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Abstract:

In solving problems from Computational Fluid Dynamics (CFD) and physics,
huge efforts should be afforded to obtain accurate and applicable schemes for the
derivatives. Based on the idea of high order polynomials, many sets of second
derivative schemes are derived in this paper. These sets are grouped according to the
order of the accuracy of the approximations from order three to order seven.
Different types of second derivative forward, central, and backward compact with
some traditinal approximations are inrtoduced at each set by the proposed method.
The order of accuracy is verified of each scheme using the technique of finding the
values of the coefficients for the error terms by matching both sides of the given
scheme. Many schemes that are introduced in this article are applicable to some
problems from science and engineering.

Keywords: Compact Scheme, High Order, Finite difference, compact
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1. Introduction:

High order compact numerical algorithms have an essential role to solve problems from
engineering and science. Compared to implicit standard finite difference methods, compact
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finite difference methods are explicit and produce high order accuracy with better resolution
properties when using the same number of points as verified in [1], [2], and [3]. One approach
of finding numerical solution is to use some standard transformations which yields to special
types of differential equations, as in [4], [5], and [6]. Because of the importance and the need
of the compact finite difference schemes, many intensive studies have been conducted using
different approaches. One of the great advantages of the compact schemes is not only finding
the first derivative but also higher derivatives as needed in the applications from the
Computational Fluid Dynamics (CFD). For example, both first and second derivatives have
been evaluated at the same time as discussed in [7] when constructing the combined compact
schemes. In [8], high order compact scheme is discussed and constructed according to the
analysis of dispersion and dissipation at each stencil and to capture the shock without losing
the high resolution of the results. Also, it is not restricted to the uniform grid, many compact
schemes of anon-uniform grids have been derived and extended, see [9], [10], and [11] as
examples. In [12], the authors introduced a methodology of providing special types of
compact schemes by avoiding negative dissipation in some stencils to gain stability and non-
oscillatory characteristics. Additionally, efforts were achieved in [13] and [14] to obtain some
kinds of compact schemes according to the results from Fourier analysis and applied to
different types of continuous and non-continuous problems from CDF. [15] and [16] proposed
new families of compact schemes which are applicable to Navier-Stokes equations and to
parabolic problems respectively. Recently, new approach of providing high order
approximations for the first derivative was proposed in [17] using special kinds of matrices.

In this article, six sets of numerical compact schemes for the second derivative are constructed
in section 2 by using special kinds of polynomials. In section 3, the orders of accuracy for
constructed schemes are confirmed and verified by finding the coefficients of the remaining
polynomials or the error terms. Finally, in section 4, conclusions are given.

2. Second Derivative Approach for Approximation:

In this section, approximations for the second derivative are constructed with different
orders. A uniform step size h = x;, — xj,_, and grid points x,, x4, ... , xy are used such that
1<k < N. f; represents the approximation of the second derivative of f(x) at x; such that
fi=Ffx) , f'e=f'(x),and f"';, = f""(xx). The general form of the second derivative
compact finite difference schemes cab be expressed as follows:

! !/
rlf’;c—p + rzf’;c—p+1 +o Tm—lf,k_l + fk” + Tm+1fklf|-1 + -t er—lf,k+p_1 +
’ 1
Tomf sy = 73 [S1fimp + S2fimprr + 0+ Smoafimt + Smfic + Smaafiss + 0+

SZm—lfk+p—1 + Smek+p]- (1)
Usually, The values of the coefficients 7,175,173, *,79m, S1,S2,S3, =+, and s,,, can be
determined using Taylor series expansion at x;, where 1 < k < N. In this work, it is assumed
that p = 2 in Eq.(2), so it follows :

1
T1f k2 +12f o1 + [ + Tafisr T 75f k2 = 2 [S1fi—2 + S2fk—1 + S3fic + Safies1 +

Ssfi+zl- ()
Another way of finding the coefficients is using a polynomial of order N
N
Tn(x) = Y cxt 3)
suchthat T'y(x) = thvzl teext™1 L T'y(x) = thvzz t(t — Dext=2 .

