

Nilpotency of Centralizers in Prime Rings

Abdulrahman H. Majeed, Faten Adel Shalal*

Department of Mathematics**,** College of Science**,** University of Baghdad, Baghdad, Iraq

Abstract

E. C. Posner proved that if λ and δ are derivations of a prime ring R with characteristic not equal 2, then $\lambda \delta = 0$ implies that either $\lambda = 0$ or $\delta = 0$. David W.Jensen extend this result by showing that, without any characteristic restriction, $\lambda \delta^m = 0$ implies either $\lambda = 0$ or $\delta^{4m-1} = 0$, also he proved that $\lambda^n \delta = 0$ implies either $\delta^2 = 0$ or $\lambda^{12n-9} = 0$, and finally, in general when $\lambda^n \delta^m = 0$, he showed that if λ and δ are commute , then at least one of the derivations must be nilpotent .Here we ask the possibility if the same results of David can be satisfied on R with replacing the derivations λ and δ with centralizers T and G.

Keywords: semiprime ring, prime ring, derivation, left (right) centralizer, centralizer, Jordan centralizer , nilpotent centralizer .

> **المتمركزات عدیمة القوى في الحلقات الأولیة عبد الرحمن حمید مجید ، فاتن عادل شلال** قسم الریاضیات ، كلیة العلوم ، جامعة بغداد ، بغداد ، العراق

> > **الخلاصة :**

 اثبت بوسنر انه إذا كانت ߣ وߜ مشتقات لحلقة اولیة *R* بحیث إن ممیز إل*R*≠2 , إذا كانت 0 = ߜߣ فأنه اما 0 = ߣ أو0 = ߜ . وسع دافید هذه النتیجة بحیث بین انه بدون إي قید على ممیز أل*R*, إن او $\delta^{2}=0$, واثبت ایضا ان $\delta^{m}=0$, $\delta^{4m-1}=0$ او $\lambda\in\mathbb{R}^{m}$, واثبت ایضا ان $\lambda\delta^{m}=0$ و اخیرا اثبت بصورة عامة انه اذا كان ߣ ߣ ଵଶିଽ = 0 , ߣ و ߜ تتبادل مع بعضها فأنه على ߜ = 0 الاقل واحدة منهم تكون عدیمة القوى . خلال هذا البحث سنقوم بتطبیق نتائج دافید الثلاثة على المتمركزات .

Introduction:

Throughout this paper R will represent an associative ring. Recall that R is a prime ring if $aRb = 0$ implies that $a = 0$ or $b = 0$ (wherea, $b \in R$), and R is semiprime ring if $aRa = 0$ implies that $a = 0$ (Where $\alpha \in R$). A ring R is *n*-torsion free if $nx = 0$ implies that $x = 0$ (where $x \in R$ and *n* is a positive integer). An additive mapping $\lambda: R \to R$ is called a derivation if $\lambda(xy) = \lambda(x)y + x\lambda(y)$ holds for all $x, y \in R$. An additive mapping $T: R \to R$ is called left (right) centralizer if $T(xy) = T(x)y(T(xy))$ $x T(y)$ holds for all $x, y \in R$. *T* is called centralizer if it is both left and right centralizer. A centralizer is said to be nilpotent if $T^n(x) = 0$ for some fixed integer *n*. An additive mapping $T: R \to R$ is called left (right) Jordan centralizer in case $T(x^2) = T(x)x(T(x^2) = xT(x))$ holds for all $x \in R$. Following

__

^{*}Email: www.ftoonmath@ymail.com

ideas from [1] ,Zalar has proved in [2] that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. J. Vukman [3] shows that for a semiprime ring R with extended centroid C if $3T(xyx) = T(x)yx + xT(y)x + xyT(x)$ holds for all $x, y \in R$ then there exists $\alpha \in C$ such that $T(x) = \alpha x$, for all $x \in R$. Other results concerning centralizer in prime and semiprime ring can be found in [4 -9]. David W. Jensen [10] showed that ,if $\lambda \delta^m = 0$ implies either $\lambda = 0$ or $\delta^{4m-1} = 0$, also he proved that $\lambda^n \delta = 0$ implies either $\delta^2 = 0$ or $\lambda^{12n-9} = 0$, and finally, in general when $\lambda^n \delta^m = 0$, he showed that if λ and δ are commute, then at least one of the derivations must be nilpotent. Here we ask the possibility if the same result can be satisfied on R with replacing the derivations λ and δ with centralizers *T* and *G*.

 First we shall prove the following two Lemmas which shall be used throughout the proof of our results :

Lemma 1: Assume T is a centralizer of a prime ring R and there is a nonzero element $a \in R$, such that $a(T^nR) = 0$ or $(T^nR)a = 0$, then $T^{2n-1} = 0$.

