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Abstract: 

     In solving problems from Computational Fluid Dynamics (CFD) and physics, 

huge efforts should be afforded to obtain accurate and applicable schemes for the 

derivatives.  Based on the idea of high order polynomials, many sets of  second 

derivative schemes are derived in this paper. These sets are grouped according to the 

order of the accuracy of the approximations from order three to order seven. 

Different types of second derivative forward, central, and backward compact with 

some traditinal approximations are inrtoduced at each set by the proposed method. 

The order of accuracy is verified of each scheme using the technique of finding the 

values of the coefficients for the error terms by matching both sides of the given 

scheme. Many schemes that are introduced in this article are applicable to some 

problems from science and engineering. 
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متراصة للمشتقة الثانية لايجاد طرق عددية   نهج  
 

 حسن عبد سلمان الدجيلي       
 كلية العلوم, الجامعة المستنصرية, بغداد, العراق  ،قسم الرياضيات 

 

 الخلاصة :
جهود كبيرة للحصول على طرق عددية    يجب بذل والفيزياء   (CFD) لحل مسائل في ديناميكا الموائع الحسابية  

 . للتطبيق  وقابلة  دقيقة  تكون  وللمشتقات  البحث  هذا  يتم    في  الرتبة  عالية  الحدود  متعددات  فكرة  على  بناءا" 
الطرق   لرتبة  وفقا  المجموعات  هذه  ترتيب  يتم   . الثانية  للمشتقة  العددية  الطرق  من مجموعات  العديد  اشتقاق 

)الامامية , المركزية ,  العددية من الرتبة الثالثة الى الرتبة السابعة. يتم تقديم انواع مختلفة من الطرق العددية  
بواسطة المنهجية المقترحة . يتم التحقق من دقة رتبة كل طريقة  للمشتقة الثانية المتراصة والاعتيادية والخلفية ( 

عددية عن طريق ايجاد معاملات متعددات الحدود المتبقية من خلال مطابقة جهتي الطريقة العددية المعنية .  
 عدد من الطرق العددية التي تم اشتقاقها في هذا البحث قابلة للتطبيق لحل مشكلات من العلوم والهندسة.   

 

1.  Introduction: 

     High order compact numerical algorithms have an essential role to solve problems from 

engineering and science. Compared to implicit standard finite difference methods, compact 
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finite difference methods are explicit and produce high order accuracy with better resolution 

properties when using the same number of points as verified in [1], [2], and [3]. One approach 

of finding numerical solution is to use some standard transformations which yields to special 

types of differential equations, as in [4], [5], and [6]. Because of the importance and the need 

of the compact finite difference schemes, many intensive studies have been conducted using 

different approaches. One of the great advantages of the compact schemes is not only finding 

the first derivative but also higher derivatives as needed in the applications from the 

Computational Fluid Dynamics (CFD). For example, both first and second derivatives have 

been evaluated at the same time as discussed in [7] when constructing the combined compact 

schemes. In [8], high order compact scheme is discussed and constructed according to the 

analysis of dispersion and dissipation at each stencil and to capture the shock without losing 

the high resolution of the results. Also, it is not restricted to the uniform grid, many compact 

schemes of anon-uniform grids have been derived and extended, see [9], [10], and [11] as 

examples. In [12], the authors introduced a methodology of providing special types of 

compact schemes by avoiding negative dissipation in some stencils to gain stability and non-

oscillatory characteristics. Additionally, efforts were achieved in [13] and [14] to obtain some 

kinds of compact schemes according to the results from Fourier analysis and applied to 

different types of continuous and non-continuous problems from CDF. [15] and [16] proposed 

new families of compact schemes which are applicable to Navier-Stokes equations and to 

parabolic problems respectively. Recently, new approach of providing high order 

approximations for the first derivative was proposed in [17] using special kinds of matrices.   

In this article, six sets of numerical compact schemes for the second derivative are constructed 

in section 2 by using special kinds of polynomials. In section 3, the orders of accuracy for 

constructed schemes are confirmed and verified by finding the coefficients of the remaining 

polynomials or the error terms. Finally, in section 4, conclusions are given. 

 

2.  Second Derivative Approach for Approximation:  

     In this section, approximations for the second derivative are constructed with different 

orders. A uniform step size  ℎ = 𝑥𝑘 − 𝑥𝑘−1 and grid points  𝑥0, 𝑥1, … , 𝑥𝑁 are used such that 

1 ≤ 𝑘 ≤ 𝑁. 𝑓𝑘
′′ represents the approximation of the second derivative of 𝑓(𝑥) at 𝑥𝑘 such that 

𝑓𝑘 = 𝑓(𝑥𝑘) , 𝑓′𝑘 = 𝑓′(𝑥𝑘) , and 𝑓′′𝑘 = 𝑓′′(𝑥𝑘). The general form of the second derivative 

compact finite difference schemes cab be expressed as follows: 

𝑟1𝑓′𝑘−𝑝
′ + 𝑟2𝑓′𝑘−𝑝+1

′ + ⋯+ 𝑟𝑚−1𝑓
′
𝑘−1

′
+ 𝑓𝑘

′′ + 𝑟𝑚+1𝑓𝑘+1
′′ + ⋯+ 𝑟2𝑚−1𝑓

′
𝑘+𝑝−1

′
+

𝑟2𝑚𝑓′
𝑘+𝑝

′
=

1

ℎ2
[𝑠1𝑓𝑘−𝑝 + 𝑠2𝑓𝑘−𝑝+1 + ⋯+ 𝑠𝑚−1𝑓𝑘−1 + 𝑠𝑚𝑓𝑘 + 𝑠𝑚+1𝑓𝑘+1 + ⋯+

𝑠2𝑚−1𝑓𝑘+𝑝−1 + 𝑠2𝑚𝑓𝑘+𝑝].                                                                                                           (1) 