To derive the schemes in this work, substituting (3) in (2) results in:
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N N N

ry Z t(t — 1)cexp_pt "% 41, z t(t — Dexp—12 + Z t(t — Depx 2
t=2 t=2 t=2
N N
+r, Z t(t — Dexpsrt"2 +1g Z t(t — 1)cpxpart 2
t=2 t=2
. N N N N
B COITCHR JTRIRE) YHEe ) R,
t=0 t=0 t=0 t=0
N
+ S5 Z Ct(xk+2)t>
t=0

Now, locating x;, at the origin and assuming that h is equal to one unit lead to:
N

Z t(t — Dee[ri(=2)72 + r,(D2 + 1y (D2 +15(2)7%] + 2¢,

t=2
N

= D alsi(=2)" + 5,1 + 5, (D + 552)°] + cos
t=0
Ziz t(t = Dee[ri(=2)72 +1r2(- D72 + 14 (D)2 + 15(2)7%] + 2¢; = co[s1 + 52 +
S3+S4 4+ S5] + ¢, [—25; — 3 + 54 + 255] + th\;z ce[s1(—2)F + s, (=1 + s, (D +
s5(2)°]. (4)
To get schemes of order t, the coefficient c, in the polynomial Ty (x) should be a real number
not equal to zero, and ¢, = 0 for t < w < N. Hence, different sets according to their orders

are established from the third order and up to seventh order by matching both sides of Eq.(4).
In general, Eq.(2) can be expressed in the matrix form as follows:

such that
F=[fi fo « fl" and F'=[f"y f' .« f'nI"

1 s 0 0 0 0 000 00 m
n 1 nn rn 00 0 000 00 0 ny
n or, 1 rn rs 0 0 000 0 0 O0 O
00 n 1 n 15 0 0 000 0 0O
A= I T
0 00 0 0O 0« 0 rp mp, 1 71 15 0
0 0 O 0 0 O o -~ 0 0 rnp rn 1 1 15
s 00 00 0 O 000 nrn n 1rn
s 0 0 0 0 0 000 0 r nrn 1
S3 S4 Ss 0 0 0 0 0 00 0 0 s; s
S; S3 S4 ss 0 0 0 0 000 0 0 s
St S2 S3 s, ss 00 0 000 00O
0 s; s, S3 Ty 15 0 000 0 0 O0 O
0 0 O 0 00 O 0 s; S, S3 S4 S5 O
0 0 O 0O 0 0o O 0 0 s; S, S3 S4 Ss
ss 00 0 0 o0 O 0 0 0 s; S2 S3 5S4
ss ss 0 0 0 0 O 0 0 0 0 S1 Sz S3
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2.1. Set of second derivative approximations of order 3:

In this part, second derivative compact schemes of the third order are constructed as shown
in Table 1. To obtain this set of approximations for the second derivative, ¢, in Eq.(4) should
not be zero and c3, ¢4, s, -++, cy are all zeros. Hence, when matching the coefficients in both
sides of Eq.(4), it follows:
2¢cy[r; 1+ 141, +15] =cols; + S, + 53+ 5, +55] +c1[—25; — S, + 54+ 255] +
Cy[4s1 + s, + 54 + 4s5]. (6)
Therefore, this set of approximations should satisfy the following equations:

[s1 + 5, +53+54+5s5] =0,
[—2s1 — s, + 54 +255] =0,
2[r; +ry + 141, +15] =451 + 5, + 54 + 4ss. @)

Table 1: Set of second derivative approximations of order 3

Schemes I I I4 I's S1 So S3 Sq S5
SDOs3-1 0 0 0 0 0 1 -2 1 0
1 1 1

SDO3-2 0 - 0 0 0 0 — -1 —
T : 3 T

SDO3-3 —— 0 0 0 0 0 — - -
3 3 3 3

SD0O3-4 0 0 0 1 0 0 2 -4 2

All approximations in Table 1 are of order three, and they are named according to the
order and the location in the table. For example, the scheme SDO3-1 stands for Second
Derivative Order 3 — scheme number 1. Similarly, the schemes of the other sets can be
derived as follows.

