trapdoor set 휋 (푤푠),∀푗 = 1, … , 푧 to all the m distributed cloud servers. Each cloud
server 퐶푠 runs in parallel the search algorithm on its searchable index 퐼푛푑 to find the matched
entries. If some matching exists, the server 퐶푠 returns each matched posting list together with the
label of the corresponding trapdoor to the ranker server. More formally, 퐶푠 returns the pairs (j,PL),
for each PL s.t. 휋 푤푠 ,푃퐿 ∈ 퐼푛푑
 Distributed ranking: Once receiving the posting lists, ranker server collects and merges them
together according to their keyword labels. Given the merged posting list 푀푒푟푔푒푙푖푠푡 of the keyword
label j, the ranker server runs Ranking algorithm to return the file identifier set FileID together with
their corresponding partial score set Pscore. Once doing this, ranker server have to sum the partial
score values of the relevant files. Finally it retrieves the encrypted files of the k highest score values.
Algorithm 3 shows the ranking algorithm. Algorithm 4 shows our proposed protocol for retrieving the
top-k file among multiple cloud servers.
Algorithm 4 Distributed rank based search over multi encrypted cloud servers.
Input: k: number of retrieved files, 휋 : key based hash function with its secret key sk, kcoll:
decryption key of the encrypted file collection, Q = {푤푠 ,푤푠 , … ,푤푠 }: multiple keywords query.
Output: The set of top-k encrypted files.
 {user side: }
 for all 푤푠 ∈ 푄 do
 - Compute 휋 (푤푠)
 end for

 - Send the trapdoor set Tr =(휋 푤푠 , 푘), 푗 = 1, … , 푧 to the ranker server.
 - Use Kcoll to decryp the received top-k encrypted files.
 {Cloud servers side:}
 for all cloud server 퐶푠 (i = 1, . . . , m) do
 for all 휋 푤푠 ∈ 푇푟 do
 if 휋 푤푠 ∈ 퐼푛푑 then

 - Send (j,PL) to the ranker server, where PL is the posting list corresponding to 휋 푤푠
 end if
 end for
 end for
 {Ranker side:}

Input: 푃 = (푙푎푏 ,푃퐿), (푙푎푏 ,푃퐿), … , 푙푎푏 ,푃퐿 : a set of mp pairs of (label, posting list) from
the parallel m cloud servers, Pai_dec2 is the decryption key of Paillier decryption function.
Output: the set of the encrypted files of the top-k relevant scores.
 - Initialize an empty set RelFile = ;

 - Initialize an empty set Score = ;
 - stor = 0.
 for j=1 to z do
 {z = |Q|}

 - Set Psup = PL to capture all the posting lists PL 휖 P that satisfy:(lab, PL) P˄ 푙푎푏 = 푗
 - [FileID, Pscore]=Ranking(Psup)
 for all id FileID do
 - Location = find(RelFile==id)
 if Location ≠ −1 then
 {found}
 - Score(Location) = Score(Location) + Pscore(id)
 else

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

227

 {not found}
 - RelFile(stor) = id
 - Score(stor) = Pscore(id)
 end if
 end for
end for
- Set HS vector to capture the indices of the k-minimum numbers in Score vector,
퐻푆 = {ℎ푠 ,ℎ푠 , … ,ℎ푠 }.
 - Set Relevant = { RelFile(ℎ푠),푅푒푙퐹푖푙푒(ℎ푠), … ,푅푒푙퐹푖푙푒(ℎ푠)} be the identifier set of the top-k
encrypted documents.
- Ranker server broadcasts Relevant set to the m cloud servers, which send back the encrypted
documents corresponding to the provided identifiers to the ranker server. Finally, the latter, provide
the cloud user with the encrypted documents .

