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Abstract:  

     In this work, the pseudoparabolic problem of the fourth order is investigated to 

identify the time -dependent potential term under periodic conditions, namely, the 

integral condition and overdetermination condition. The existence and uniqueness of 

the solution to the inverse problem are provided. The proposed method involves 

discretizing the pseudoparabolic equation by using a finite difference scheme, and 

an iterative optimization algorithm to resolve the inverse problem which views as a 

nonlinear least-square minimization. The optimization algorithm aims to minimize 

the difference between the numerical computing solution and the measured data. 

Tikhonov’s regularization method is also applied to gain stable results. Two 

examples are introduced to explain the reliability of the proposed scheme. Finally, 

the results showed that the time dependent potential terms are successfully 

reconstructed,  stable and accurate, even in inclusion of noise. 
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الجهد المعتمد على الزمن    لإيجاد في هذا العمل، تم دراسة معادلة شبه القطع المكافئ من الرتبة الرابعة        
. الطريقة المقترحة  ووحدانيةوجود الحل    ذكرتحت شروط دورية، شرط التكامل، شروط إضافية. أيضا قد تم  
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تقليل الفرق بين الحل العددي المحسوب والبيانات المقاسة. تم تطبيق طريقة التنظيم تيخونوف أيضًا للحصول  
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الجهد   أن  النتائج  تُظهر  النهاية،  في  المقترحة.  الطريقة  موثوقية  لشرح  مثالين  تقديم  تم  مستقرة.  نتائج  على 
وجود  حالة  في  حتى  ودقيقة،  مستقرة  المستخدمة  الطريقة  وأن  بنجاح  ايجاده  تم  الزمن  على  أخطاء    المعتمد 

 .عشوائية
 

1. Introduction  

For the inverse problems, the identification of the unknown coefficients of the parabolic 

problem has many applications in engineering and science. The identified unknown 

coefficients of the parabolic inverse problems are very interesting to many researchers 

recently. In [1], the authors presented two parabolic inverse problems for the identification of 

the space and time-dependent coefficients from the overdetermination conditions. Also, 

Marek et al. studied Penne’s formulation of the bioheat transfer equation for the estimation 

parameters [2]. In [3], the authors presented the one-dimensional parabolic inverse problem 

for recovering the heat source and time-dependent thermal conductivity with the heat flux 

overdetermination condition, for the other related works, see [4-6]. 

 

     The pseudoparabolic equations of a higher order play a vital role in the mathematical 

modelling of moisture transfer, fluid filtration and heat propagation [7]. The pseudoparabolic 

inverse problems have been utilized in modelling various phenomena such as the wave 

processes, chemical, engineering, diffusion, plasma physics and heat conduction [8]. In 

addition, they have many applications in real life phenomena such as the theory of small 

oscillation of a rotating fluid [9] and infiltration of homogeneous fluids in strata [10].  

 

     Moreover, in [11], the authors analyzed the uniqueness and existence of the solution of the 

third order pseudoparabolic inverse problem with periodic and integral conditions. Antotsev 

et al. [12] proved the unique solvability for the pseudoparabolic inverse problem with a P-

Laplacian and under a nonlocal integral overdetermination condition by using the Galerkin 

method. A. I. Ismailov in [13] theoretically studied the two-dimensional pseudoparabolic 

inverse problem with the additional integral conditions. In [14], the authors analysed the 

existence and uniqueness of the solution of third order pseudoparabolic inverse problem with 

periodic and integral conditions. For the other related work of pseudoparabolic inverse 

problems see [15–18]. 

 

     Many other researchers have examined the pseudoparabolic inverse problems to identify 

the unknown time-dependent coefficients.  In studies [19], [20], the pseudoparabolic inverse 

problem was presented to determine the unknown coefficient of filtration and diffusion. An 

inverse problem of reformulation of an unknown potential element had been studied [21]. 

Irem and Timar in [22] solved the quasilinear pseudoparabolic equation under periodic 

boundary conditions and overdetermination data to determine the coefficient and source term. 

While in [23] the fractional multi-dimensional pseudoparabolic nonlinear source term 

problem is solved by the meshless radial basis function method.  

 

     Aysel and Yashar in 2020 established the existence and uniqueness of hyperbolic inverse 

problems for the fourth order to determine the lowest coefficient [24]. Whereas, in 2022 

Huntul and Abbas presented higher order inverse problem to reconstruct the time–dependent 

potential coefficient numerically [25], [26]. The authors in [27] studied the pseudoparabolic 

inverse problem for the fourth order to identify the time–dependent potential term. The study 

in [28] discussed the pseudo hyperbolic inverse problem from higher order to reconstruct the 

potential term numerically. Yashar et al. in [29] presented a hyperbolic inverse problem from 

higher order to prove the exitances and uniqueness then they identified the unknown time-

dependent coefficients.   
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       In this study, the pseudoparabolic inverse problem was presented of the fourth order to 

investigate the retrieval of potential time- dependent coefficient numerically, for the first time, 

with periodic boundary conditions and non-local integral conditions. The integral type over 

specification data was utilized for recovering the unique potential term. The stability of the 

FDM proposed scheme is discussed. The uniqueness and existence for the consideration 

problem were proved in [30].   

 

      This study is organized as follows: The mathematical form of the inverse problem is given 

in Section 2, and in Section 3, the FDM is used to discretize the direct problem. Section 4 

presents the numerical technique of functional minimization and the numerical results of the 

inverse problem. Finally, in Section 5, the conclusions are highlighted.  