Usually, The values of the coefficients 𝑟1, 𝑟2, 𝑟3, ⋯ , 𝑟2𝑚, 𝑠1, 𝑠2, 𝑠3, ⋯ , and 𝑠2𝑚 can be 

determined using Taylor series expansion at 𝑥𝑘 where 1 ≤ 𝑘 ≤ 𝑁. In this work, it is assumed 

that  𝑝 = 2 in Eq.(1), so it follows :   

𝑟1𝑓′𝑘−2
′ + 𝑟2𝑓′𝑘−1

′ + 𝑓𝑘
′′ + 𝑟4𝑓𝑘+1

′′ + 𝑟5𝑓′𝑘+2
′ =

1

ℎ2
[𝑠1𝑓𝑘−2 + 𝑠2𝑓𝑘−1 + 𝑠3𝑓𝑘 + 𝑠4𝑓𝑘+1 +

𝑠5𝑓𝑘+2].                                                                                                                                      (2) 

Another way of finding the coefficients is using a polynomial of order N  

                                                         𝑇𝑁(𝑥) = ∑ 𝑐𝑡𝑥
𝑡𝑁

𝑡=0
                                                         (3) 

such that    𝑇′𝑁(𝑥) = ∑ 𝑡𝑐𝑡𝑥
𝑡−1𝑁

𝑡=1
   , 𝑇′′𝑁(𝑥) = ∑ 𝑡(𝑡 − 1)𝑐𝑡𝑥

𝑡−2𝑁

𝑡=2
  .                  

To derive the schemes in this work, substituting (3) in (2) results in: 
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r1 ∑𝑡(𝑡 − 1)𝑐𝑡𝑥𝑘−2
𝑡−2

𝑁

𝑡=2

+ r2 ∑𝑡(𝑡 − 1)𝑐𝑡𝑥𝑘−1
𝑡−2

𝑁

𝑡=2

+ ∑𝑡(𝑡 − 1)𝑐𝑡𝑥𝑘
𝑡−2

𝑁

𝑡=2

+ r4 ∑𝑡(𝑡 − 1)𝑐𝑡𝑥𝑘+1
𝑡−2

𝑁

𝑡=2

+ r5 ∑𝑡(𝑡 − 1)𝑐𝑡𝑥𝑘+2
𝑡−2

𝑁

𝑡=2

=
1

ℎ2
(s1 ∑𝑐𝑡(𝑥𝑘−2)

𝑡

𝑁

𝑡=0

+ s2 ∑𝑐𝑡(𝑥𝑘−1)
𝑡

𝑁

𝑡=0

+ s3 ∑𝑐𝑡(𝑥𝑘)
𝑡

𝑁

𝑡=0

+ s4 ∑𝑐𝑡(𝑥𝑘+1)
𝑡

𝑁

𝑡=0

+ s5 ∑𝑐𝑡(𝑥𝑘+2)
𝑡

𝑁

𝑡=0

) 

Now, locating 𝑥𝑘 at the origin and assuming that ℎ  is equal to one unit lead to:  

∑𝑡(𝑡 − 1)𝑐𝑡[r1(−2)𝑡−2

𝑁

𝑡=2

+ r2(−1)𝑡−2 + r4(1)𝑡−2 + r5(2)𝑡−2] + 2𝑐2

= ∑𝑐𝑡[s1(−2)𝑡

𝑁

𝑡=0

+ s2(−1)𝑡 + s4(1)𝑡 + s5(2)𝑡] + 𝑐0s3 

∑ 𝑡(𝑡 − 1)𝑐𝑡[r1(−2)𝑡−2𝑁

𝑡=2
+ r2(−1)𝑡−2 + r4(1)𝑡−2 + r5(2)𝑡−2] + 2𝑐2 = 𝑐0[s1 + s2 +

s3 + s4 + s5] + 𝑐1[−2s1 − s2 + s4 + 2s5] + ∑ 𝑐𝑡[s1(−2)𝑡𝑁

𝑡=2
+ s2(−1)𝑡 + s4(1)𝑡 +

s5(2)𝑡].                                                                                                                                     (4) 

To get schemes of order t, the coefficient 𝑐𝑡 in the polynomial 𝑇𝑁(𝑥)  should be a real number 

not equal to zero, and 𝑐𝑤 = 0 for 𝑡 < 𝑤 ≤ 𝑁. Hence, different sets according to their orders 

are established from the third order and up to seventh order by matching both sides of Eq.(4). 

In general, Eq.(2) can be expressed in the matrix form as follows:  

                                                𝐴𝐹′′ =
1

ℎ
𝐵𝐹                                                                              (5) 

such that  

  𝐹 = [𝑓1 𝑓2 … 𝑓𝑁]𝑇    and   𝐹′′ = [𝑓′′1 𝑓′′2 … 𝑓′′𝑁]𝑇 

 

𝐴 =

[
 
 
 
 
 
 
 
 
1 𝑟4 𝑟5
𝑟2 1 𝑟4
𝑟1 𝑟2 1

0  0 0
𝑟5 0 0
𝑟4 𝑟5 0

 0 ⋯ 0 0 0 0 0 𝑟1 𝑟2
 0 ⋯ 0 0 0 0 0 0 𝑟1
0 ⋯ 0 0 0 0 0 0 0

0 𝑟1 𝑟2
⋯ ⋯ ⋯

0  0 0

1 𝑟4 𝑟5
⋯ ⋯ ⋯

0  0 0

0 ⋯ 0 0 0 0 0 0 0
⬚ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⬚

0 ⋯ 0 𝑟1 𝑟2 1 𝑟4 𝑟5 0

0 0 0
𝑟5 0 0
𝑟4 𝑟5 0

0 0 0
0 0 0
0 0 0

0 ⋯ 0 0 𝑟1 𝑟2 1 𝑟4 𝑟5
0 ⋯ 0 0 0 𝑟1 𝑟2 1 𝑟4
0 ⋯ 0 0 0 0 𝑟1 𝑟2 1 ]