 Consider the following example to illustrate the work of our protocol. For ease of exposure we use
unencrypted posting lists. Suppose that k = 4, Q = {cloud, security}, and three cloud servers. cloud
server 1 returns {(1, {(1, 4)(3, 7)}), (2, {(2, 5)(1, 3)})}, cloud server 2 returns {(1, {(5, 3)(6, 2)}), (2,
{(5, 1)(6, 1)})}, and cloud server 3 returns {(1, {(9, 2)(10, 2)}), (2, {(11, 3)(12, 6)})}
 Ranker server collects the posting lists for each keyword label as:
 푃푠푢푏 = {(1, 4)(3, 7)(5, 3)(6, 2)(9, 2)(10, 2)}
 푃푠푢푏 = {(2, 5)(1, 3)(5, 1)(6, 1)(11, 3)(12, 6)}
and use the ranking algorithm to return the 퐹푖푙푒퐼퐷 (퐹푖푙푒퐼퐷) and 푃푐푠푐표푟푒 (푃푐푠푐표푟푒) set for 푃푢푏
(푃푢푏)
 퐹푖푙푒퐼퐷 = {1, 3, 5, 6, 9, 10}
 퐹푖푙푒퐼퐷 = {2, 1, 5, 6, 11, 12}
 푃푐푠푐표푟푒 is computed inside ranking algorithm as follows :
) Image = {4, 7, 3, 2, 2, 2} of length 6.
) Compute matrix M as follows:

0 1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1
1 1 0 -1 -1 -1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

Thus 푃푐푠푐표푟푒 = {-3,-5,-1, 3, 3, 3}
 푃푐푠푐표푟푒 = {-3, 0, 4, 4, 0,-5} is computed as푃푠푐표푟푒 .
 RelFile = {1, 3, 5, 6, 9, 10, 2, 11, 12}
 Score = {-3,-5, 3, 7, 3, 3,-3, 0,-5}
 HS = {2, 12, 1, 7}, where 2 is the location of the minimum number -5 in Score, and so on.
 Relevant = {3, 12, 1, 2}
 C. Document decryption
 Once the encrypted documents corresponding to the secure trapdoor Tr are retrieved, user
decrypts them with Kcoll key to obtain their plaintext documents.
Security analysis and performance investigation
 In this section evaluating the security and the performance of our proposed scheme
A. Security analysis
 In the security analysis, investigate to which extent our scheme fulfills the privacy requirements
described in section III-B
1. For protecting the document files, each party applies a PCPA-encryption on these documents
before outsourcing . The appealing feature of such encryption is that its output can not be
distinguished computationally from random values. However, only the file ids, number of files, and
the size of each encrypted document are allowed to be leaked in our scheme.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

228

2. To prevent the cloud servers and even the ranker server from generating a valid trapdoor we
suggest using a key-based hash function 휋 () with secret key shared among the data owners and the
authorized users to generate the valid trapdoors. Such that without knowing the secret key sk, it seems
impossible for such servers to generate a valid trapdoors. According to Oxford’s dictionary [16],
English language includes about 25000 distinct words. Such limited number of keywords makes it is
easy for the cloud server to perform its brute-force attack.

Figure 3-Weight scores distribution.

 For this reason, we used a key-based hash function to make it more difficult for the cloud server to
conduct its brute-force attack.
3. Secure index privacy: To protect the keyword set, our scheme uses a one-way key-based hash
function. Furthermore, for preventing some statistical attacks, suggest adding some faked keywords to
hide the actual number of the stored keywords in each index. Similarly, the posting lists are padded
with faked pairs of (file id, weight score) to hide the actual length of the individual lists. What remains
is to encrypt the individual file ids and their corresponding weight values. Both weight values and file
ids are encrypted with the randomized Paillier encryption. Such scheme not only protects the privacy
of these values, but also prevents leaking the distribution of these values to the cloud servers.
4. Global weights privacy: it is clear from Algorithm 1 that no data owner knows the real weigh
scores of the other owners during the union process.
B. Performance analysis
 In this section, to examine the performance of our scheme by conducting several experimental
results on the publicly available real dataset: Mini_newsgroups [17], which contains 2000 text files.
Selecting randomly 1000 file and distributed them equally among three data owners (n=3). Each data
owner is provided with a single cloud server (m = 3). For reducing the index structure, we exclude the
high frequency keywords (stop-words) from the keyword set, convert all keywords into lower-case
strings, returning the keywords to their root (stemming), and then refine the generated set to include
only pure English words. Our experiments have been conducted on a 2.61GHz Pentium processor,
Windows 7 operating system, with a RAM of 1GB. We used MATLAB (R2008a) to implement the
experiments. Some algorithms are programmed by Java such as Paillier encryption and inverted index
construction.
1) The effectiveness of Paillier-PPM: In this experiment, explain how proposed Paillier-PPM can
improve the security of the encrypted weight scores. Figure 3-a shows the histogram of 11348
encrypted weight scores under the original PPM. It is easy to see that PPM does not randomise the
encrypted scores very well. Such peaky histogram exposes more frequency information to the
adversary cloud server. For reducing the leaked amount of information, we have to flatten such
distribution by encrypting each weight score with a randomised encryption. Such method ensures that
repeated weights will be mapped into different values. Figure 3-b shows the resulted histogram after
applying our method, which seems like a uniform distribution.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

229

Figure 4-Storage cost.