 

2. Mathematical formulation problem 

      Let 𝑄𝑇 ≔ {0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇} be a rectangle domain and consider the following 

inverse problem of determining a pair of functions (𝑢(𝑥, 𝑡),  𝑝(𝑡)),  which satisfies the one-

dimensional pseudoparabolic equation of the form  

𝑢𝑡 = 𝑏𝑢𝑥𝑥𝑡 − 𝑎(𝑡)𝑢𝑥𝑥𝑥𝑥 + 𝑝(𝑡) 𝑢 + 𝑓(𝑥, 𝑡),                                      (1) 
with nonlocal initial condition  

𝑢(𝑥, 0) + 𝛿 𝑢(𝑥, 𝑇) = 𝜑(𝑥),                0 ≤ 𝑥 ≤ 1,                                        (2) 
and periodic conditions  

𝑢(0, 𝑡) = 𝑢(1, 𝑡),   𝑢(0, 𝑡)𝑥 = 𝑢(1, 𝑡)𝑥   , 𝑢(0, 𝑡)𝑥𝑥 = 𝑢(1, 𝑡)𝑥𝑥     0 ≤ 𝑡 ≤ 𝑇,                        (3) 
And the non-local integral condition 

∫𝑢(𝑥, 𝑡)𝑑𝑥

1

0

= 0,                            0 ≤ 𝑡 ≤ 𝑇,                              (4) 

 and the final overdetermination condition  

𝑢(0, 𝑡) − ∫ 𝜆(𝜏)𝑢(1, 𝜏)𝑑𝜏
𝑡

0
= ℎ(𝑡),              0 ≤ 𝑡 ≤ 𝑇,               (5)        

 

where  𝑏 > 0 and 𝛿 ≥ 0 are the given numbers. 

       The equations (1)-(5) are called the inverse problem where 𝑎(𝑡) > 0 is the time-

dependent function where 𝑎(𝑡) is a positive function that depends on 𝑡. If we assume 𝑏 = 0 in 

Eq. (1), then we get a heat equation that has been investigated by many authors [27], [31]. The 

functions 𝑓, 𝜑, 𝜆 and ℎ are given functions. In this problem, 𝑝(𝑡) is the potential term, and 

𝑢(𝑥, 𝑡) represents the temperature distribution of the rectangle at position 𝑥 and time 𝑡. These 

functions are unknown.  The unique solvability of the inverse problem has been established in 

[30] and the following their unique solvability theorems:  

 

Definition 1. The classical solution to the inverse boundary value problem (1)-(5)  means the 

pair {𝑢(𝑥, 𝑡), 𝑝(𝑡)} and functions 𝑢(𝑥, 𝑡) ∈  𝐶̅4,1(𝑄𝑇 ), 𝑝(𝑡) ∈  𝐶 [0, 𝑇]    that satisfy equation 

(1) in 𝑄𝑇, condition (2) in [0,1] and conditions (3)-(5) in [0,T], where 
𝐶̅4,1(𝑄𝑇 ) = {𝑢(𝑥, 𝑡): 𝑢(𝑥, 𝑡) ∈ 𝐶

2,1(𝑄𝑇), 𝑢𝑡𝑥𝑥 , 𝑢𝑥𝑥𝑥𝑥 ∈ 𝐶(𝑄𝑇)}. 
 

Theorem 1. Let 𝑏 >  0, 𝛿 ≥  0, 𝜑(𝑥) ∈  𝐶 [0, 1], 𝑓(𝑥, 𝑡) ∈  𝐶(𝑄𝑇 ), ∫ 𝑓(𝑥, 𝑡)𝑑𝑥 =  0
1

0
 , 0 <

 𝑎(𝑡) ∈  𝐶 [0, 𝑇], ℎ(𝑡) ∈  𝐶1[0, 𝑇], ℎ(𝑡) ≠ 0 (0 ≤  𝑡 ≤  𝑇), 𝜆(𝑡) ∈  𝐶 [0, 𝑇], 𝛿𝜆(𝑡) =
 0 (0 ≤  𝑡 ≤  𝑇) and the following compatibility conditions: 

∫ 𝜑(𝑥)𝑑𝑥
1

0

 =  0, 𝜑(0) =  ℎ(0) +  𝛿ℎ(𝑇). 
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      Then the inverse problem of finding a solution to the problem (1)-(5) is equivalent to the 

problem of determining the functions 𝑢(𝑥, 𝑡) ∈ 𝐶̅4,1 (𝑄𝑇) and 𝑝(𝑡) ∈  𝐶[0, 𝑇], from (1)-(3) 

and 

 

𝑢𝑥𝑥𝑥(0, 𝑡) =  𝑢𝑥𝑥𝑥(1, 𝑡)     (0 ≤  𝑡 ≤  𝑇).                                 (6) 
𝜆(𝑡)𝑢(1, 𝑡) + ℎ′(𝑡) − 𝑏𝑢𝑡𝑥𝑥(0, 𝑡) +  𝑎(𝑡)𝑢𝑥𝑥𝑥𝑥(0, 𝑡)

=  𝑝(𝑡) (∫ 𝜆(𝜏)𝑢(1, 𝜏)𝑑𝜏 +  ℎ(𝑡)
1

0

 )

+  𝑓(0, 𝑡)(0 ≤  𝑡 ≤  𝑇).                           (7) 
 

Lemma 1: Let us assume that the data of inverse problem (1)–(3), (6), and (7) satisfy the 

following conditions: 

(1). 𝜑(𝑥) ∈   𝑊2
(5)(0,1),   𝜑(0) = 𝜑(1), 𝜑′(0) =  𝜑′(1), 𝜑′′(0) =  𝜑′′(1), 𝜑′′′(0)