 
 
 
 
 
 
 
 

 

 

𝐵 =

[
 
 
 
 
 
 
 
 
𝑠3 𝑠4 𝑠5

𝑠2 𝑠3 𝑠4

𝑠1 𝑠2 𝑠3

0  0 0
𝑠5 0 0
𝑠4 𝑠5 0

 0 ⋯  0 0 0 0 0 𝑠1 𝑠2

 0 ⋯  0 0 0 0 0 0 𝑠1

0  ⋯ 0 0 0 0 0 0 0
0 𝑠1 𝑠2

⋯ ⋯ ⋯

0  0 0

𝑠3 𝑟4 𝑟5
⋯ ⋯ ⋯

 0 0 0

0  ⋯ 0 0 0 0 0 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 0 ⋯ 0 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 0

0  0 0
𝑠5 0 0
𝑠4 𝑠5 0

0 0 0
0 0 0
0 0 0

  0 ⋯ 0 0 𝑠1 𝑠2
𝑠3 𝑠4 𝑠5

0 ⋯ 0 0 0 𝑠1
𝑠2 𝑠3 𝑠4

0 ⋯ 0 0 0 0 𝑠1 𝑠2 𝑠3 ]
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2.1.  Set of second derivative approximations of order 3: 

     In this part, second derivative compact schemes of the third order are constructed as shown 

in Table 1. To obtain this set of approximations for the second derivative, 𝒄𝟐 in Eq.(4) should 

not be zero and 𝒄𝟑, 𝒄𝟒, 𝒄𝟓, ⋯ , 𝒄𝑵 are all zeros. Hence, when matching the coefficients in both 

sides of Eq.(4), it follows: 

2𝑐2[r1 + r2 + 1 + r4 + r5] = 𝑐0[s1 + s2 + s3 + s4 + s5] + 𝑐1[−2s1 − s2 + s4 + 2s5] +
𝑐2[4s1 + s2 + s4 + 4s5].                                                                                                          (6) 

Therefore, this set of approximations should satisfy the following equations: 

[s1 + s2 + s3 + s4 + s5] = 0, 

[−2s1 − s2 + s4 + 2s5] = 0, 

2[r1 + r2 + 1 + r4 + r5] = 4s1 + s2 + s4 + 4s5.                                                                           (7) 

 

Table 1: Set of second derivative approximations of order 3 

Schemes r1 r2 r4 r5 s1 s2 s3 s4 s5 

SDO3-1 0 0 0 0 0 1 -2 1 0 

SDO3-2 0 −
1

2
 0 0 0 0 

1

2
 -1 

1

2
 

SDO3-3 −
1

3
 0 0 0 0 0 

2

3
 −

4

3
 

2

3
 

SDO3-4 0 0 0 1 0 0 2 -4 2 

 

     All approximations in Table 1 are of order three, and they are named according to the 

order and the location in the table. For example, the scheme SDO3-1 stands for Second 

Derivative Order 3 – scheme number 1. Similarly, the schemes of the other sets can be 

derived as follows.  

 

2.2.  Set of second derivative approximations of order 4: 

     In this section, second derivative compact approximations of order four are derived as 

illustrated in Table 2. To get this set of schemes for the second derivative, 𝒄𝟑 in Eq.(4) should 

not be zero and 𝒄𝟒, 𝒄𝟓, ⋯ , 𝒄𝑵 are all zeros. From Eq.(4), and it follows: 

 2𝑐2[r1 + r2 + 1 + r4 + r5] + 6𝑐3[−2r1 − r2 + r4 + 2r5] 
= 𝑐0[s1 + s2 + s3 + s4 + s5] + 𝑐1[−2s1 − s2 + s4 + 2s5] 

                 +𝑐2[4s1 + s2 + s4 + 4s5] + 𝑐3[−8s1 − s2 + s4 + 8s5]                                        (8) 

Hence, the schemes in this set should fulfill the following equations:  

[s1 + s2 + s3 + s4 + s5] = 0 

[−2s1 − s2 + s4 + 2s5] = 0 

2[r1 + r2 + 1 + r4 + r5] = [4s1 + s2 + s4 + 4s5] 
                                       6[−2r1 − r2 + r4 + 2r5] = [−8s1 − s2 + s4 + 8s5]                       (9) 
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Table 2: Set of second derivative approximations of order 4 