2.2. Set of second derivative approximations of order 4:

In this section, second derivative compact approximations of order four are derived as
illustrated in Table 2. To get this set of schemes for the second derivative, c3 in Eq.(4) should
not be zero and ¢y, c5, -, cy are all zeros. From Eq.(4), and it follows:
2¢cy[r; +ry + 1+ 1, + 15| + 6¢c5[—2r; — 1, + 14 + 215]

= Co[S1 + Sy + 53+ 54+ 55] + ¢1[—251 — sy + 54 + 25;5]
+cy[4s1 + S, + 54 + 4s5] + c3[—8s; — S, + 54 + 8s;] (8)
Hence, the schemes in this set should fulfill the following equations:
[s1 +S,+S3+5s4,+55]=0
[—25; —s, + 54+ 2s5] =0
2[ry +ry + 141, +15] =[4s; + 55+ 54+ 4s5]
6[—2r; —ry + 1y + 2r5] = [—8s; — s, + 54 + 8s5] 9)
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Table 2: Set of second derivative approximations of order 4

Schemes I I r4 I's S1 S2 S3 Sy S5
SD0O4-1 i —i 0 0 0 E —E 2 0
13 13 13 13 13
SDO4-2 L 0 Z | o o | 2] 2 Iz 0
33 33 11 11 11
SDO4-3 0 i 0 i 0 E —ﬁ E 0
33 33 11 11 11
SDO4-4 0 0 _2 L 0 1z 2 12 0
13 13 13 13 13
SD0O4-5 0 -1 0 0 -1 3 -3 1 0
SDO4-6 i 0 0 0 i 6 —E E 0
11 11 11 11 11
SDO4-7 0 0 i 0 —i 1—5 —E g 0
11 11 11 11 11
SDO4-8 i 0 0 0 —i é —E E 0
35 35 5 35 35
SD0O4-9 E —ﬁ 0 0 0 0 2 —ﬁ 2
37 37 37 37 37
SD0O4-10 —% 0 —? 0 0 0 -12 24 -12
SD0O4-11 —i 0 0 B 0 0 E —ﬁ ﬁ
34 34 17 17 17
SDO4-12 0 —% —? 0 0 0 -6 12 -6
SD04-13 0 _1o 0 13 0 0 L S
33 33 11 11 11
SD0O4-14 0 i 0 0 0 E —Z 1—5 _i
11 11 11 11 11
SD0O4-15 i 0 0 0 0 ﬁ —E 9 _i
35 35 35 5 35
SDO4-16 0 0 -1 0 0 1 -3 3 -1
SDO4-17 0 0 0 I 0 186 Z
11 11 11 11 11

2.3. Set of second derivative approximations of order 5:

In this part, five order schemes for the second derivative are provided as introduced in
Table 3. To establish this set of approximations for the second derivative, ¢4 in Eq.(4) should
not be zero and cs, -+-, cy are all zeros. From Eq.(4), it follows:
2¢cy[r A+ 1414 +15] +603[—2r; — 15 + 14+ 2r5] + 12¢4[41; + 15 + 14 + 415] =
Co[S1 + Sy + 83+ 5S4+ S5] +Cc1[—281 — Sy + S84 + 2S5] + €3[451 + S5 + S4 + 4s5] +
c3[—8sy — sy + 54 + 8s5] + €4[1681 + S5 + 54 + 1655] (10)
Hence,
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[S1 +S;+S3+5s,+5s5]=0

[—25; —s; + 54+ 2s55] =0
2[r; +ry + 1471, +15] =[4s) + 55 + 54 + 455
6[—2r; —ry + 1, + 2rg] = [—8s; — s, + 54 + 8s5]