=  𝜑′′′(1),  

𝜑(4)(0) =  𝜑(4)(1); 
(2). 𝑓(𝑥, 𝑡),  𝑓𝑥(𝑥, 𝑡),  𝑓𝑥𝑥(𝑥, 𝑡) ∈  𝐶(𝑄𝑇),  𝑓𝑥𝑥𝑥(𝑥, 𝑡) ∈  𝐿2(𝑄𝑇), 𝑓(0, 𝑡) =  𝑓(1, 𝑡), 

 𝑓𝑥(0, 𝑡) =  𝑓𝑥(1, 𝑡), 𝑓𝑥𝑥(0, 𝑡) =  𝑓𝑥𝑥(1, 𝑡)                                     (0 ≤  𝑡 ≤  𝑇); 
(3). 𝑏 >  0, 𝛿 ≥  0, 𝜆(𝑡) and  𝑎(𝑡) ∈  𝐶[0, 𝑇], ℎ(𝑡) ∈  𝐶1[0, 𝑇], ℎ(𝑡) ≠ 0   (0 ≤  𝑡 ≤  𝑇). 
 

Theorem 2. Let the conditions (1)-(3) be satisfied and 

(𝐴(𝑇) +  2)2𝐵(𝑇) <  1. 

Then problem (1)– (3), (6), (7) has a unique solution in 𝐾 =  𝐾𝑅 (‖𝑧‖𝐸𝑇5 ≤  𝑅 =  𝐴
(𝑇) +  2) 

in the space 𝐸𝑇
5 only, where 

𝐴(𝑇) =  𝐴1(𝑇) + 𝐴2(𝑇),        𝐵(𝑇) =  𝐵1(𝑇) +  𝐵2(𝑇). 

𝐴1(𝑇) = ‖𝜑(𝑥)‖𝐿2(0,1) + (1 + 𝛿)√𝑇‖𝑓(𝑥, 𝑡)‖𝐿2(𝑄𝑇) + 2√3‖𝜑
(5)(𝑥)‖

𝐿2(0,1)

+
2√3

𝑏
 (1 + 𝛿)√𝑇‖𝑓𝑥𝑥𝑥(𝑥, 𝑡)‖𝐿2(𝑄𝑇),   

 𝐵1(𝑇) = (1 + 𝛿) (1 +
√3

𝑏
)𝑇, 

𝐴2(𝑇) = ‖[ℎ(𝑡)]
−1‖𝐶[0,𝑇] {‖ℎ

′(𝑡) − 𝑓(0, 𝑡)‖𝐶[0,𝑇]

+ ‖𝜆(𝑡)‖𝐶[0,𝑇] (‖𝜑(𝑥)‖𝐿2(0,1) + (1 + 𝛿)√𝑇‖𝑓(𝑥, 𝑡)‖𝐿2(𝑄𝑇))

+ (∑𝜁𝑘
−2

∞

𝑘=1

)

1
2

[‖‖𝑓𝑥(𝑥, 𝑡)‖𝐶[0,𝑇]‖𝐿2(0,1)

+ (‖𝜆(𝑡)‖𝐶[0,𝑇] +
1

𝑏
‖𝑎(𝑡)‖𝐶[0,𝑇])(‖𝜑

(3)(𝑥)‖
𝐿2(0,1)

+
√𝑇(1 + 𝛿)

𝑏
‖𝑓𝑥(𝑥, 𝑡)‖𝐿2(𝑄𝑇))]}, 
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𝐵2(𝑇) = ‖[ℎ(𝑡)]
−1‖𝐶[0,𝑇] (∑ 𝜁𝑘

−2
∞

𝑘=1
)

1
2
[(‖𝜆(𝑡)‖𝐶[0,𝑇] +

1

𝑏
‖𝑎(𝑡)‖𝐶[0,𝑇])

𝑇(2 + 𝛿)

𝑏

+ 𝑇‖𝜆(𝑡)‖𝐶[0,𝑇] + 1]. 

 

 

Theorem 3. Let all the conditions of Theorem 1 be satisfied, and  

∫ 𝑓(𝑥, 𝑡)𝑑𝑥
1

0

= 0  (0 ≤  𝑡 ≤  𝑇), 𝛿𝜆(𝑡) =  0 (0 ≤  𝑡 ≤  𝑇) 

and the compatibility conditions are met: 

∫ 𝜑(𝑥)𝑑𝑥
1

0

 =  0, 𝜑(0) =  ℎ(0) +  𝛿ℎ(𝑇). 

Then the inverse problem (1)– (5) has a classical solution in the ball 𝐾 =  𝐾𝑅 (‖𝑧‖𝐸𝑇5 ≤  𝑅 =

 𝐴(𝑇) +  2) from 𝐸𝑇
5 the only. 

Proof: see [30]. 

 

3.  Discretization of the direct solver 

     Consider the direct solver for inverse problem contains the equations (1)- (4) and requires  

the output data (5). In this direct problem, the only unknown quantity that should be 

determined is 𝑢(𝑥, 𝑡) that is all other components are given. Discretizing Eq. (1) by a form of 

the FDM as follows: Denote the  𝑢(𝑥𝑖, 𝑡𝑗) = 𝑢𝑖,𝑗, and 𝑓(𝑥𝑖 , 𝑡𝑗) = 𝑓𝑖,𝑗 where the space node is 

𝑥𝑖 = 𝑖∆𝑥, the time node is  𝑡𝑗 = 𝑗∆𝑡, the space step length is ∆𝑥 =
1

𝑀
 and the time step length 

is ∆𝑡 =
𝑇

𝑁
 for 𝑖 = 0,1, … ,𝑀, 𝑗 = 0,1,2, … ,𝑁 where 𝑀,𝑁 are positive integers. Based on the 