Schemes r1 r2 r4 r5 s1 s2 s3 s4 s5 

SDO4-1 
1

13
 −

2

13
 0 0 0 

12

13
 −

24

13
 

12

13
 0 

SDO4-2 
1

33
 0 

2

33
 0 0 

12

11
 −

24

11
 

12

11
 0 

SDO4-3 0 
2

33
 0 

1

33
 0 

12

11
 −

24

11
 

12

11
 0 

SDO4-4 0 0 −
2

13
 

1

13
 0 

12

13
 −

24

13
 

12

13
 0 

SDO4-5 0 -1 0 0 -1 3 -3 1 0 

SDO4-6 
1

11
 0 0 0 

2

11
 

6

11
 −

18

11
 

10

11
 0 

SDO4-7 0 0 
1

11
 0 −

1

11
 

15

11
 −

27

11
 

13

11
 0 

SDO4-8 
1

35
 0 0 0 −

2

35
 

6

5
 −

78

35
 

38

35
 0 

SDO4-9 
13

37
 −

38

37
 0 0 0 0 

12

37
 −

24

37
 

12

37
 

SDO4-10 −
1

3
 0 −

38

3
 0 0 0 -12 24 -12 

SDO4-11 −
5

34
 0 0 

19

34
 0 0 

24

17
 −

48

17
 

24

17
 

SDO4-12 0 −
1

2
 −

13

2
 0 0 0 -6 12 -6 

SDO4-13 0 −
10

33
 0 

13

33
 0 0 

12

11
 −

24

11
 

12

11
 

SDO4-14 0 
1

11
 0 0 0 

13

11
 −

27

11
 

15

11
 −

1

11
 

SDO4-15 
1

35
 0 0 0 0 

38

35
 −

78

35
 

6

5
 −

2

35
 

SDO4-16 0 0 -1 0 0 1 -3 3 -1 

SDO4-17 0 0 0 
1

11
 0 

10

11
 −

18

11
 

6

11
 

2

11
 

 

2.3.  Set of second derivative approximations of order 5:  

      In this part, five order schemes for the second derivative are provided as introduced in 

Table 3. To establish this set of approximations for the second derivative, 𝒄𝟒 in Eq.(4) should 

not be zero and 𝒄𝟓, ⋯ , 𝒄𝑵 are all zeros. From Eq.(4), it follows: 

 𝟐𝒄𝟐[𝐫𝟏 + 𝐫𝟐 + 𝟏 + 𝐫𝟒 + 𝐫𝟓] + 𝟔𝒄𝟑[−𝟐𝐫𝟏 − 𝐫𝟐 + 𝐫𝟒 + 𝟐𝐫𝟓] + 𝟏𝟐𝒄𝟒[𝟒𝐫𝟏 + 𝐫𝟐 + 𝐫𝟒 + 𝟒𝐫𝟓] =
𝒄𝟎[𝐬𝟏 + 𝐬𝟐 + 𝐬𝟑 + 𝐬𝟒 + 𝐬𝟓] + 𝒄𝟏[−𝟐𝐬𝟏 − 𝐬𝟐 + 𝐬𝟒 + 𝟐𝐬𝟓] + 𝒄𝟐[𝟒𝐬𝟏 + 𝐬𝟐 + 𝐬𝟒 + 𝟒𝐬𝟓] +
𝒄𝟑[−𝟖𝐬𝟏 − 𝐬𝟐 + 𝐬𝟒 + 𝟖𝐬𝟓] + 𝒄𝟒[𝟏𝟔𝐬𝟏 + 𝐬𝟐 + 𝐬𝟒 + 𝟏𝟔𝐬𝟓]                                                  (10) 

Hence,  
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[s1 + s2 + s3 + s4 + s5] = 0 

[−2s1 − s2 + s4 + 2s5] = 0 

2[r1 + r2 + 1 + r4 + r5] = [4s1 + s2 + s4 + 4s5] 
6[−2r1 − r2 + r4 + 2r5] = [−8s1 − s2 + s4 + 8s5] 

                               12[4r1 + r2 + r4 + 4r5] = [16s1 + s2 + s4 + 16s5]                           (11) 

 

Table 3: Set of second derivative approximations of order 5. 

Schemes r1 r2 r4 r5 s1 s2 s3 s4 s5 

SDO5-1 0 
1

10
 

1

10
 0 0 

6

5
 −

12

5
 

6

5
 0 

SDO5-2 
1

46
 0 0 

1

46
 0 

24

23
 −

48

23
 

24

23
 0 

SDO5-3 1 10 0 0 12 -24 12 0 0 

SDO5-4 −
1

99
 0 0 

10

99
 −

4

33
 

16

11
 −

28

11
 

40

33
 0 

SDO5-5 0 −
2

9
 0 

1

45
 −

4

15
 

8

5
 −

12

5
 

16

15
 0 

SDO5-6 0 0 
2

29
 

1

145
 −

12

145
 

192

145
 −

12

5
 

168

145
 0 

SDO5-7 0 0 10 1 0 0 12 -24 12 

SDO5-8 
1

5
 −

4

5
 −

14

5
 0 0 −

12

5
 

24

5
 −

12

5
 0 

SDO5-9 
5

32
 −

5

8
 0 

7

32
 0 

3

4
 −

3

2
 

3

4
 0 

SDO5-10 
1

145
 

2

29
 0 0 0 

168

145
 −

12

5
 

192

145
 −

12

145
 

 

2.4.  Set of second derivative approximations of order 6:  

      In this section, second derivative compact schemes of order six are introduced as shown in 

Table 4 . To obtain this set of approximations for the second derivative, 𝒄𝟓 in Eq.(4) should 

not be zero and 𝒄𝟔, ⋯ , 𝒄𝑵 are all zeros. From Eq.(10), and it follows: 

𝟐𝒄𝟐[𝐫𝟏 + 𝐫𝟐 + 𝟏 + 𝐫𝟒 + 𝐫𝟓] + 𝟔𝒄𝟑[−𝟐𝐫𝟏 − 𝐫𝟐 + 𝐫𝟒 + 𝟐𝐫𝟓] + 𝟏𝟐𝒄𝟒[𝟒𝐫𝟏 + 𝐫𝟐 + 𝐫𝟒 + 𝟒𝐫𝟓] +

