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Abstract:

In this work, the pseudoparabolic problem of the fourth order is investigated to
identify the time -dependent potential term under periodic conditions, namely, the
integral condition and overdetermination condition. The existence and uniqueness of
the solution to the inverse problem are provided. The proposed method involves
discretizing the pseudoparabolic equation by using a finite difference scheme, and
an iterative optimization algorithm to resolve the inverse problem which views as a
nonlinear least-square minimization. The optimization algorithm aims to minimize
the difference between the numerical computing solution and the measured data.
Tikhonov’s regularization method is also applied to gain stable results. Two
examples are introduced to explain the reliability of the proposed scheme. Finally,
the results showed that the time dependent potential terms are successfully
reconstructed, stable and accurate, even in inclusion of noise.

Keywords: Von Neumann stability analysis, Finite difference method, Tikhonov
regularization method, Pseudoparabolic inverse problem, Inverse problem.
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1. Introduction

For the inverse problems, the identification of the unknown coefficients of the parabolic
problem has many applications in engineering and science. The identified unknown
coefficients of the parabolic inverse problems are very interesting to many researchers
recently. In [1], the authors presented two parabolic inverse problems for the identification of
the space and time-dependent coefficients from the overdetermination conditions. Also,
Marek et al. studied Penne’s formulation of the bioheat transfer equation for the estimation
parameters [2]. In [3], the authors presented the one-dimensional parabolic inverse problem
for recovering the heat source and time-dependent thermal conductivity with the heat flux
overdetermination condition, for the other related works, see [4-6].

The pseudoparabolic equations of a higher order play a vital role in the mathematical
modelling of moisture transfer, fluid filtration and heat propagation [7]. The pseudoparabolic
inverse problems have been utilized in modelling various phenomena such as the wave
processes, chemical, engineering, diffusion, plasma physics and heat conduction [8]. In
addition, they have many applications in real life phenomena such as the theory of small
oscillation of a rotating fluid [9] and infiltration of homogeneous fluids in strata [10].

Moreover, in [11], the authors analyzed the uniqueness and existence of the solution of the
third order pseudoparabolic inverse problem with periodic and integral conditions. Antotsev
et al. [12] proved the unique solvability for the pseudoparabolic inverse problem with a P-
Laplacian and under a nonlocal integral overdetermination condition by using the Galerkin
method. A. I. Ismailov in [13] theoretically studied the two-dimensional pseudoparabolic
inverse problem with the additional integral conditions. In [14], the authors analysed the
existence and uniqueness of the solution of third order pseudoparabolic inverse problem with
periodic and integral conditions. For the other related work of pseudoparabolic inverse
problems see [15-18].

Many other researchers have examined the pseudoparabolic inverse problems to identify
the unknown time-dependent coefficients. In studies [19], [20], the pseudoparabolic inverse
problem was presented to determine the unknown coefficient of filtration and diffusion. An
inverse problem of reformulation of an unknown potential element had been studied [21].
Irem and Timar in [22] solved the quasilinear pseudoparabolic equation under periodic
boundary conditions and overdetermination data to determine the coefficient and source term.
While in [23] the fractional multi-dimensional pseudoparabolic nonlinear source term
problem is solved by the meshless radial basis function method.

Aysel and Yashar in 2020 established the existence and uniqueness of hyperbolic inverse
problems for the fourth order to determine the lowest coefficient [24]. Whereas, in 2022
Huntul and Abbas presented higher order inverse problem to reconstruct the time—dependent
potential coefficient numerically [25], [26]. The authors in [27] studied the pseudoparabolic
inverse problem for the fourth order to identify the time—dependent potential term. The study
in [28] discussed the pseudo hyperbolic inverse problem from higher order to reconstruct the
potential term numerically. Yashar et al. in [29] presented a hyperbolic inverse problem from
higher order to prove the exitances and uniqueness then they identified the unknown time-
dependent coefficients.
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In this study, the pseudoparabolic inverse problem was presented of the fourth order to
investigate the retrieval of potential time- dependent coefficient numerically, for the first time,
with periodic boundary conditions and non-local integral conditions. The integral type over
specification data was utilized for recovering the unique potential term. The stability of the
FDM proposed scheme is discussed. The uniqueness and existence for the consideration
problem were proved in [30].