2) Paillier-PPM efficiency: The original setting of PPM uses a hash table L_Mapping to store Mlist
list of size ∗() For very large r values, such scheme seems to be impractical. To reduce the
storage cost without compromising the effectiveness, we suggest using a single Bloom filter (7) to
store all the elements of Mlist. In this experiment, we measure the efficiency of both schemes in terms
of storage cost and time building cost. Figure 4 shows the storage cost for both hash table L_Mapping
and Bloom filter schemes. From this figure, we see that Bloom filter enhances greatly the storage cost.
To see why, Bloom filter specifies a fixed number of bits to store all the individual items, whereas,
L_Mapping specifies a single entry of 160-bit to store each item. Figure 5 illustrates the time cost for
generating both L_Mapping table and Bloom filter. Even both schemes take a linear time for their
work; no scheme has advantage over the other. This case might be interpreted due to the massive
operations of both schemes to store their data. Bloom filter needs to perform a number of hash
functions for storing each item, where the number of these functions is adaptively changed according
to the total number of stored elements. On the other hand, the time cost for L_Mapping depends
greatly on the number of hash collisions and the time required resolving such collisions.
3) Index construction: To allow for efficient search, each data owner builds its own inverted index.
Comparing with the none secure inverted index construction; our scheme consumes more storage and
time overhead. Specifically, to allow for ranked search, we associate a weight score with each
keyword document entry in posting lists. For security purposes, we need to replace these scores with
their encrypted form. Furthermore we encrypt keyword strings, file id, pad the individual posting lists
with faked entries, and finally add faked pairs of (keyword, posting lists) to hide the actual number of
keywords. The time cost for building and encrypting the posting lists depend directly on the length of
each posting list. Figure. 6 shows the time construction as the posting list length increased. Note that
due to the padded entries, all the posting lists require fixed storage cost. Table 1 lists the whole index
generation requirements for three data owners with different document collections.

Figure 5-Time cost

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

230

Figure 6-Effect of posting list length

Table 1-Indices parameters

Features per-data owner 푫푶ퟏ 푫푶ퟐ 푫푶ퟑ

No. of documents 300 400 300

No. of distinct Keywords 13027 14355 13899

Unique weight scores 764 897 817

Longest posting list 76 69 67

Index storage cost (kb) 23204 23215 21826

Index building time (ms) 68.8873 77.6394 74.2347

Figure. 7: Matrix M construction Time

4) Efficiency of global weights collection algorithm: We discuss here the efficiency of the proposed
global weights collection algorithm in terms of computation cost and communication cost. . Recall that
such protocol is executed onetime to find the union set of weight scores among the n participant data
owners. Clearly Algorithm 1 states that we need two rounds for finding the final answer. Such that the
communication cost of our protocol can be estimated as: 2∑ (푔 ∗ 푤푏), where g is the average number
of weight scores provided by each party, and wb is the average number of bits that are required to
encode the elements. Whereas the computation cost is estimated as: n*(As+Ps+Ms+Rs+Ss), where As,

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

231

Ps, Ms, Rs, and Ss are costs of addition, permutation, merging, removing, and subtracting two-set
operations, respectively.
5) Ranking time: Serving user queries includes two steps: searching step and ranking step. In
searching step, each cloud server fetches its matched posting lists corresponding to the provided
search requests. Such process does not need from the cloud servers to scan all the entire indices, but
instead we use a hash tables for retrieving the posting lists with a constant time. Accordingly,
searching step has very slight impact on search time. Ranking step, on the other hand, is a complex
step and consumes more time. To rank the received posting lists, ranker server have to first merge
them together into a global list of L relevant files, decrypt the outer layer of the weight score in the
resulted list, fill the matrix M(L*L) with the comparison values between each pair of weight scores,
and finally identify and retrieve the encrypted file ids of the top-k scores. Building the matrix M is the
dominant factor for ranking step. This follows that, query processing time is varies from one query to
another. This is because; each keyword query has a different number of relevant files (L). Figure. 7
illustrates ranking time time time as number of relvant files (L) increased.