12[4r; + 1y, + 14 + 4r5] = [165; + 55, + 54 + 1655] (11)
Table 3: Set of second derivative approximations of order 5.
Schemes I I2 4 I's S1 S2 S3 Sa S5
SDO5-1 0 x L 0 0 6 _1z 6 0
10 10 5 5 5
SDO5-2 L 0 0 L 0 z _B z 0
46 46 23 23 23
SDO5-3 1 10 0 0 12 -24 12 0 0
SDO5-4 _1 0 0 10 _2 16 _28 20 0
99 99 33 11 11 33
SD05-5 o | 2] o | L | 28 I 0
9 45 15 5 5 15
SD05-6 o | o | 2 | A | iz w2 12168
29 145 145 145 5 145
SDO5-7 0 0 10 1 0 0 12 -24 12
SDO5-8 1 A 0 0 _Lz = _Lz 0
5 5 5 5 5 5
SD05-9 O T T I SO A - 0
32 8 32 4 2 4
soos10 | L | 2 | o | o | o | 8| 12] 192} 12
145 29 145 145 145

2.4. Set of second derivative approximations of order 6:

In this section, second derivative compact schemes of order six are introduced as shown in
Table 4 . To obtain this set of approximations for the second derivative, c5 in Eq.(4) should
not be zero and cg, ---, cy are all zeros. From Eq.(10), and it follows:
2¢cy[ry+rp + 1+ 14 +15] +603[—2r; — 15 + 14 + 2r5] + 12¢4[41; + 15 + 14 + 415] +
20c5[—8r; — 1, + 1y + 8r5] + 21;6 t(t— 1) [ri(—2)2 + i (-1 2 + 1, (1)2 +
rs(2)072] = cg[sq + Sz + S3 + Sq + S5] + €1[—2S; — S; + S4 + 255] + Cp[4S1 + S, + 5S4 +
4s5] + c3[—8s1 — Sy + 54 + 8s5] + €4[16S1 + S5 + 54 + 16S5] + c5[—3251 —S; + S, +
32s5] + o Cols1(=2) + 52 (~ D +5,(DF +55(2)]  (12)

Therefore,
[s1 +s,+s3+5s,+5s5]=0
[—25; —s; + 54+ 2s5] =0
2[ry +ry + 141, +15] = [4s; + 5, + 54+ 4s5]
6[—2r; —ry +ry + 2rg] =[—8s; — s, + 54 + 8sg]
12[4r; + 1, + 14 + 4r5] = [165; + 55 + 54 + 1655]
20[—8ry —ry + 14 + 8rg] = [-32s; — s, + 54 + 3255] (13)
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Table 4: Set of second derivative approximations of order 6.

Schemes I I r4 I's S1 S2 S3 Sy S5

SDO6-1 1 -1 L 0 2 4 —4 : 0
9 9 3 3
33 23 1 12 204 12 228

SDO6-2 0 A A e T IR B A B
185 185 185 185 185 5 185
23 120 1 144 312 192 24

SDO6-3 S — S—— 0 — S — ——— — 0
22 11 22 11 11 11 11

soo6a | AL | o | 20| [ _16 [1es | _zms [ [
654 327 218 109 109 109 109

soss | L | 2 2| 1 [ o [ 20 [10]
14 7 7 14 7 7 7

SDO6-6 0 1 -1 —1 0 ﬁ —4 4 —i

9 9 3 3

1 2 22 12 204 12

wosr | L | 2 | B, | |z 2w

185 185 185 185 5 185 185

2.5. Set of second derivative approximations of order 7:

In this part, second derivative compact schemes of order seven are proposed as illustrated
in Table 5. To obtain this set of approximations for the second derivative, c¢ in Eq.(5) should
not be zero and c5, ---, cy are all zeros. From Eq.(12), and it follows:
2¢cy[r; +ry+ 1+ 1y +r5] + 6¢c5[—2r; — 1, + 14 + 2r5] + 12¢4[41, + 15 + 14 + 4r5] +
20cs[—8r; —r, + 14 + 8rs]] + 30¢g[16r; + 1, + 1, + 1615] + thvﬂt(t -