This study is organized as follows: The mathematical form of the inverse problem is given
in Section 2, and in Section 3, the FDM is used to discretize the direct problem. Section 4
presents the numerical technique of functional minimization and the numerical results of the
inverse problem. Finally, in Section 5, the conclusions are highlighted.

2. Mathematical formulation problem

Let Qr=={0<x<1,0<t<T} be a rectangle domain and consider the following
inverse problem of determining a pair of functions (u(x, t), p(t)), which satisfies the one-
dimensional pseudoparabolic equation of the form

U = DUyyr — a(t)uxxxx + p(t) u-+ f(x' t)' (1)
with nonlocal initial condition
u(x,0) + 6 ulx,T) = ¢(x), 0<x<1, (2)
and periodic conditions
u(0,t) =u(l,t), u(0,t), =u(1,t), ,u(0,t)y =u(l,t),, 0<t<T, (3)

And the non-local integral condition
1

fu(x, t)dx =0, 0<t<T, (4)

0
and the final overdetermination condition
(0, t) — [, A(Du(1,7)d = h(D), 0<t<T, (5)

where b > 0 and § > 0 are the given numbers.

The equations (1)-(5) are called the inverse problem where a(t) > 0 is the time-
dependent function where a(t) is a positive function that depends on t. If we assume b = 0 in
Eq. (1), then we get a heat equation that has been investigated by many authors [27], [31]. The
functions f, @, A and hare given functions. In this problem, p(t) is the potential term, and
u(x, t) represents the temperature distribution of the rectangle at position x and time t. These
functions are unknown. The unique solvability of the inverse problem has been established in
[30] and the following their unique solvability theorems:

Definition 1. The classical solution to the inverse boundary value problem (1)-(5) means the
pair {u(x, t),p(t)} and functions u(x,t) € C*1(Q;),p(t) € C[0,T] that satisfy equation
(1) in Q, condition (2) in [0,1] and conditions (3)-(5) in [0,T], where
64'1(QT) = {ulx,t):ulx,t) € CZ'I(QT):utxxruxxxx € C(Q)}

Theorem 1. Leth > 0,8 > 0,¢(x) € C[0,1],f(x,t) € C(Qr), [, f(x,t)dx = 0,0 <
a(t) € C[0,T],h(t) € CHO,TLh(t) #0(0 <t < T),A(t) € C[0,T],6A(t) =
0 (0 < t < T) and the following compatibility conditions:

f p(x)dx = 0,9(0) = h(0) + Sh(T).
0
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Then the inverse problem of finding a solution to the problem (1)-(5) is equivalent to the
problem of determining the functions u(x,t) € C*! (Qr) and p(t) € C[0,T], from (1)-(3)
and

uxxx(O’ t) = uxxx(lf t) (0<t<T. (6)
A(t)u(l; t) + hl(t) - butxx(o' t) + a(t)uxxxx(o' t)

1
= (0) ( f A(@u(l, Ddr + h(t))
L FOD0 <t <T) )

Lemma 1: Let us assume that the data of inverse problem (1)—(3), (6), and (7) satisfy the
following conditions:
D.p(x) € W2(0,1), 9(0) = p(1),¢'(0) = ¢'(1),0"(0) = ¢"(1),¢"(0)
— (p,”(l),

o™ (0) = ™ (1);
(Z)f(x, t)! fx(x, t)! f;cx(xl t) € C(QT); fxxx(xf t) € LZ(QT)'f(Oﬂ t) = f(]-' t),

fx(O' t) = fx(lr t):fxx(ox t) = fxx(li t) (0 S t S T);
(3).b > 0,6 = 0,A(t) and a(t) € C[0,T],h(t) € C[0,T], h(t) #0 (0 <t < T).