Conclusions:
 In this paper, proposed a secure ranked keyword search over encrypted document collections that are
scattered among several cloud servers. Such scheme brings together the advanced distributed
information retrieval and the cryptography primitives to retrieves the global top-k documents from all
the distributed servers without revealing neither the contents of these documents, nor the provided
search request. To do so, each data owner builds its own inverted index, integrate weight scores with
each keyword-document entry in that index. Specifically, to utilize the recently presented
cryptography primitive, PPM, for encrypting the weight scores while preserving their ability to
perform the rank operation. Then we enhance the security and efficiency of PPM to suit the
requirements of our distributed computing case. To get globally consistent document scores, we have
developed a secure protocol for collecting the global set of all the distributed weights. Conducting
several experiments on a real dataset to verify the performance of proposed scheme.
 The suggestion for future work of the current system are: One promising idea is to integrate the IDF
factor in the weight score formula and another idea is to support a similarity ranked search, which
allows users to search even with misspelled secret trapdoors.
References
1. Mell,P. and Grance,T.2011. The nist definition of cloud computing recommendations of the

national institute of standards and technology. Nist Special Publication, vol.145, no.6, p. 7.
2. Song, D. X., Wagner, D., and Perrig, A. 2000. Practical techniques for searches on encrypted

data. IEEE Computer Society, pp. 44–.
3. Goh, E.-J. 2003. Secure indexes. Cryptology ePrint Archive, Report 2003/216.
4. Chang,Y.-C. and Mitzenmacher, M. 2005. Privacy preserving keyword searches on remote

encrypted data. in ACNS, pp. 442–455.
5. Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. 2006. Searchable symmetric encryption:

Improved definitions and efficient constructions. .
6. Boneh, D., Crescenzo, G. D., Ostrovsky, R. and Persiano, G.2004. Public key encryption with

keyword search. in EUROCRYPT, pp. 506–522.
7. Bellare, M., Boldyreva, A. and O’Neill, A. 2007. Deterministic and efficiently searchable

encryption. in CRYPTO, pp. 535–552.
8. Manning, H. S. C.D., Raghavan, P.2008. Introduction to Information Retrieval. Reading, MA:

Cambridge UP.
9. Swaminathan, A., Mao,Y., Su, G.-M. Gou, H., Varna, A. L., He, S., Wu, M. and Oard, D.

W.2007. Confidentiality-preserving rank-ordered search. in Proceedings of the 2007 ACM
workshop on Storage security and survivability, ser. StorageSS ’07. New York, NY, USA: ACM,
pp. 7–12.

10. Wang, C., Cao, N., Li, J., Ren, K. and Lou, W. 2010.Secure ranked keyword search over
encrypted cloud data. in Proceedings of the 2010 IEEE 30th International Conference on
Distributed Computing Systems, ser. ICDCS ’10. Washington, DC, USA: IEEE Computer
Society, pp. 253–262.

Mohammed Iraqi Journal of Science, 2015, Vol 56, No.1A, pp: 218-232

232

11. Agrawal, R., Kiernan, J., Srikant, R. and Xu, Y.2004. Order preserving encryption for numeric
data . in Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’04. New York, NY, USA: ACM, pp. 563–574.

12. Boldyreva, A., Chenette, N., Lee, Y. and O’Neill, A. 2009.Order-preserving symmetric
encryption. in Proceedings of the 28th Annual International Conference on Advances in
Cryptology: the Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT ’09.
Berlin, Heidelberg: Springer-Verlag, pp. 224–241.

13. Tang, Q. 2010.Privacy preserving mapping schemes supporting comparison. in Proceedings of
the 2010 ACM workshop on Cloud computing security workshop, ser. CCSW ’10. New York,
NY, USA: ACM, pp. 53– 58.

14. Schnell,T. B. R. and Reiher, J. 2009. Privacy-preserving record linkage using bloom lters . in
BMC Medical Informatics and Decision Making, vol. 9, no. 1, p. P. 41.

15. Paillier, P. 1999. Public-key cryptosystems based on composite degree residuosity classes . in
Proceedings of the 17th international conference on Theory and application of cryptographic
techniques, ser. EUROCRYPT’99. Berlin, Heidelberg: Springer-Verlag, pp. 223–238.

16. “The oec: Facts about the language,” Oxford dictionaries, June 2011,
http://oxforddictionaries.com/page/oecfactslanguage/the-oec-facts-about -the- language/.

17. http://kdd.ics.uci.edu/databases/20newsgroups/mini-newsgroups.tar.gz./.