FDM scheme (FTCS) forward time central space, Eq. (1) can be expressed as follows: 

 
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
= −𝑎 (

𝑢𝑖+2,𝑗+1 − 4𝑢𝑖+1,𝑗+1 + 6𝑢𝑖,𝑗+1 − 4𝑢𝑖−1,𝑗+1 + 𝑢𝑖−2,𝑗+1

2(∆𝑥)4

+
𝑢𝑖+2,𝑗 − 4𝑢𝑖+1,𝑗 + 6𝑢𝑖,𝑗 − 4𝑢𝑖−1,𝑗 + 𝑢𝑖−2,𝑗

2(∆𝑥)4
)

+
𝑏

∆𝑡
(
𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
) −

𝑏

∆𝑡
(
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
) 

+𝑝𝑗𝑢𝑖𝑗 + 𝑓𝑖,𝑗    , 𝑖 = 2,3, … ,𝑀,   𝑗 = 0,1, … ,𝑁                                   (8)  

 

𝑢(𝑥𝑖, 0) + 𝛿 𝑢(𝑥𝑖, 𝑇) = 𝜑(𝑥𝑖),          𝑖 = 2,3, … ,𝑀 

𝑢(0, 𝑡𝑗) = 𝑢(1, 𝑡𝑗),    𝑢𝑥(0, 𝑡𝑗) = 𝑢𝑥(1, 𝑡𝑗),         𝑢𝑥𝑥(0, 𝑡𝑗) = 𝑢𝑥𝑥(1, 𝑡𝑗),     𝑗 = 0,1, … ,𝑁.   (9) 

The first periodic condition gives     𝑢0,𝑗 = 𝑢𝑀,𝑗  , for all 𝑗 = 0,1, … ,𝑁 and the second periodic 

condition gives,  

𝑢−1,𝑗 = 𝑢𝑀−1,𝑗,     for all     𝑗 = 0,1, … ,𝑁, 

while the third periodic condition discretization gives 

𝑢−2,𝑗 = 𝑢𝑀−2,𝑗          for all         𝑗 = 0,1,2, … , 𝑁. 

Using the trapezoidal rule approximation to the integral in (4) to reach the following 

expression, 

 𝑢𝑀𝑗 + ∑ 𝑢𝑖𝑗

𝑀−1

𝑖=1

= 0, 𝑗 = 0,1, … ,𝑁.                                       (10) 
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Also, the approximate formula for overdetermination condition Eq. (5) via trapezoidal rule is 

given as follows: 

ℎ  (𝑡𝑗) = 𝑢0𝑗 −
1

2𝑁
{(𝜆1𝑢𝑀,1 + 𝜆𝑁𝑢𝑀,𝑁) +∑ 𝜆𝑗𝑢𝑀,𝑗}.

𝑁−1

𝑗=2

                   (11) 

Then Eq. (8) can be rearranged into the following difference equation 

 
𝛾

2
𝑢𝑖−2,𝑗+1 − (𝛼 + 2𝛾)𝑢𝑖−1,𝑗+1 + (1 + 2𝛼 + 3𝛾)𝑢𝑖,𝑗+1 − (𝛼 + 2𝛾)𝑢𝑖+1,𝑗+1 +

𝛾

2
𝑢𝑖+2,𝑗+1

= −
𝛾

2
𝑢𝑖−2,𝑗 − (𝛼 − 2𝛾)𝑢𝑖−1,𝑗 + (1 + 2𝛼 − 3𝛾 +  𝜔𝑗)𝑢𝑖,𝑗 − (𝛼 − 2𝛾)𝑢𝑖+1,𝑗

−
𝛾

2
𝑢𝑖+2,𝑗 + ∆𝑡 𝑓𝑖,𝑗,      𝑖 = 2,3, … ,𝑀, 𝑗

= 0,1, … ,𝑁                                                (12) 
𝑫𝑣𝑗+1 = 𝑬𝑣𝑗 + 𝑍 

The last difference equation can be expressed in a more convenient way as the following 

linear algebraic system 

𝐷 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 + 2𝛼 + 3𝛾 −(𝛼 + 2𝛾)
𝛾

2
0 …

𝛾

2
−(𝛼 + 2𝛾)   

−(𝛼 + 2𝛾) 1 + 2𝛼 + 3𝛾 −(𝛼 + 2𝛾)
𝛾

2
0 0

𝛾

2
  

𝛾

2
−(𝛼 + 2𝛾) 1 + 2𝛼 + 3𝛾 −(𝛼 + 2𝛾)

𝛾

2
0 0   

0
𝛾

2
−(𝛼 + 2𝛾) 1 + 2𝛼 + 3𝛾 −(𝛼 + 2𝛾)

𝛾

2
0   

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮   

0 0
𝛾

2
−(𝛼 + 2𝛾) 1 + 2𝛼 + 3𝛾 −(𝛼 + 2𝛾)

𝛾

2
  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮   
𝛾

2
0 0

𝛾

2
 −(𝛼 + 2𝛾) 1 + 2𝛼 + 3𝛾  −(𝛼 + 2𝛾)   

          
1 1 1 1 1 1 1   )

 
 
 
 
 
 
 
 
 
 
 
 

𝑀×𝑀

 

 

𝐸 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 + 2𝛼 − 3𝛾 +  𝜔𝑗 −(𝛼 − 2𝛾) −
𝛾

2
0 0 −

𝛾

2
−(𝛼 − 2𝛾)   