𝟐𝟎𝒄𝟓[−𝟖𝐫𝟏 − 𝐫𝟐 + 𝐫𝟒 + 𝟖𝐫𝟓] + ∑ 𝒕(𝒕 − 𝟏)𝒄𝒕[𝐫𝟏(−𝟐)𝒕−𝟐𝑵

𝒕=𝟔
+ 𝐫𝟐(−𝟏)𝒕−𝟐 + 𝐫𝟒(𝟏)𝒕−𝟐 +

𝐫𝟓(𝟐)𝒕−𝟐] = 𝒄𝟎[𝐬𝟏 + 𝐬𝟐 + 𝐬𝟑 + 𝐬𝟒 + 𝐬𝟓] + 𝒄𝟏[−𝟐𝐬𝟏 − 𝐬𝟐 + 𝐬𝟒 + 𝟐𝐬𝟓] + 𝒄𝟐[𝟒𝐬𝟏 + 𝐬𝟐 + 𝐬𝟒 +
𝟒𝐬𝟓] + 𝒄𝟑[−𝟖𝐬𝟏 − 𝐬𝟐 + 𝐬𝟒 + 𝟖𝐬𝟓] + 𝒄𝟒[𝟏𝟔𝐬𝟏 + 𝐬𝟐 + 𝐬𝟒 + 𝟏𝟔𝐬𝟓] + 𝒄𝟓[−𝟑𝟐𝐬𝟏 − 𝐬𝟐 + 𝐬𝟒 +

𝟑𝟐𝐬𝟓] + ∑ 𝒄𝒕[𝐬𝟏(−𝟐)𝒕𝑵

𝒕=𝟔
+ 𝐬𝟐(−𝟏)𝒕 + 𝐬𝟒(𝟏)𝒕 + 𝐬𝟓(𝟐)𝒕]      (12)                        

Therefore,          

[s1 + s2 + s3 + s4 + s5] = 0 

[−2s1 − s2 + s4 + 2s5] = 0 

2[r1 + r2 + 1 + r4 + r5] = [4s1 + s2 + s4 + 4s5] 
6[−2r1 − r2 + r4 + 2r5] = [−8s1 − s2 + s4 + 8s5] 
12[4r1 + r2 + r4 + 4r5] = [16s1 + s2 + s4 + 16s5] 

                         20[−8r1 − r2 + r4 + 8r5] = [−32s1 − s2 + s4 + 32s5]                                (13) 

 

 

 



Al-Dujaly                                                  Iraqi Journal of Science, 2024, Vol. 65, No. 9, pp: 5195-5206 
 

5201 

 

Table 4: Set of second derivative approximations of order 6. 

Schemes r1 r2 r4 r5 s1 s2 s3 s4 s5 

SDO6-1 −
1

9
 −1 

1

9
 0 −

4

3
 4 −4 

4

3
 0 

SDO6-2 0 
33

185
 

23

185
 −

1

185
 

12

185
 

204

185
 −

12

5
 

228

185
 0 

SDO6-3 −
23

22
 −

120

11
 0 

1

22
 −

144

11
 

312

11
 −

192

11
 

24

11
 0 

SDO6-4 −
11

654
 0 

40

327
 −

1

218
 −

16

109
 

168

109
 −

288

109
 

136

109
 0 

SDO6-5 −
1

14
 

2

7
 

102

7
 

19

14
 0 

120

7
 −

240

7
 

120

7
 0 

SDO6-6 0 
1

9
 -1 −

1

9
 0 

4

3
 −4 4 −

4

3
 

SDO6-7 −
1

185
 

23

185
 

33

185
 0 0 

228

185
 −

12

5
 

204

185
 

12

185
 

 

2.5.  Set of second derivative approximations of order 7:  

     In this part, second derivative compact schemes of order seven are proposed as illustrated 

in Table 5. To obtain this set of approximations for the second derivative, 𝒄𝟔 in Eq.(5) should 

not be zero and 𝒄𝟕, ⋯ , 𝒄𝑵 are all zeros. From Eq.(12), and it follows: 

 2𝑐2[r1 + r2 + 1 + r4 + r5] + 6𝑐3[−2r1 − r2 + r4 + 2r5] + 12𝑐4[4r1 + r2 + r4 + 4r5] +

20𝑐5[−8r1 − r2 + r4 + 8r5]] + 30𝑐6[16r1 + r2 + r4 + 16r5] + ∑ 𝑡(𝑡 −
𝑁

𝑡=7

1)𝑐𝑡[r1(−2)𝑡−2 + r2(−1)𝑡−2 + r4(1)𝑡−2 + r5(2)𝑡−2] = 𝑐0[s1 + s2 + s3 + s4 + s5] +
𝑐1[−2s1 − s2 + s4 + 2s5] + 𝑐2[4s1 + s2 + s4 + 4s5] + 𝑐3[−8s1 − s2 + s4 + 8s5] +
𝑐4[16s1 + s2 + s4 + 16s5] + 𝑐5[−32s1 − s2 + s4 + 32s5] + 𝑐6[64s1 + s2 + s4 + 64s5] +

∑ 𝑐𝑡[s1(−2)𝑡𝑁

𝑡=7
+ s2(−1)𝑡 + s4(1)𝑡 + s5(2)𝑡]                                                                  (14) 

so, 

[s1 + s2 + s3 + s4 + s5] = 0 

[−2s1 − s2 + s4 + 2s5] = 0 

2[r1 + r2 + 1 + r4 + r5] = [4s1 + s2 + s4 + 4s5] 
6[−2r1 − r2 + r4 + 2r5] = [−8s1 − s2 + s4 + 8s5] 
12[4r1 + r2 + r4 + 4r5] = [16s1 + s2 + s4 + 16s5] 

20[−8r1 − r2 + r4 + 8r5] = [−32s1 − s2 + s4 + 32s5] 
                              30[16r1 + r2 + r4 + 16r5] = [64s1 + s2 + s4 + 64s5]                        (15) 

 

Table 5: Set of second derivative approximation of order 7. 