Dee[ri(2) 72+ (D)2 + 1, (D)2 +r5(2)72] = ¢g[sy + 5, + 53 + 54 +55] +
c1[—2sy — sy + 54 + 2s5] + c5[4s1 + 55 + 54 + 4S5 + c3[—8s; — S5 + 54 + 8s5] +
C4[1651 + S5 + 54 + 16S5] + c5[—3251 — S5 + 54 + 3255] + c4[6451 + S, + 54 + 64s5] +

SN clsi (=)t + 5o (=D + 54 (D +55(2)1] (14)
S0,
[s1 +S,+S3+54,+55]=0
[—25; —s, + 54+ 2s5] =0
2[ry +ry + 141, +15] =[4s; + 55+ 54+ 4s5]
6[—2r; —ry + 1y + 2rg] = [—8s; — s, + 54 + 8s5]
12[4r; + 1y + 14 + 4r5] = [165; + 55 + 54 + 1655]
20[—8r; —ry + 14 + 8rg] = [-32s; — s, + 54 + 3255]

30[16r; + 1, + 14 + 1615] = [64S; + 55 + 54 + 645c] (15)
Table 5: Set of second derivative approximation of order 7.
Schemes I I 7 I's S1 S2 S3 Sy S5
sot1 | L | & | &2 [ _L |, [ 20 [0
194 97 97 194 97 97 97

3. Order of Accuracy for the numerical schemes:

There are many ways of demonstrating the order of accuracy for the numerical schemes.
one way is by calculating errors from solving problems with analytic solutions and finding the
relations between these errors with different step sizes. Another approach is using a
polynomial of order N :
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N

Ty (x) = z cext

t=0
such that schemes of order k are exact for the polynomials of order k or less, and they usually
have error terms for the polynomials of order greater than k.

3.1. Order of Accuracy to the Numerical schemes of order 3:
In this section, it can be proved that all third order compact finite difference

approximations for f'; are exact for the functions T;(x) = 23 c.xt such that c; # 0 as

follows : =

Firstly, SDO3-1 can be expressed as: f;,' = h—lz [fi1 — 2fx + frs1l- (16)
The left-hand side (LHS) of Eq. (16) is: f," = 2c, + 6¢3xy,

while the RHS of Eq.(16) is: = fier = 2fic + fiwr] = 75 [Co + CrXems + Coxf_y +

3 2 3 2 3
C3Xj—1 — 2(Co + C1x + Cxj + C3Xj) + Co + C1Xpq1 + CoXjeyq T+ C3Xj41]

Y [c1(Xpm1 — 2% + Xpep1) + Co(Xf_y — 2XF + Xfy1) + C3(XR_y — 2X3 + Xjoyq)]

1
[c1(h = B) + (o — B)? = 2 + (e + 1)) + c3(Cre — )° = 230 + (i + 1))

T2
1
%) —[2h%c, + 6hzc3xk] = 2¢, + 6C3x;
Similarly, SDO3-2 can be written as: _E e+ i = = [Efk — frs1 T %fkﬂ] : 17)

The LHS of EQ.(17) is : = fily + fi = =5 (2c; + 6C3xk—1) + 2€; + 6C3x
=y +3c3(2x — X_1) = C3 + 3cz3(xy + h),
while the RHS of Eq.(17) is: [ fo— foas += fk+2] = 2 [2(co + Cxxic + €x% + caxd) —

3
(co + C1Xppq + CoXfyq + C3xk+1) 7 (Co + C1Xpr2 + CoXjpyg + C3Xjy )]

1 1 2 .2 1, 15 3 1 5
= [C1(§xk — X411 T Exk+2) + C; (Exk — Xje41 T Exk+2) + C3(§Xk — X1 T Exk+2)]

1 1 1 1 1
= ZleaGxi = G+ W) + 5 (o + 21 + e Gxie = Ga + 1)* + 5 (xc + 2)%)]

hlz [h2c, + C3(2hZXR + 3h3] = ¢y + 3c3(x, + h)
Also, SDO3-3 has the form: — = k" 2+ 1 = oz fie = 2fees + funz). (18)
The LHS of Eq.(18) is : —=fil, +fi' = — (2cs + 6c3x4_3) + 2¢; + 6C32; =S¢, +
c3(6x, — 2xp_3) 4 4