−(𝛼 − 2𝛾) 1 + 2𝛼 − 3𝛾 +  𝜔𝑗 −(𝛼 − 2𝛾) −
𝛾

2
0 0 −

𝛾

2
  

−
𝛾

2
−(𝛼 − 2𝛾) 1 + 2𝛼 − 3𝛾 +  𝜔𝑗 −(𝛼 − 2𝛾) −

𝛾

2
0 0   

0 −
𝛾

2
−(𝛼 − 2𝛾) 1 + 2𝛼 − 3𝛾 +  𝜔𝑗 −(𝛼 − 2𝛾) −

𝛾

2
0   

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮   

0 0 −
𝛾

2
−(𝛼 − 2𝛾) 1 + 2𝛼 − 3𝛾 +  𝜔𝑗 −(𝛼 − 2𝛾) −

𝛾

2
  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮   

−
𝛾

2
0 0 −

𝛾

2
 −(𝛼 − 2𝛾) 1 + 2𝛼 − 3𝛾 +  𝜔𝑗  −(𝛼 − 2𝛾)   

          
0 0 0 0 0 0 0   )

 
 
 
 
 
 
 
 
 
 
 
 

𝑀×𝑀

 

𝑍 =

(

 
 
 
 

∆𝑡𝑓0,𝑗
∆𝑡𝑓1,𝑗
⋮

∆𝑡𝑓𝑀−3,𝑗  

∆𝑡𝑓𝑀−2,𝑗
0 )

 
 
 
 

 

 

where   𝑣𝑗 = (𝑢0,𝑗, 𝑢1,𝑗 , … , 𝑢𝑀−1,𝑗). 

 

3.1  The stability analysis for the proposed scheme  

     In this subsection, we apply the Von Neumann stability analysis for the direct problem 

[32], [33]. We  take 𝑓(𝑥, 𝑡) = 0,  for simplicity, and assuming the local constant  𝑝𝑗 = �̂� for 

known level in Eq. (12) where �̂� = max
𝑡=[0,𝑇]

|𝑝(𝑡)| , �̂� = max
𝑡=[0,𝑇]

|𝑎(𝑡)|, then the difference 

equation becomes:  
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𝛾

2
𝑢𝑖−2,𝑗+1 − (𝛼 + 2𝛾)𝑢𝑖−1,𝑗+1 + (1 + 2𝛼 + 3𝛾)𝑢𝑖,𝑗+1 − (𝛼 + 2𝛾)𝑢𝑖+1,𝑗+1 +

𝛾

2
𝑢𝑖+2,𝑗+1

= −
𝛾

2
𝑢𝑖−2,𝑗 − (𝛼 − 2𝛾)𝑢𝑖−1,𝑗 + (1 + 2𝛼 − 3𝛾 +  𝜔 )𝑢𝑖,𝑗 − (𝛼 − 2𝛾)𝑢𝑖+1,𝑗

−
𝛾

2
𝑢𝑖+2,𝑗,                                                                                                                                         (13) 

where 𝛼 =
𝑏

(∆𝑥)2
 ,        𝛾 =

�̂�∆𝑡

(∆𝑥)4
  ,   𝜔 = ∆𝑡�̂�, 

 

     The decomposition method of the numerical solution into the Fourier sum is applied as 

follows:  

𝑢𝑖,𝑗 = 𝑆
𝑗𝑒𝑤𝑖𝜃,                                                                      (14) 

 

     where S is the amplification factor, the phase angle 𝜃 = ∅Δ𝑥, where ∅ =
2𝜋

𝑁
  and 𝑤 = √−1 

and ∆𝑥 is the space length. If |S|< 1, then we said S to be satisfying the von Neumann 

condition. To find S, substitute the above data into Eq. (13) as follows:  

 
𝛾

2
 𝑆𝑗+1𝑒𝑤𝜃(𝑖−2) − (𝛼 + 2𝛾) 𝑆𝑗+1𝑒𝑤𝜃(𝑖−1) + (1 + 2𝛼 + 3𝛾) 𝑆𝑗+1𝑒𝑤𝜃𝑖

− (𝛼 + 2𝛾) 𝑆𝑗+1𝑒𝑤𝜃(𝑖+1) +
𝛾

2
 𝑆𝑗+1𝑒𝑤𝜃(𝑖+2)

= −
𝛾

2
 𝑆𝑗𝑒𝑤𝜃(𝑖−2) − (𝛼 − 2𝛾) 𝑆𝑗𝑒𝑤𝜃(𝑖−1) + (1 + 2𝛼 − 3𝛾 + 𝑔) 𝑆𝑗𝑒𝑤𝜃𝑖

− (𝛼 − 2𝛾) 𝑆𝑗𝑒𝑤𝜃(𝑖+1) −
𝛾

2
 𝑆𝑗𝑒𝑤𝜃(𝑖+2) 

 

simplifying the above equation, we get: 

 

(𝛾 cos 2𝜃 − 2(𝛼 + 2𝛾) cos 𝜃 + (1 + 2𝛼 + 3𝛾))𝑆

= −𝛾 cos 2𝜃 − 2(𝛼 − 2𝛾) cos 𝜃 + (1 + 2𝛼 − 3𝛾 + 𝑔)                                   (15) 
 

Eq. (15) can be written as follows: 

 

𝑆 =
−𝛾 cos2𝜃−2(𝛼−2𝛾)cos𝜃+(1+2𝛼−3𝛾+𝑔)

𝛾 cos2𝜃−2(𝛼+2𝛾)cos𝜃+(1+2𝛼+3𝛾)
. 