Theorem 2. Let the conditions (1)-(3) be satisfied and
(A(T) + 2)?B(T) < 1.
Then problem (1)- (3), (6), (7) has a unique solution in K = K (||Z||E;: <R = AT+ 2)
in the space E3 only, where
A(T) = A1(T) + Ax(T),  B(T) = By(T) + B(T).
A (T) = |l 00 + (1 + SIVTIIf (x, O, 0p T 2\/§”<P(5)(x)”

2V3
+ T (1 + 6)\/T”fxxx(xl t)lle(QT)’

L,(0,1)

B,(T) = (1 + 6) (1 + g) T,

A (T) = IR lepor § 1A' = £(0,D)lcro.ry
+ 1A llcrory (10 llLy00,0 + (1 + VTS Ce, Ol o)
+ (Z (k_2> lllllfx(x’ t)”C[O’T]“LZ(O,l)
k=1

+ (IROlor + 7 la@leom)  lo@ @]
clor] T3 clor] 1,(0.1)

T(1+6
PO t>||L2(QT>)] ,
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N| =

T(2 +6)

o 1
B() = MO lewn (Y, 4 [(llA(t)nqoﬂ + 2 1e@ o) =5 —

+ TIA® oy + 1].

Theorem 3. Let all the conditions of Theorem 1 be satisfied, and
1
ff(x,t)dx=o O<t<T) 6H=00<t<T)
0
and the compatibility conditions are met:

1
f @(x)dx = 0,9(0) = h(0) + Sh(T).
0

Then the inverse problem (1) (5) has a classical solution in the ball K = Kj (”Z||E75~ <R =

A(T) + 2) from E2 the only.
Proof: see [30].

3. Discretization of the direct solver

Consider the direct solver for inverse problem contains the equations (1)- (4) and requires
the output data (5). In this direct problem, the only unknown quantity that should be
determined is u(x, t) that is all other components are given. Discretizing Eq. (1) by a form of
the FDM as follows: Denote the u(x;, t;) = u; ;,and f(x;, t;) = f; ; where the space node is

x; = ilx, the time node is t; = jAt, the space step length is Ax = % and the time step length
is At = % fori =0,1,..,M, j =0,1,2,...,N where M, N are positive integers. Based on the
FDM scheme (FTCS) forward time central space, Eq. (1) can be expressed as follows:

Yijer Wi (ui+2,j+1 = AUjyg jor + 06U jg — AU jig HUig i
At 2(Ax)*
Uiyzj — 4jpq; + 06U ; — Ui j + ui—z,j)
2(Ax)*
£<Ui+1,j+1 — 2Uj 541 + ui—l,j+1) 3 i(ui+1,j - 2u;; + ui—l,j)
At (Ax)? At (Ax)?
+pjuij +fi,j ,i=23,..,M, j=0,1,...,N (8)

u(x;,0) + 6 ulx;, T) = p(x;), i=23,...M
u(O, tj) = u(l, tj), ux(O, tj) = ux(l, tj), uxx(O, tj) = uxx(l, tj), j=01,..,N. (9)
The first periodic condition gives  u,; = uy ;, forall j = 0,1,..., N and the second periodic
condition gives,
U_qj =Uy-q, , forall j=0,,..N,
while the third periodic condition discretization gives
U_pj = Uy—2,j for all j=012,..,N.
Using the trapezoidal rule approximation to the integral in (4) to reach the following
expression,

M-1
i=1
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Also, the approximate formula for overdetermination condition Eq. (5) via trapezoidal rule is
given as follows:
N—-1
1
j=2
Then Eq. (8) can be rearranged into the following difference equation

Y 14
S Ui-2,j+1 (@ +2Y)uj—qjp1 + (1 + 20 + 3Y)u; g — (@ + 2Y)Ui4g 41 + 5 Uitz,j+1
Y
== Uiz~ (@—2y)u_yj+ (1 +2a =3y + wj)u;j — (@ — 2)uipq
)4 , ,
—Eui+2,]‘+Atfi’j, l:2,3,...,M,]
=0,1,..,N (12)

Dv/*tl =Evi +Z
The last difference equation can be expressed in a more convenient way as the following
linear algebraic system

1+2a+3y —(a+2y) % 0 g —(a +2y)
—(a+2y) 1+4+2a+3y —(a+2y) }E/ 0 0 g
g —(a+2y) 1+4+2a+3y —(a+2y) g 0 0
Y Y
D= 0 3 —(a+2y) 1+2a+3y —(a+2y) 3 0
0 0 3 —(a+2y) 142a+3y —(a+2y) 3
3 0 0 3 —(a+2y) 14+2a+3y —(a+2y)
1 1 1 1 1 1 1 MxM
1+2a -3y + w; —(a—-2y) —g 0 0 —% —(a—-2y)
—(a—2y) 1+2a -3y + w; —(a—2y) —; 0 0 —;
—g —(a—2y) 1+2a -3y + w; —(a —2y) —% 0 0
E= 0 —}21 —(a—-2y) 1+ 2a -3y + w; —(a —2y) —% 0
0 0 —g —(a — 2y) 1+ 2a —. 3y + w; —(a — 2y) —é
—}21 0 0 —g —(a —2y) 1+2a-3y+ 0 —(a-2y)
0 0 0 0 0 0 0 MxM
Atfy
Atf
zZ= :
Atfy-s;
Atfy-z