=36 + c3(6x;, — 2(x) — 2h)) = 362 + 4c3(x, + h)

while the RHS of Eq.(18) is: — [fi — 2fixs + firz] = g [Co + €1ty + CoxE + 3% —

2 3 2
2(Co + C1Xpy1 + CoXfyq + C3Xiy1) + Co + C1Xpan + CoXiyy + C3Xiy 2]

2
=30z [c1 (X = 2Xp41 + Xpa2) + Co(XF = 2XG 41 + Xiy2) + C3 (X — 2341 + X3 42)]
2
= W[cz(xﬁ —2(x + h)? + (xx + 21)?) + c5(x2 — 2(x, + h)3 + (x, + 21)3)]

2 2 2 3 4
=32 [2h“c, + c3(6h*x) + 6h°] = 362 + 4cg(x, + h)
The last approximation in this set is SDO3-4, WhICh can be given as:

Ct frvz = Wz [fk—1 = 2fic + fre1l- (19)
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The LHS of (19)is: f,' + fuisz = 2C5 + 6C3x) + 205 + 6C3X 15 = 4Cy + 6C3(X) + Xpy2)
= 4c, + 6c5(x) + x5, + 2h) = 4c, + 12¢5(x, + h),
While the RHS of (19) is: %[ -1 — 2fx + frs1l = % [(co + C1xx + CoxE + Cc3x3) —

2 3 2 3
2(co + C1Xpt1 + CoXjoyq + C3Xjer1) + (Co + C1Xpi2 + C2Xjoyo + C3Xjers)]

=z [c1 (X = 2Xpp1 + X)) + Co(Xf — 2Xf 41 + X)) + C3(XR — 2X541 + Xii42)]

2
=3 [c(xZ — 2(x, + )% + (xi + 20)?) + c3(x3 — 2(x + )3 + (x4 + 2h)3)]

2
= [2h%c, + c53(6h?x) + 6R3] = 4cy + 12¢3(x, + )
Now, the remaining terms or the error terms can be found when using polynomials of order
higher than 3. Hence, T,(x) is used to get the coefficients of the remaining polynomials as it
is illustrated in the table below:

TABLE 6: The coefficients of the remaining polynomials for the approximations of order 3.

Schemes Co C1 C2 C3 C4 Cs Ce C7

SDO3-1 0 0 0 0 -2 0 -2 0

SDO3-2 0 0 0 0 -13 -5 -46 -42

SDO3-3 0 0 0 0 - E @ - @ 364
3 3 3

SDO3-4 0 0 0 0 20 100 356 1092

3.2. Order of Accuracy to the Numerical schemes of order 4:
As in the previous section, the fourth order compact approximations for f'’;, are exact for
the function T,(x) such that c, # 0. Also, Tg(x) is used to get the coefficients of the

remaining polynomials as shown in the table below:
Table 7: The coefficients of remaining polynomials for the approximations of order 4
Schemes Co C1 Co C3 Cs Cs Ce C7 Cs
SD04-1 0 0 0 0 0 _120 3% _ 1260 3448
13 13 13 13
SD04-2 0 0 0 0 0 _%0 156 _ 420 1208
11 11 11 11
SD0O4-3 0 0 0 0 0 0 156 420 1208
11 11 11 11
SDO4-4 0 0 0 0 0 120 396 1260 3448
13 13 13 13
SDO4-5 0 0 0 0 0 -10 30 -84 196
SD0O4-6 0 0 0 0 0 — @ ﬁ — % ﬁ
11 11 11 11
so0e7 | 0 | o | o |o| o | 10| e [ 3
11 11 11 11
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SDO4-8 0 0 o | o | o 100 528 1092 4016
35 35 35 35
0Ot ) . o | o | o | _1680 | 4356 | 17388 | 41416
37 37 37 37
SD04-10 0 0 o | o | o 160 204 1428 1144
Sbot-11 ) . o o | o 1200 1872 | 13104 18992
17 17 17 17
SDO4-12 0 0 o | o | o 60 162 504 1132
SDOs13 ) . o ol o 400 1236 4452 12296
11 11 11 11
SDO4-14 0 0 o | o | o 10 66 84 284
11 11 11 11
SD04-15 0 0 o | o | o 100 _528 | 1092 _ 4016
35 35 35 35
SD04-16 0 0 o | o | o 10 30 84 196
SDO4-17 0 0 o | o | o 100 336 1092 3056
11 11 11 11