Proof: Assume first $a(T^nR) = 0$. Then for all $x, y \in R$ we have:

 $aT^{n}(xy) = axT^{n}(y)$, for all $x, y \in R$ (1) Replacing y in (1) by $T^{n-1}(y)$ yields that $axT^{2n-1}(y) = 0$, for all $, y \in R$. Therefore, $aRT^{2n-1}(y) = 0$ 0, for all $y \in R$. Hence since R is a prime ring and $a \neq 0$ we have that $T^{2n-1}(y) = 0$, for all $y \in R$, so $T^{2n-1} = 0$.

Similarly, if we begin with $(T^nR)a = 0$ we can get that $T^{2n-1} = 0$.

Lemma 2 : If *T* and *G* are centralizers of a prime ring *R* and $TG = 0$, then either $T = 0$ or $G^2 = 0$. **Proof:** For all $x, y \in R$, we have

 $0 = TG(xy) = T(G(x)y) = G(x)T(y)$, for all $x, y \in R$ (2)

Replacing x by $G(x)$ in (2) we get that $G^2(x)T(y) = 0$, for all $x, y \in R$.

Assume $G^2(x) \neq 0$, then by Lemma 1 we have that $T(y) = 0$, for all $y \in R$, hence $T = 0$.

Next we will prove the main results in this research which will show that for a prime ring R and centralizers T, G of R, if $T^n G^m = 0$, then at least one of the centralizers will be nilpotent if $n =$ $1, m = 1$ or T and G are commute.

Theorem 1 : Let T and G be centralizers of a prime ring, and let $TG^m = 0$ where m is a positive integer. Then either $T = 0$ or $G^r = 0$, where $r \leq 4m - 1$.

Proof : We proceed by induction, when $m = 1$, Lemma 2 implies that the result is true. Assume the theorem is true for $m = 1, 2, \ldots, k - 1$.

Now assume $TG^k = 0$, then for all x and y in,

$$
TG^k(xy) = T\big(xG^k(y)\big) = 0\tag{3}
$$

Replacing x by $G^{k-1}(x)$ and y by $G^k(y)$ in (3) yields

 $0 = T(G^{k-1}(x) G^{2k}(y)) = T(G^{k-1}(x)) G^{2k}(y) = TG^{k-1}(x) G^{2k}(y)$, for all, $y \in R$.

If $TG^{k-1}(x) \neq 0$, then by Lemma 1 we get that $G^{4k-1} = 0$. On the other hand if $TG^{k-1}(x) = 0$ for all \in R, then by induction hypothesis we get that the theorem is true.

Theorem 2 : Let T and G be centralizers of a prime ring, let $T^nG = 0$, where n is a positive integer. Then either $G^2 = 0$ or $T^t = 0$, where $t \le 12n - 9$.

Proof : Let S be the set of all centralizers of R .

 $Claim: S is a Lie ring.$ Let $T, G \in S$, $(T - G)(xy) = T(xy) - G(xy) = T(x)y - G(x)y$ $= (T(x) - G(x))y = (T - G)(x)y$. Hence $T - G \in S$. Now we want to prove $TG \in S$. $TG(xy) = T(G(x)y) = TG(x)y$. So $TG \in S$. Hence S is a ring. Now ,

$$
(TG - GT)(xy) = TG(xy) - GT(xy)
$$

= $TG(x)y - GT(x)y = (TG - GT)(x)y$

Thus $TG - GT \in S$. Hence S is a Lie ring of R.

Therefore $[G, T] = GT - TG$ is a centralizer of R, $[GT - TG, T] = GT^2 - 2TGT + T^2G$ is a centralizer, also $[GT^2 - 2TGT + T^2, T] = GT^3 - 3TGT^2 + 3T^2GT - T^3G$ is a centralizer. Continue in this way we may conclude that

$$
\sum_{i=0}^{2n-1} \binom{2n-1}{i} (-1)^i T^i G T^{2n-1-i}
$$
 is a centralizer (4)

The coefficients are not germane to the rest of the proof , so we suppress them from here on out .Using the assumption that $T^n G = 0$ and (4) we get that $GT^{2n-1} + TGT^{2n-2} + \ldots + T^{n-1}GT^n$ is a centralizer. Since

$$
(GT^{2n-1} + TGT^{2n-2} + ... + T^{n-1}GT^n)G = 0
$$
\nThen by applying Lemma2 on (5) gives us that $G^2 = 0$ or\n
$$
GT^{2n-1} + TGT^{2n-2} + ... + T^{n-1}GT^n = 0
$$
\n(6)

If $G^2 \neq 0$, then premultiplying (6) by T^{n-1} and using $T^n G = 0$ to obtain $T^{n-1} G T^{2n-1} = 0$. Premultiplying (5) by T^{n-2} it follows that

$$
T^{n-2}GT^{2n-1} + T^{n-1}GT^{2n-2} = 0
$$

\n
$$
\Rightarrow (T^{n-2}GT^{2n-1} + T^{n-1}GT^{2n-2})T = 0
$$

\n
$$
\Rightarrow T^{n-2}GT^{2n-1} = 0
$$

Premultiplying (6) by T^{n-3} it follows that

$$
T^{n-3}GT^{2n-1} + T^{n-2}GT^{2n-2} + T^{n-1}GT^{2n-3} = 0
$$

\n
$$
\Rightarrow (T^{n-3}GT^{2n-1} + T^{n-2}GT^{2n-2} + T^{n-1}GT^{2n-3})T^2 = 0
$$

\n
$$
\Rightarrow T^{n-3}GT^{2n+1} = 0
$$

Continuing this algorithm we arrive at $GT^{3n-2} = 0$. Applying Theorem 1 completes the proof .