0
where v/ = (ug, Uy j, o, Un—1)-

3.1 The stability analysis for the proposed scheme

In this subsection, we apply the Von Neumann stability analysis for the direct problem
[32], [33]. We take f(x,t) = 0, for simplicity, and assuming the local constant p; = g for
known level in Eq. (12) where g = tr_n[(e)l);]|p(t)|,d = tr—r%éa)é]la(t)l’ then the difference

equation becomes:
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)4 )4
S Ui-2,j+1 = (@ +2Y)uj—qj41 + (1 + 2 + 3Y)uy 41 — (@ + 2Y)Ujyq 41 + o Uit2,j+1

)4
=—-Up; — (@— 20y + (1 + 2a =3y + 0y — (@ — 2Y)Ujyq )

v 2
- Eui+2,j' (13)
b ant N
Whereazm, V:@, a)=Atg,

The decomposition method of the numerical solution into the Fourier sum is applied as
follows:

ui‘j = SjeWie, (14)

where S is the amplification factor, the phase angle 8 = @Ax, where @ = %’T andw =+v—1

and Ax is the space length. If |S|< 1, then we said S to be satisfying the von Neumann
condition. To find S, substitute the above data into Eq. (13) as follows:

g Sj+1ew9(i—2) _ ((X + 2)/) Sj+leW9(i—1) + (1 +2a+ 3y) Sj+leW9i
— (@ +2y) Sit1ewdrD) 4 v GJ+1,wh(i+2)
2
= —g Siew0i=2) — (q — 2y) S7e"0U-V 4 (1 4 2a — 3y + g) STe™?!

_ (a — 2y) SiewfU+D) _ Y gjpwb(i+2)
2

simplifying the above equation, we get:

(y cos20 — 2(a + 2y) cos @ + (1 + 2a + 3y))S
= —ycos260 —2(a—2y)cosO + (1 +2a—-3y+g) (15)

Eqg. (15) can be written as follows:

S = —y cos20-2(a—2y) cos 0+(1+2a-3y+g)
- Yy cos20-2(a+2y) cos 0+(1+2a+3y)

Now, taking the absolute value, then

—ycos260 —2(a—2y)cosO + (1 +2a—3y +g)

S| =
5] ycos260 —2(a+2y)cosO + (1 + 2a + 3y)

ly cos 20 — 2(a + 2y) cos 6 + (1 + 2a + 3y)|
< vy|cos20| + 2|a + 2y||cos @] + |1 + 2a + 3y|

<y+2la+2y|+ |1+ 2a+ 3y|, (16)
4
since M,N > 0,a = (AZ)Z = bM?,y = (Zi; = % substituting in Eq. (16), the right-hand

side will become
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<aM4+2 bM2+2aM4 + 1+2bM2+3aM4
- N N N
4 aM* 5 aM* X aM*
< +1+2bM? +3 =1+4bM?* +7 > 1.

2bM?* + 4
+ +4— N

Since b> 0, thus we get |S|< 1, then the method is unconditionally stable.

3.2 Example for the direct problem
We consider the direct problem (1)-(4) with T=1, a = b = 0.0001 and the following input
data:

_ cos(2mx)

u(x,0) = , x € [0,1]

el
p(t) =cos(2mt), t €[0,T]
f(x,t) = e t(—0.311996 — 0.367879 cos(2m t)) cos(2mx), (x,t) € Qr

the analytic solution

u(x,t) = e "tcos(2nx), (x,t) € Qr
and overdetermination condition

h(t) = e 17t +2.32544 1078, te[0,T].