 

Now, taking the absolute value, then 

 

|S| = |
−𝛾 cos 2𝜃 − 2(𝛼 − 2𝛾) cos 𝜃 + (1 + 2𝛼 − 3𝛾 + 𝑔)

𝛾 cos 2𝜃 − 2(𝛼 + 2𝛾) cos 𝜃 + (1 + 2𝛼 + 3𝛾)
| 

 
|𝛾 cos 2𝜃 − 2(𝛼 + 2𝛾) cos 𝜃 + (1 + 2𝛼 + 3𝛾)|

≤ 𝛾|cos 2𝜃| + 2|𝛼 + 2𝛾||cos 𝜃| + |1 + 2𝛼 + 3𝛾| 
 

≤ 𝛾 + 2|𝛼 + 2𝛾| + |1 + 2𝛼 + 3𝛾|,                                                       (16) 
 

since 𝑀,𝑁 > 0, 𝛼 =
𝑏

(∆𝑥)2
= 𝑏𝑀2, 𝛾 =

𝑎∆𝑡

(∆𝑥)4
=
𝑎𝑀4

𝑁
, substituting in Eq. (16), the right-hand 

side will become 
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≤
𝑎𝑀4

𝑁
+ 2 |𝑏𝑀2 + 2

𝑎𝑀4

𝑁
| + |1 + 2𝑏𝑀2 + 3

𝑎𝑀4

𝑁
|

≤
𝑎𝑀4

𝑁
+ 2𝑏𝑀2 + 4

𝑎𝑀4

𝑁
+ 1 + 2𝑏𝑀2 + 3

𝑎𝑀4

𝑁
= 1 + 4𝑏𝑀2 + 7

𝑎𝑀4

𝑁
> 1. 

 

Since b> 0, thus we get |S|< 1, then the method is unconditionally stable. 

 

3.2  Example for the direct problem  

We consider the direct problem (1)-(4) with T=1, 𝑎 = 𝑏 = 0.0001 and the following input 

data: 

 

𝑢(𝑥, 0) =
cos(2𝜋𝑥)

𝑒1
,       𝑥 ∈ [0,1] 

 

𝑝(𝑡) = cos(2 𝜋 𝑡) ,        𝑡 ∈ [0, 𝑇] 
 

𝑓(𝑥, 𝑡) = 𝑒−𝑡(−0.311996 − 0.367879 cos(2𝜋 𝑡)) cos(2𝜋𝑥),     (𝑥, 𝑡) ∈ 𝑄𝑇 

 

the analytic solution 

𝑢(𝑥, 𝑡) = 𝑒−1−𝑡 cos(2𝜋𝑥),     (𝑥, 𝑡) ∈ 𝑄𝑇 

and overdetermination condition  

ℎ (𝑡) = 𝑒
−1−𝑡 + 2.32544 ∗ 10−8,        𝑡 ∈ [0, 𝑇]. 

 

     This solution can be verified by the direct substitution into governing equation. The 

numerical and analytical results for the temperature distribution 𝑢(𝑥, 𝑡) at coarse mesh size  

𝑀 = 𝑁 = 40, is depicted in Figure 1 and a very good accuracy is obtained as illustrated in 

the absolute error graph which is about 10−3 magnitude, see the right plot.  Figure 2 displays 

the computational required data in comparison with the analytical one for ℎ(𝑡) for 𝛿 = 0, and 

𝜆 = −0.0000001 and excellent agreement is also obtained.  

 
Figure 1: Analytical and computational temperature distributions for 𝑢(𝑥, 𝑡) and the absolute 

error of Example 1 
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Figure 2: The analytical and computational curve for ℎ(𝑡) with 𝛿 = 0 for the forward 

problem of Example 1. 

 

4.  The Computational approach for the inverse problem  

        Our goal in this section is devoted to solve the inverse problem. To find the stable 

reconstructions for unknown coefficient 𝑝(𝑡), in addition to the heat distribution 𝑢(𝑥, 𝑡) that 

satisfies Eqs. (1)- (5). This problem is numerically solved by minimizing the gap between 

extra measurement data (5) and computed solutions. To gain suitable results, we apply 

Tikhonov’s regularization method due to ill-posedness of the problem. The cost functional 

can be constructed from (5) for more details, see  [34]–[38]; 

𝐾 (𝑝) = ‖𝑢(0, 𝑡) − ∫𝜆(𝑡)𝑢(1, 𝑡)𝑑𝑡 − ℎ (𝑡)

1

0

‖

2

+ 𝛽‖𝑝(𝑡)‖2,                                      (17) 

and the approximate formula is given by 

𝐾 (𝑝) =∑(𝑢(0, 𝑡𝑗) − ∫𝜆(𝑡𝑗)𝑢(1, 𝑡𝑗)𝑑𝑡 − ℎ (𝑡𝑗)

1

0

)

2
𝑁

𝑗=1

+ 𝛽∑𝑝𝑗
2

𝑁

𝑗=1

,                                (18) 

 

      where β ≥ 0 is the regularization parameter, and the norm is the usual norm over [0,T]: 

      The objective function (17) is minimized by subroutine lsqnonlin from MATLAB 

optimization toolbox. This routine tries to solve the nonlinear least squares curve fitting 

problem that starts from the initial guess. The upper and lower bounds on the variable 𝑝 are 

specified as 10−2 ≤ 𝑝 ≤ 102. Also, in this routine, it is not required that the gradient which is 

supplied by the user  is computed inside the routine via some FDM formulas. 

 

      The following parameters are essential to start the optimization processes of (18), the 

minimization will terminate when the following prescribed parameters are achieved: 

 • Allowed number of iterations = 10 2 ∗ (No. of variables). 

 • Specified solution and objective function Tolerance = 10−20. 