Theorem 3 : Assume T and G are centralizers of a prime ring R, and assume $T^n G^m = 0$, where *n* and *m* are positive integers . If *T* and *G* are commute then at least one of them is nilpotent . **Proof :** First by our hypothesis we have for all $x, y \in R$

$$
0 = T^n G^m \left(T^{mn}(x) G^{(m-1)m} T^{n-1}(y) \right) = T^n \left(T^{mn}(x) G^{m^2} T^{n-1}(y) \right)
$$

= $T^{(m+1)n}(x) G^{m^2} T^{n-1}(y)$

If $T^{n-1}G^{m^2} \neq 0$, then by using Lemma 1 we have that $T^{2(m+1)n-1} = 0$. If $T^{n-1}G^{m^2} = 0$. Hence, for $x, y \in R$

$$
0 = T^{n-1}G^{m^2} \left(T^{m^2(n-1)}(x) T^{n-2} G^{(m^2-1)m^2}(y) \right)
$$

= $T^{n-1} \left(T^{m^2(n-1)}(x) T^{n-2} G^{m^4}(y) \right)$

 $T = T^{(m^2-1)(n-1)}(x)T^{n-2}G^{m^4}(y)$, for all $x, y \in R$. If $T^{n-2}G^{m^4} \neq 0$, by Lemma 1 we have that $T^{2(m^2-1)(n-1)-1} = 0$.

If $T^{n-2}G^{m^4} = 0$ continue by applying the same way above we arrive at $G^{m^2} = 0$. Then *G* is a nilpotent centralizer .

Remark 1: The assumption that R is prime is essential, as the following example shows :

Example : Let *F* be a field and $D_2(F)$ the ring of 2 by 2 diagonal matrices over the field *F*, and let *T*, *G* be centralizers of $D_2(F)$ defined by

 $T\left(\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}\right)$ $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ and $G\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix}$ $\begin{bmatrix} 0 & y \\ 0 & y \end{bmatrix}$, for all $x, y \in F$

Easily one can show that the centralizers commute with each other, and $TG = 0$, but none one of the centralizers are nilpotent .

Remark 2: In this research we applied the same results in [11] by using centralizers instead of derivations, so we shall give examples to illustrate that there is no relation between derivation and centralizer.

Example 1: Let *F* be a field and $D_2(F)$ the ring of 2 by 2 diagonal matrices over the field *F*, and let *T* be a mapping of $D_2(F)$ defined by

 $T\left(\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}\right)$ $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$, for all $x, y \in F$

Easily one can show that T is a centralizer but it is not a derivation.

Example 2: Let R be the ring of 2 by 2 upper triangle matrices over a field, and let d be a mapping of R defined by

 $d\left(\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}\right)$ $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$ $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} - \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$ $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, for all $x, y, z \in F$

Then d *is* a derivation but not centralizer.

References:

- **1.** Bresar M. **1988**, Jordan derivations on semiprime rings, *Proc. Amer. Math. Soc.*, 104, pp:1003- 1006
- **2.** B.Zala**r1991**, On centralizer of semiprime rings, *Comment. Math. Univ. Carolinae* , 32:pp. 609- 614
- **3.** J. Vukman, I. Kusi- Ulbl **2003**, An equation related centralizers in semiprime rings, *Univ. of Maribor,*
- **4.** *Slovenia*, 35 (58), pp: 253-261.
- **5.** J. Vukman and M. Fosner **2007**, A characterization of two sided centralizers on prime rings, *Taiwanese J. of Math.* , 11 (5), pp: 1431-1441.
- **6.** J. Vukman and M. Fosner **2011,** An equation related to two sided centralizers in prime rings, *Rocky mountain J. of Math.* , 41(3), pp: 765-776.
- **7.** J. Vukman **2001**, Centralizers of semiprime rings, *Comment. Math. Univ. Carolinae*, 42 (2):pp. 237- 245.
- **8.** J. Vukman **1999**, An identity related to centralizers in semiprime rings, *Comment. Math. Univ. Carolinae*, 40 (3),pp. 447-456.
- **9.** J. Vukman , I. Kosi Ulb l **2003**, On centralizers of semiprime rings, *Aequationes Math.*, 66 , pp. 277- 283.
- **10.** Md. Fazlul Hoque, A. C. Paul **2011**, On Centralizers of Semiprime Gamma Rings, *International Mathematical Forum,* 6(13), pp: 627-638.
- **11.** David W. Jensen 1995, Nilpotency of derivations in prime rings, *Proc. Amer. Math. Soc., 123*, pp. 2633-2636.