This solution can be verified by the direct substitution into governing equation. The
numerical and analytical results for the temperature distribution u(x,t) at coarse mesh size
M = N = 40, is depicted in Figure 1 and a very good accuracy is obtained as illustrated in
the absolute error graph which is about 10~3 magnitude, see the right plot. Figure 2 displays
the computational required data in comparison with the analytical one for h(t) for § = 0, and
A =—0.0000001 and excellent agreement is also obtained.

Exact solution Approximate solution Error graph
107
0 04 25
03 03
2
0 0.2 |
041 | 01 1
-— -~ .~
a0 01 1y
{
02 02
| o
03 0.3
0.4 0 / 0
uf ,/ 1 I 1 4
>4 4
oy 4
v 1 Y 1 / 1
05 05 05 QE
0.5 0.5 \ 05
x x x
0o ' 00 t 0o t

Figure 1: Analytical and computational temperature distributions for u(x, t) and the absolute
error of Example 1
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exact and numerical values of h(t)
0.4 -

exact

— B— numerical

0.35
0.3

=
= 0.25
0.2

0.15

(o] 0‘.1 012 0.‘3 014 0.‘5 016 017 O.‘8 019 1‘

t
Figure 2: The analytical and computational curve for h(t) with 6 = 0 for the forward
problem of Example 1.

4. The Computational approach for the inverse problem

Our goal in this section is devoted to solve the inverse problem. To find the stable
reconstructions for unknown coefficient p(t), in addition to the heat distribution u(x, t) that
satisfies Egs. (1)- (5). This problem is numerically solved by minimizing the gap between
extra measurement data (5) and computed solutions. To gain suitable results, we apply
Tikhonov’s regularization method due to ill-posedness of the problem. The cost functional
can be constructed from (5) for more details, see [34]-[38];

K (p) = [|u(0,t) — J A®u(1,vdt —h @O +Bllp@OIZ, (17)
and the approximate formuI:: is given by
N 1 2 N
k() = D u05) - [ 2 e)de~h(5) ) +6 p2, (18)
j=1 0 j=1

where > 0 is the regularization parameter, and the norm is the usual norm over [0,T]:

The objective function (17) is minimized by subroutine Isgnonlin from MATLAB
optimization toolbox. This routine tries to solve the nonlinear least squares curve fitting
problem that starts from the initial guess. The upper and lower bounds on the variable p are
specified as 1072 < p < 102. Also, in this routine, it is not required that the gradient which is
supplied by the user is computed inside the routine via some FDM formulas.

The following parameters are essential to start the optimization processes of (18), the
minimization will terminate when the following prescribed parameters are achieved:
« Allowed number of iterations = 10 2 * (No. of variables).
« Specified solution and objective function Tolerance = 102,
The inverse problem is solved with respect to noisy/ exact measurement data in (5). The
additive noise is presented in :
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heé(t)=h(t)+e, j=12,..,N, (19)
where € is a normal Gaussian random vector and standard deviation y is:
po=gx max |h (O], (20)

where g represents the percentage of noise. Here we use the normrnd built-in function to
generate the random variables € = (¢;) j = 1,2, ..., N as follows:

€ = normrnd(0,u,N).

4.1 Results and discussion

We introduce a couple of test examples for the inverse problem. To explain and validate
the stability and accuracy of the computational procedure which is based on the finite
difference method combined with the minimization of functional (18).
To assess the reconstruction accuracy of the potential term, we use the root mean squares
error rmse which is given by the next expression:

N
1

2
ﬁz (pj—numerical - pexact(tj)) ’ (21)

j=1

rmse(p) =

Example 1:

Consider the inverse problem (1)-(5), with input data as in the example of the direct
problem. The initial guess was taken p(0) = 1. It is easy to check that the input data verifies
the conditions of Theorem 1- 3, hence the inverse pseudoparabolic problem (1)-(5) has a
unique solution. The noise free numerical solution retrieval is discussed when, g = 0 i.e., no
noise included in (20). The associated results for this case are plotted in Figure 3 and clear
agreement is obtained. The objective function (18) is represented in Figure 5, and a speed
declining convergence is seen for achieving a shorter stationary value of order O(107%) in 10
iterations only.