 The inverse problem is solved with respect to noisy/ exact measurement data in (5). The 

additive noise is presented in : 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.1

0.15

0.2

0.25

0.3
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ℎ 
𝜖(𝑡𝑗) = ℎ (𝑡𝑗) + 𝜖𝑗 ,    𝑗 = 1,2, … ,𝑁,                                   (19) 

 

where 𝜖 is a normal Gaussian random vector and standard deviation 𝜇 is: 

 

𝜇 = 𝑞 × max
𝑡∈[0,𝑇]

|ℎ (𝑡)|,                                                   (20) 

 

where 𝑞 represents the percentage of noise. Here we use the normrnd built-in function to 

generate the random variables 𝜖 = (𝜖𝑗)   𝑗 = 1,2, … ,𝑁 as follows: 

𝜖 =  𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 𝜇 , 𝑁).                     
 

4.1 Results and discussion 

     We introduce a couple of test examples for the inverse problem. To explain and validate 

the stability and accuracy of the computational procedure which is based on the finite 

difference method combined with the minimization of functional (18). 

To assess the reconstruction accuracy of the potential term, we use the root mean squares 

error rmse which is given by the next expression: 

 

𝑟𝑚𝑠𝑒(𝑝) = √
1

𝑁 
∑(𝑝𝑗−𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑝𝑒𝑥𝑎𝑐𝑡(𝑡𝑗))

2
𝑁 

𝑗=1

 

,                                   (21) 

Example 1: 

     Consider the inverse problem (1)-(5), with input data as in the example of the direct 

problem. The initial guess was taken 𝑝(0) = 1. It is easy to check that the input data verifies 

the conditions of Theorem 1- 3, hence the inverse pseudoparabolic problem (1)-(5) has a 

unique solution. The noise free numerical solution retrieval is discussed when, 𝑞 = 0 i.e., no 

noise included in (20). The associated results for this case are plotted in Figure 3 and clear 

agreement is obtained. The objective function (18) is represented in Figure 5, and a speed 

declining convergence is seen for achieving a shorter stationary value of order O(10−8) in 10 

iterations only.  

 
Figure 3: Numerical and exact solution for potential term 𝑝(𝑡) when 𝑀 = 𝑁 = 40. 
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Now, to examine the stability of the numerical solution with respect to noise in the data (5), as 

it is defined in (19). We add 𝑞 ∈ {1, 5}% noise, Figure 4 shows the exact 𝑝(𝑡) in different 

cases of noise. Figure 5 presents the objective function (18) of 𝑝(𝑡) with various cases of 

noise. 

 
Figure 4: Numerical reconstructions and exact solution for 𝑝(𝑡), with noise level 𝑞 =
 {0, 1%, 5%}, without regularization applied for Example 1. 

 
Figure 5: The unregularized objective function (18), with q = {0, 1%, 5%}noise data. 

 

     In this stage, we employ the Tikhonov regularization method to obtain stable 

reconstruction for 𝑝(𝑡). Where regularization parameters 𝛽 =  { 10−4, 10−3} was chosen for 

both noise data 𝑞 =  1%, 5% by trial and error. Figures 7 and 9 show the objective function 

(18) decreases rapidly in a relatively small number of iterations. The Tikhonov approach with 

selected parameters gives a reasonable and stable approximate solution of potential term 𝑝(𝑡)  
for both cases (see Figures 6 and 8), one can observe that these choices of β give the stable 
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and accurate approximate solution for 𝑝(𝑡) in no more than 385 s. Table 1 presents the 

associated values including 𝑟𝑚𝑠𝑒(𝑝) which show that a reasonable range of values can be 

seen, with the best retrieval occurring at the smallest 𝑟𝑚𝑠𝑒(𝑝). The numerical and exact 

temperatures 𝑢(𝑥, 𝑡), with 𝑞 = 1% noise, 𝛽 = 10−4, 𝑞 = 5%, noise, 𝛽 = 10−3, as well as the 

absolute error between them are plotted in Figure 10. 

 

 
Figure 6: Numerical reconstructions and exact solution for 𝑝(𝑡), with regularization 

parameter β =  {10−4, 10−3} and q =  1% noise. 

 
 

Figure 7: The regularized objective function (18), with regularization parameter 𝛽 =
 {  10−4, 10−3} and 𝑞 =  1% noise. 
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Figure 8: Numerical reconstructions and exact solution for 𝑝(𝑡), with regularization 

parameter β =  {10−4, 10−3} and q =  5% noise. 

 

 
 

Figure 9: The regularized objective function (18), with regularization parameter 𝛽 =
 { 10−4, 10−3} and 𝑞 =  5% noise. 
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(a) 

 
(b) 

Figure 10: Numerical and exact temperature 𝑢(𝑥, 𝑡) with (a) 𝑞 =  1%  and 𝛽 =  10−4, (b) 

𝑞 =  5% noise and 𝛽 =  10−3. 
 

Table 1: Number of iterations that required to achieve the minimization, value of the 

minimised functional (18) at final iteration, 𝑟𝑚𝑠𝑒 value and consumed computational time in 

seconds, for Example 1 with 𝑞 ∈ {1%, 5%} noise. 
𝑞 =  1% 𝛽 =  10−3 𝛽 =  10−4 𝛽 =  10−5 

No. of iterations 18 33 39 

Objective function (18) at final iteration 0.0114 0.0024 5.5129E-04 

𝑟𝑚𝑠𝑒(𝑝) 0.4097 0.2919 0.6385 

computational time (seconds) 183 337 385 

q =  5% 𝛽 =  10−3 𝛽 =  10−4 𝛽 =  10−5 

No. of iterations 20 25 36 

Objective function (18) at final iteration 0.0368 0.0196 0.0091 

𝑟𝑚𝑠𝑒(𝑝) 0.4156 0.8913 3.0201 

computational time (seconds) 202 279 374 
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Example 2: 