3.3. Order of Accuracy to the Numerical schemes of order 5:

Additionally, the fifth order compact approximations for ', are exact for the function
Ts(x) such that cs # 0,and Tg(x) is used to get the coefficients of the remaining

polynomials as introduced in the table below:axdddddf-

Table 8: The coefficients of remaining polynomials for the approximations of order 5

Schemes Co C1 Co C3 Csy Cs Ce C7 Csg
SDO5-1 0 0 0 0 0 0 1—: 0 %
SDO5-2 0 0 0 0 0 0 @ 0 ﬁ
23 23
SDO5-3 0 0 0 0 0 0 36 -252 1096
SDO5-4 0 0 0 0 0 0 ﬁ @ — ﬁ
11 11 11
SDO5-5 0 0 0 0 0 0 2 E @
5 5 5
SDO5-6 0 0 0 0 0 0 @ E &56
145 145 145
SDO5-7 0 0 0 0 0 0 36 252 1096
SDO5-8 0 0 0 0 0 0 @ — E 56&
5 5 5
SDO5-9 0 0 0 0 0 0 @ § %
4 4 4
SDO5-10 0 0 0 0 0 0 @ — E &56
145 145 145
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3.4. Order of Accuracy to the Numerical schemes of order 6:

Similarly, the sixth order compact approximations for f'’; are exact for the function T(x)
such that ¢, # 0. Also, To(x) is used to get the coefficients of the remaining polynomials as
shown in the table below:

Table 9: The coefficients of remaining polynomials for the approximations of order 6.

Schemes Co C1 C2 C3 Cs Cs Ce C7 Cs Co
SDO6-1 0 0 o | o] ol o 0 28 112 424
SDO6-2 0 0 0 0 0 0 o | _252 | _392 | 3816
185 185 185
SDO6-3 0 0 o | o o | o o | 3024 | 9616 | 45792
11 11 11
SD06-4 0 0 o | o] ol o 0 336 | 3824 | 5088
109 109 109
DB . . o | o | o | %410 | 13300 | 66780
4 4 4
SDO6-6 0 0 o | o o | o 0 28 1108 424
SDO6-7 0 0 o | o] ol o 0 252 | 3952 | 3816
185 185 185

3.5. Order of Accuracy to the Numerical scheme of order 7:

Finally, the seventh order compact approximations for f';, are exact for the function T,(x)
such that c¢; # 0. Also, To(x) is used to get the coefficients of the remaining polynomials as in
the table below:

Table 7: The coefficients of remaining polynomial for the approximation of order 7

Scheme Co C1 C2 C3 Cs Cs Co Cr Cs Co
SDO7-1 0 0 0 0 0 0 0 0 — % 0

4. Conclusion:

To obtain the second derivative approximation, many families of compact methods are
proposed in this work according to some polynomials of different degrees. In addition, the
construction methodology of deriving these families is introduced in clear and simple way. As
shown in tables, all schemes in each family have the same order of accuracy, which is verified
by obtaining the coefficients of remaining polynomial. From the results, the characteristics of
each approximation are clearly shown, so they can be applicable to solve problems from
Computational Fluid Dynamics (CFD) like one or two-dimensional convection—diffusion
equation. For the future work, the proposed method can be generalized to construct schemes
for high derivatives as needed in providing accurate and stable solutions.

Acknowledgment:
The author would like to thank Mustansiriyah University - www.uomustansiriyah.edu.iq -
( Baghdad — Iraq) for its support in the present work.