Schemes r1 r2 r4 r5 s1 s2 s3 s4 s5 

SDO7-1 −
1

194
 

12

97
 

12

97
 −

1

194
 0 

120

97
 −

240

97
 

120

97
 0 

 

3.  Order of Accuracy for the numerical schemes: 

     There are many ways of demonstrating the order of accuracy for the numerical schemes. 

one way is by calculating errors from solving problems with analytic solutions and finding the 

relations between these errors with different step sizes. Another approach is using a 

polynomial of order N :  
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𝑇𝑁(𝑥) = ∑𝑐𝑡𝑥
𝑡

𝑁

𝑡=0

 

such that schemes of order k are exact for the polynomials of order k or less, and they usually 

have error terms for the polynomials of order greater than k. 

 

3.1.  Order of Accuracy to the Numerical schemes of order 3: 

      In this section, it can be proved that all third order compact finite difference 

approximations for 𝑓′′𝑘   are exact for the functions  𝑇3(𝑥) = ∑ 𝑐𝑡𝑥
𝑡3

𝑡=0
 such that 𝑐3 ≠ 0 as 

follows : 

Firstly, SDO3-1 can be expressed as:  𝑓𝑘
′′ =

1

ℎ2
[𝑓𝑘−1 − 2𝑓𝑘 + 𝑓𝑘+1].                                  (16) 

The left-hand side (LHS) of Eq. (16) is:  𝑓𝑘
′′ =  2𝑐2 + 6𝑐3𝑥𝑘, 

while the RHS of Eq.(16) is:     
1

ℎ2 [𝑓𝑘−1 − 2𝑓𝑘 + 𝑓𝑘+1] =
1

ℎ2 [𝑐0 + 𝑐1𝑥𝑘−1 + 𝑐2𝑥𝑘−1
2 +

𝑐3𝑥𝑘−1
3 − 2(𝑐0 + 𝑐1𝑥𝑘 + 𝑐2𝑥𝑘

2 + 𝑐3𝑥𝑘
3) + 𝑐0 + 𝑐1𝑥𝑘+1 + 𝑐2𝑥𝑘+1

2 + 𝑐3𝑥𝑘+1
3 ]    

=
1

ℎ2
[𝑐1(𝑥𝑘−1 − 2𝑥𝑘 + 𝑥𝑘+1) + 𝑐2(𝑥𝑘−1

2 − 2𝑥𝑘
2 + 𝑥𝑘+1

2 ) + 𝑐3(𝑥𝑘−1
3 − 2𝑥𝑘

3 + 𝑥𝑘+1
3 )]    

=
1

ℎ2
[𝑐1(ℎ − ℎ) + 𝑐2((𝑥𝑘 − ℎ)2 − 2𝑥𝑘

2 + (𝑥𝑘 + ℎ)2) + 𝑐3((𝑥𝑘 − ℎ)3 − 2𝑥𝑘
3 + (𝑥𝑘 + ℎ)3)]    

1

ℎ2
[2ℎ2𝑐2 + 6ℎ2𝑐3𝑥𝑘]  =  2𝑐2 + 6𝑐3𝑥𝑘   

Similarly, SDO3-2 can be written as:  −
1

2
𝑓𝑘−1

′′ + 𝑓𝑘
′′ =

1

ℎ2 [
1

2
𝑓𝑘 − 𝑓𝑘+1 +

1

2
𝑓𝑘+2] .             (17) 

The LHS of Eq.(17) is : −
1

2
𝑓𝑘−1

′′ + 𝑓𝑘
′′ = −

1

2
(2𝑐2 + 6𝑐3𝑥𝑘−1) +  2𝑐2 + 6𝑐3𝑥𝑘 

= 𝑐2 + 3𝑐3(2𝑥𝑘 − 𝑥𝑘−1) = 𝑐2 + 3𝑐3(𝑥𝑘 + ℎ), 

while the RHS of Eq.(17) is: 
1

ℎ2 [
1

2
𝑓𝑘 − 𝑓𝑘+1 +

1

2
𝑓𝑘+2] ==

1

ℎ2 [
1

2
(𝑐0 + 𝑐1𝑥𝑘 + 𝑐2𝑥𝑘

2 + 𝑐3𝑥𝑘
3) −

(𝑐0 + 𝑐1𝑥𝑘+1 + 𝑐2𝑥𝑘+1
2 + 𝑐3𝑥𝑘+1

3 ) +
1

2
(𝑐0 + 𝑐1𝑥𝑘+2 + 𝑐2𝑥𝑘+2

2 + 𝑐3𝑥𝑘+2
3 )]    

=
1

ℎ2
[𝑐1(

1

2
𝑥𝑘 − 𝑥𝑘+1 +

1

2
𝑥𝑘+2) + 𝑐2(

1

2
𝑥𝑘

2 − 𝑥𝑘+1
2 +

1

2
𝑥𝑘+2

2 ) + 𝑐3(
1

2
𝑥𝑘

3 − 𝑥𝑘+1
3 +

1

2
𝑥𝑘+2

3 )]    

=
1

ℎ2
[𝑐2(

1

2
𝑥𝑘

2 − (𝑥𝑘 + ℎ)2 +
1

2
(𝑥𝑘 + 2ℎ)2) + 𝑐3(

1

2
𝑥𝑘

3 − (𝑥𝑘 + ℎ)3 +
1

2
(𝑥𝑘 + 2ℎ)3)]    

=
1

ℎ2
[ℎ2𝑐2 + 𝑐3(2ℎ2𝑥𝑘 + 3ℎ3] = 𝑐2 + 3𝑐3(𝑥𝑘 + ℎ)     

Also, SDO3-3 has the form:  −
1

3
𝑓𝑘−2

′′ + 𝑓𝑘
′′ =

2

3ℎ2
[𝑓𝑘 − 2𝑓𝑘+1 + 𝑓𝑘+2].                            (18) 