Consider the inverse problem (1)-(5) with T=1 with 𝑎 = 𝑏 = 0.001 and 𝜆 = −10−6 and the 

following input data: 

𝑢(𝑥, 0) = cos(2𝜋𝑥) ,       𝑥 ∈ [0,1] 
 

𝑝(𝑡) = 0.5 + |𝑡 − 0.5|,        𝑡 ∈ [0, 𝑇] 
 

𝑓(𝑥, 𝑡) = 𝑒−2𝑡(−1.02041 − |𝑡 − 0.5|) cos(2𝜋𝑥),     (𝑥, 𝑡) ∈ 𝑄𝑇 

 

the analytic solution is given by 

𝑢(𝑥, 𝑡) = 𝑒−2𝑡 cos(2𝜋𝑥),     (𝑥, 𝑡) ∈ 𝑄𝑇 

and overdetermination condition  

ℎ (𝑡) = 𝑒
−2𝑡 + 4.32332 ∗ 10−8,        𝑡 ∈ [0, 𝑇] 

 

       Now, in the beginning, we attempt to retrieve the unknown potential term 𝑝(𝑡) and the 

temperature 𝑢(𝑥, 𝑡) for exact input data, i.e. 𝑞 =  0, as well as, for 𝑞 ∈  {0.1%, 1%} noisy 

data without regularization. The objective functional (18) is depicted in Figure 13 and it 

observed the speed convergence in early iterations i.e. from iteration 0 to 8, then steadily for 

the rest of iterations and the minimization processes terminated when allowed tolerance for 

solution or objective function is reached which is set to 10−8. The related numerical solution 

of 𝑝(𝑡) obtained inversions is  presented in Figure 11 with no noise. Whilst, the noise amount 

increases from 0.1% to 1% as illustrated in Table 2  which indicates the impact of noise 

inclusion. 

  

 
Figure 11: Numerical and exact solution for potential term 𝑝(𝑡) when 𝑀 = 𝑁 = 40. 
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Figure 12: Numerical reconstructions in comparison with exact solution for 𝑝(𝑡), with noise 

level 𝑞 =  {0, 0.1%, 1%}, without regularization applied Example 2. 

 
Figure 13: The unregularized objective function (18), with q = 0, 0.1%, 1% noise data, 

Example 2. 

 

      To restore stability, some regularization should be applied. To replicate real input data, 

noise of 𝑞 ∈ {0.1, 1}% is included with regularization 𝛽 = {10−5, 10−4} for case 𝑞 =
0.1% and 𝛽 = {10−4, 10−3} for case 𝑞 = 1%. Figures 15 and 17 reveal the objective function 

minimization (18). For both cases, no more than  26 iterations are taken to achieve a 

minimum value after speed convergence in early iterations followed by steady and slow 

convergence to reach a stationary value.  Figures 14 and 16 show the reconstruct potential 

unknown coefficient. Before instabilities, it begins to show up when the noise levels increase 

from 0.1% to 1%. A very excellent agreement which established when there is 𝛽 = 10−3, and 

𝛽 = 10−4, respectively. Moreover, Table 2 informs that the associated values show a 

reasonable range of values that can be seen with the best retrieval occurring at the smallest 

𝑟𝑚𝑠𝑒(𝑝).  
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Figure 14: Numerical reconstructions and exact solution for 𝑝(𝑡), with regularization 

parameter 𝛽 =  {10−5, 10−4} and q =  0.1% noise. 

 

 
Figure 15: The regularized objective function (18), with regularization parameter 𝛽 =
 {10−5, 10−4} and 𝑞 =  0.1% noise.  
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Figure 16: Numerical reconstructions and exact solution for 𝑝(𝑡), with regularization 

parameter 𝛽 =  {10−4, 10−3} and q =  1% noise. 

 

 
Figure 17: The regularized objective function (18), with regularization parameter 𝛽 =
 {10−4, 10−3} and 𝑞 =  1% noise.  
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(a) 

 
(b) 

Figure 18: Numerical and exact temperature 𝑢(𝑥, 𝑡) with (a) 𝑞 =  0.1%  and 𝛽 =  10−4, (b) 

𝑞 =  1% noise and 𝛽 =  10−3. 
 

Table 2: Number of iterations required to achieve the minimization, value of the minimised 

functional (18) at final iteration, 𝑟𝑚𝑠𝑒 value and consumed computational time, for Example 

2 with 𝑞 ∈ {0.1%, 1%} noise.         
𝑞 =  0.1% 𝛽 =  10−3 𝛽 =  10−4 𝛽 =  10−5 

No. of iterations 31 21 25 

Objective function (18) at final iteration 0.0175 0.0021 2.3940E-04 

𝑟𝑚𝑠𝑒(𝑝) 0.3420 0.2323 0.2162 

computational time (seconds) 327 224 259 

q =  1% 𝛽 =  10−3 𝛽 =  10−4 𝛽 =  10−5 

No. of iterations 27 26 26 

Objective function (18) at final iteration 0.0225 0.0059 0.0020 

𝑟𝑚𝑠𝑒(𝑝) 0.3747 0.5535 1.3412 

computational time(seconds) 286 271 269 
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5.  Conclusions 

     The fourth order pseudoparabolic inverse problem to identify numerically the potential 

coefficient has been investigated under periodic and nonlocal boundary conditions and 

overdetermination data. The finite difference scheme in cooperation with the trapezoidal rule 

has been used for direct problems. The Von Neumann technique was employed to study the 

stability of the proposed numerical direct method. Therefore, to reconstruct the stability, 

Tikhonov’s regularization was employed. Stable results are obtained under various noise 

levels. 
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