5205


http://www.uomustansiriyah.edu.iq/

Al-Dujaly Iragi Journal of Science, 2024, Vol. 65, No. 9, pp: 5195-5206

References:

[1] Claudio Canuto , M. Yousuff Hussaini , Alfio Quarteroni , Thomas A. Zang, Spectral Methods in
Fluid Dynamics, Berlin: Springer, 1988.

[2] Magda Rebelo, M. Luisa Morgado, Neville Ford, "An implicit finite difference approximation for
the solution of the diffusion equation with distributed,” Electronic transactions on numerical
analysis, vol. 44, pp. 289-305, 2015.

[3] Zhao-peng H, Zhi-zhong S, Wan-rong C. A , "Fourth-Order Approximation of Fractional
Derivatives with its Applications,” Journal of Computational Physics, vol. 281, no. 1, pp. 787-
805, 2014.

[4] M. G. S. AL-Safi, W. R. A. AL-Hussein, and A. G. N. Al-Shammari, “A new approximate
solution for the Telegraph equation of space-fractional order derivative by using Sumudu
method”, Iragi Journal of Science, vol. 59, no. 3A, pp. 1301-1311, Jul. 2018.

[5] Z. Adil and M. S. Hussein, “Numerical Solution for Two-Sided Stefan Problem”, Iraqi Journal of
Science, vol. 61, no. 2, pp. 444-452, Feb. 2020.

[6] H.O.. AL-Humedi and F. L. . Hasan, “The Numerical Solutions of Nonlinear Time-Fractional
Differential Equations by LMADM?”, Iraqi Journal of Science, pp. 17-26, May 2021.

[7] K. Mahesh, "A family of high order finite difference schemes with good spectral resolution,"”
Journal of Computational Physics, vol. 145, no. 1, p. 332-358., 1998.

[8] Hassan Aldujaly, Yong Yang , Chaoqun Liu, "Weighted Upwinding Compact Scheme for Shock
Capturing," in 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Grapevine, Texas,
2017.

[9] Peter C Chu, Chenwu Fan, "A three-point sixth-order nonuniform combined compact difference
scheme," Journal of Computational Physics, vol. 148, no. 2, pp. 663-674, 1999.

[10] Lixin Ge , Jun Zhang, "High accuracy solution of convection diffusion equation with boundary
layers on nonuniform grids," Journal of Computational Physics, vol. 171, no. 2, pp. 560-578,
2001.

[11] Zhengjie Wang, Hassan Abd Salman Al-Dujaly , Chaoqun Liu, "Construction Methodology of
Weighted Upwind Compact Scheme," in 54th AIAA Aerospace Sciences Meeting, San Diego,
California, USA, 2016.

[12] Hassan Abd Salman Al-Dujaly, Aldhlki T. Jassim, Mustafa A. Sabri, Saif Z. Hameed, "The
construction and analysis of Compact and noncompact schemes,” in I0OP Conference Series:
Materials Science and Engineering, University of Kerbala, Irag, 2019.

[13] Hassan Abd Salman Al-Dujaly, Mustafa A Sabri , Saif Z Hameed, "Some results from the
upwinding compact scheme on continuous and non-continuous functions," in Journal of Physics:
Conference Series, College of Science, University of Al-Qadisiyah, Iraq, 2019.

[14] S. Sen, "A new family of (55)CC-40C schemes applicable for unsteady Navier—Stokes
equations," Journal of Computational Physics, vol. 251, pp. 251-271, 2013.

[15] S. Sen, "Fourth order compact schemes for variable coefficient parabolic problems with mixed
derivatives," Computers & Fluids, vol. 134-135, pp. 81-89, 2016.

[16] Hassan Abd Salman Al-Dujaly , Yinlin Dong, "Matrix Form of Deriving High Order Schemes for
the First Derivative," Baghdad Science Journal, vol. 17, no. 3, p. 1041, 2020.

[17]P. C. Chu and C. Fan., "A three-point combined compact difference scheme,” Journal of
Computational Physics, vol. 140, no. 2, pp. 370-399, 1998.

5206