The LHS of Eq.(18) is : −
1

3
𝑓𝑘−2

′′ + 𝑓𝑘
′′ = −

1

3
(2𝑐2 + 6𝑐3𝑥𝑘−2) +  2𝑐2 + 6𝑐3𝑥𝑘 =

4

3
𝑐2 +

𝑐3(6𝑥𝑘 − 2𝑥𝑘−2) 

=
4

3
𝑐2 + 𝑐3(6𝑥𝑘 − 2(𝑥𝑘 − 2ℎ)) =

4

3
𝑐2 + 4𝑐3(𝑥𝑘 + ℎ) 

while the RHS of Eq.(18) is: 
2

3ℎ2
[𝑓𝑘 − 2𝑓𝑘+1 + 𝑓𝑘+2] =

2

3ℎ2
[𝑐0 + 𝑐1𝑥𝑘 + 𝑐2𝑥𝑘

2 + 𝑐3𝑥𝑘
3 −

2(𝑐0 + 𝑐1𝑥𝑘+1 + 𝑐2𝑥𝑘+1
2 + 𝑐3𝑥𝑘+1

3 ) + 𝑐0 + 𝑐1𝑥𝑘+2 + 𝑐2𝑥𝑘+2
2 + 𝑐3𝑥𝑘+2

3 ] 

=
2

3ℎ2
[𝑐1(𝑥𝑘 − 2𝑥𝑘+1 + 𝑥𝑘+2) + 𝑐2(𝑥𝑘

2 − 2𝑥𝑘+1
2 + 𝑥𝑘+2

2 ) + 𝑐3(𝑥𝑘
3 − 2𝑥𝑘+1

3 + 𝑥𝑘+2
3 )]    

=
2

3ℎ2
[𝑐2(𝑥𝑘

2 − 2(𝑥𝑘 + ℎ)2 + (𝑥𝑘 + 2ℎ)2) + 𝑐3(𝑥𝑘
3 − 2(𝑥𝑘 + ℎ)3 + (𝑥𝑘 + 2ℎ)3)]    

=
2

3ℎ2
[2ℎ2𝑐2 + 𝑐3(6ℎ2𝑥𝑘 + 6ℎ3] =

4

3
𝑐2 + 4𝑐3(𝑥𝑘 + ℎ) 

The last approximation in this set is SDO3-4, which can be given as: 

                                                      𝑓𝑘
′′ + 𝑓𝑘+2

′′ =
2

ℎ2
[𝑓𝑘−1 − 2𝑓𝑘 + 𝑓𝑘+1].                            (19) 
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The LHS of (19) is : 𝑓𝑘
′′ + 𝑓𝑘+2

′′ = 2𝑐2 + 6𝑐3𝑥𝑘 + 2𝑐2 + 6𝑐3𝑥𝑘+2 = 4𝑐2 + 6𝑐3(𝑥𝑘 + 𝑥𝑘+2) 

= 4𝑐2 + 6𝑐3(𝑥𝑘 + 𝑥𝑘 + 2ℎ) = 4𝑐2 + 12𝑐3(𝑥𝑘 + ℎ), 

While the RHS of (19) is: 
2

ℎ2
[𝑓𝑘−1 − 2𝑓𝑘 + 𝑓𝑘+1] =  

2

ℎ2 [(𝑐0 + 𝑐1𝑥𝑘 + 𝑐2𝑥𝑘
2 + 𝑐3𝑥𝑘

3) −

2(𝑐0 + 𝑐1𝑥𝑘+1 + 𝑐2𝑥𝑘+1
2 + 𝑐3𝑥𝑘+1

3 ) + (𝑐0 + 𝑐1𝑥𝑘+2 + 𝑐2𝑥𝑘+2
2 + 𝑐3𝑥𝑘+2

3 )]    

=
2

ℎ2
[𝑐1(𝑥𝑘 − 2𝑥𝑘+1 + 𝑥𝑘+2) + 𝑐2(𝑥𝑘

2 − 2𝑥𝑘+1
2 + 𝑥𝑘+2

2 ) + 𝑐3(𝑥𝑘
3 − 2𝑥𝑘+1

3 + 𝑥𝑘+2
3 )]    

=
2

ℎ2
[𝑐2(𝑥𝑘

2 − 2(𝑥𝑘 + ℎ)2 + (𝑥𝑘 + 2ℎ)2) + 𝑐3(𝑥𝑘
3 − 2(𝑥𝑘 + ℎ)3 + (𝑥𝑘 + 2ℎ)3)]    

=
2

ℎ2
[2ℎ2𝑐2 + 𝑐3(6ℎ2𝑥𝑘 + 6ℎ3] = 4𝑐2 + 12𝑐3(𝑥𝑘 + ℎ)     

Now, the remaining terms or the error terms can be found when using polynomials of order 

higher than 3. Hence,  𝑇7(𝑥) is used to get the coefficients of the remaining polynomials as it 

is illustrated in the table below: 

 

TABLE 6: The coefficients of the remaining polynomials for the approximations of order 3. 

Schemes c0 c1 c2 c3 c4 c5 c6 c7 

SDO3-1 0 0 0 0 -2 0 -2 0 

SDO3-2 0 0 0 0 -13 -5 -46 -42 

SDO3-3 0 0 0 0 −
76

3
 

100

3
 −

604

3
 364 

SDO3-4 0 0 0 0 20 100 356 1092 

 

3.2.  Order of Accuracy to the Numerical schemes of order 4: 

     As in the previous section, the fourth order compact approximations for 𝑓′′𝑘  are exact for 

the function  𝑇4(𝑥) such that 𝑐4 ≠ 0. Also, 𝑇8(𝑥) is used to get the coefficients of the 

remaining polynomials as shown in the table below: 

   

Table 7: The coefficients of remaining polynomials for the approximations of order 4 

Schemes c0 c1 c2 c3 c4 c5 c6 c7 c8 

SDO4-1 0 0 0 0 0 −
120

13
 

396

13
 −

1260

13
 

3448

13
 

SDO4-2 0 0 0 0 0 −
40

11
 

156

11
 −

420

11
 

1208

11
 

SDO4-3 0 0 0 0 0 
40

11
 

156

11
 

420

11
 

1208

11
 

SDO4-4 0 0 0 0 0 
120

13
 

396

13
 

1260

13
 

3448

13
 

SDO4-5 0 0 0 0 0 -10 30 -84 196 

SDO4-6 0 0 0 0 0 −
100

11
 

336

11
 −

1092

11
 

3056

11
 

SDO4-7 0 0 0 0 0 −
10

11
 

66

11
 −

84

11
 

284

11
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SDO4-8 0 0 0 0 0 
100

35
 

528

35
 

1092

35
 

4016

35
 

SDO4-9 0 0 0 0 0 −
1680

37
 

4356

37
 

17388

37
 −

41416

37
 

SDO4-10 0 0 0 0 0 160 204 1428 1144 

SDO4-11 0 0 0 0 0 
1200

17
 

1872

17
 

13104

17
 

18992

17
 

SDO4-12 0 0 0 0 0 60 162 504 1132 

SDO4-13 0 0 0 0 0 
400

11
 

1236

11
 

4452

11
 

12296

11
 

SDO4-14 0 0 0 0 0 
10

11
 

66

11
 

84

11
 

284

11
 

SDO4-15 0 0 0 0 0 
100

35
 −

528

35
 

1092

35
 −

4016

35
 

SDO4-16 0 0 0 0 0 10 30 84 196 

SDO4-17 0 0 0 0 0 
100

11
 

336

11
 

1092

11
 

3056

11
 

 

3.3.  Order of Accuracy to the Numerical schemes of order 5: 

Additionally, the fifth order compact approximations for 𝑓′′𝑘  are exact for the function  

𝑇5(𝑥) such that 𝑐5 ≠ 0 , 𝑎𝑛𝑑 𝑇8(𝑥) is used to get the coefficients of the remaining 

polynomials as introduced in the table below:axdddddf- 

 

Table 8: The coefficients of remaining polynomials for the approximations of order 5 

Schemes c0 c1 c2 c3 c4 c5 c6 c7 c8 

SDO5-1 0 0 0 0 0 0 
18

5
 0 

44

5
 

SDO5-2 0 0 0 0 0 0 
432

23
 0 

3536

23
 

SDO5-3 0 0 0 0 0 0 36 -252 1096 

SDO5-4 0 0 0 0 0 0 
36

11
 

28

11
 −

24

11
 

SDO5-5 0 0 0 0 0 0 
92

5
 

28

5
 

664

5
 

SDO5-6 0 0 0 0 0 0 
1188

145
 

252

145
 

6856

145
 

SDO5-7 0 0 0 0 0 0 36 252 1096 

SDO5-8 0 0 0 0 0 0 
684

5
 −

252

5
 

5624

5
 

SDO5-9 0 0 0 0 0 0 
459

4
 

63

4
 

4474

4
 

SDO5-10 0 0 0 0 0 0 
1188

145
 −

252

145
 

6856

145
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3.4.  Order of Accuracy to the Numerical schemes of order 6: 

Similarly, the sixth order compact approximations for 𝑓′′𝑘  are exact for the function  𝑇6(𝑥) 

such that 𝑐6 ≠ 0. Also, 𝑇9(𝑥) is used to get the coefficients of the remaining polynomials as 

shown in the table below: 

 

Table 9: The coefficients of  remaining polynomials for the approximations of order 6. 

Schemes c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

SDO6-1 0 0 0 0 0 0 0 28 -112 424 

SDO6-2 0 0 0 0 0 0 0 −
252

185
 −

3952

185
 −

3816

185
 

SDO6-3 0 0 0 0 0 0 0 
3024

11
 −

9616

11
 

45792

11
 

SDO6-4 0 0 0 0 0 0 0 
336

109
 −

3824

109
 

5088

109
 

SDO6-5 0 0 0 0 0 0 0 
4410

4
 

13300

4
 

66780

4
 

SDO6-6 0 0 0 0 0 0 0 -28 -108 424 

SDO6-7 0 0 0 0 0 0 0 
252

185
 −

3952

185
 

3816

185
 

 

3.5.  Order of Accuracy to the Numerical scheme of order 7: 

Finally, the seventh order compact approximations for 𝑓′′𝑘  are exact for the function  𝑇7(𝑥) 

such that 𝑐7 ≠ 0. Also, 𝑇9(𝑥) is used to get the coefficients of the remaining polynomials as in 

the table below: 

 

Table 7: The coefficients of remaining polynomial for the approximation of order 7 

Scheme c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

SDO7-1 0 0 0 0 0 0 0 0 −
2480

97
 0 

 

4.  Conclusion: 

     To obtain the second derivative approximation, many families of compact methods are 

proposed in this work according to some polynomials of different degrees. In addition, the 

construction methodology of deriving these families is introduced in clear and simple way. As 

shown in tables, all schemes in each family have the same order of accuracy, which is verified 

by obtaining the coefficients of remaining polynomial. From the results, the characteristics of 

each approximation are clearly shown, so they can be applicable to solve problems from 

Computational Fluid Dynamics (CFD) like one or two-dimensional convection–diffusion 

equation. For the future work, the proposed method can be generalized to construct schemes 

for high derivatives as needed in providing accurate and stable solutions.  
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