1.5

exact

—&—— numerical

Figure 3: Numerical and exact solution for potential term p(t) when M = N = 40.
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Now, to examine the stability of the numerical solution with respect to noise in the data (5), as
it is defined in (19). We add q € {1, 5}% noise, Figure 4 shows the exact p(t) in different
cases of noise. Figure 5 presents the objective function (18) of p(t) with various cases of
noise.

Figure 4: Numerical reconstructions and exact solution for p(t), with noise level g =
{0, 1%, 5%}, without regularization applied for Example 1.

2

10

—a— q=0%
—S— q=1%
—— g=5%

10°%

10~

107

Objective function

10°®

(0] 2 4 6 8 10 12 14 16 18
Number of Iterations

Figure 5: The unregularized objective function (18), with q = {0, 1%, 5%}noise data.

In this stage, we employ the Tikhonov regularization method to obtain stable
reconstruction for p(t). Where regularization parameters f = {107%,1073} was chosen for
both noise data g = 1%, 5% by trial and error. Figures 7 and 9 show the objective function
(18) decreases rapidly in a relatively small number of iterations. The Tikhonov approach with
selected parameters gives a reasonable and stable approximate solution of potential term p(t)
for both cases (see Figures 6 and 8), one can observe that these choices of B give the stable
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and accurate approximate solution for p(t) in no more than 385 s. Table 1 presents the
associated values including rmse(p) which show that a reasonable range of values can be
seen, with the best retrieval occurring at the smallest rmse(p). The numerical and exact
temperatures u(x, t), with ¢ = 1% noise, f = 10™*, g = 5%, noise, § = 1073, as well as the
absolute error between them are plotted in Figure 10.

1.5

exact
® —_—a [7‘1:10’3
s —O— p,=10"
o°Q
o \\
05| \ © S
¢ \
R ARG,
= ot \ @
S \/ \ /
©
0.5 “
05 o
\ QS/
Q [e=3)
/
1 -
715 Il Il Il Il Il Il Il Il Il I}
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 6: Numerical reconstructions and exact solution for p(t), with regularization
parameter = {107%,1073}and g = 1% noise.

G

—=—p,=107

10

—o— 3,=10"*

Regularized objective function

1078 | | | | I I ]
] 5 10 15 20 25 30 35

Number of Iterations

Figure 7: The regularized objective function (18), with regularization parameter g =
{ 107%,1073}and g = 1% noise.
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p(t)

Figure 8: Numerical reconstructions and exact solution for p(t), with regularization
parameter = {107%,1073}and q = 5% noise.
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Figure 9: The regularized objective function (18), with regularization parameter f =
{107%,1073}and g = 5% noise.
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Figure 10: Numerical and exact temperature u(x,t) with (@) ¢ = 1% and 8 = 107%, (b)
qg = 5% noiseand § = 1073,

Table 1: Number of iterations that required to achieve the minimization, value of the
minimised functional (18) at final iteration, rmse value and consumed computational time in

seconds, for Example 1 with g € {1%, 5%} noise.

q =1% g =103 g = 10"* f = 10"°
No. of iterations 18 33 39
Obijective function (18) at final iteration 0.0114 0.0024 5.5129E-04
rmse(p) 0.4097 0.2919 0.6385
computational time (seconds) 183 337 385
q=5% g =108 g = 10" g = 107°
No. of iterations 20 25 36
Obijective function (18) at final iteration 0.0368 0.0196 0.0091
rmse(p) 0.4156 0.8913 3.0201
computational time (seconds) 202 279 374
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Example 2:
Consider the inverse problem (1)-(5) with T=1 with a = b = 0.001 and A = —107° and the
following input data:

u(x,0) = cos(2mx), x€[0,1]

p(t) =05+1t—0.5|, te€][0,T]
f(x,t) = e"2(=1.02041 — |t — 0.5]) cos(2mx), (x,t) € Qr

the analytic solution is given by
u(x, t) = e %t cos(2nx), (x,t) € Qr
and overdetermination condition
h(t) =e % +432332x1078%, t€[0,T]

Now, in the beginning, we attempt to retrieve the unknown potential term p(t) and the
temperature u(x,t) for exact input data, i.e. ¢ = 0, as well as, for g € {0.1%, 1%} noisy
data without regularization. The objective functional (18) is depicted in Figure 13 and it
observed the speed convergence in early iterations i.e. from iteration 0 to 8, then steadily for
the rest of iterations and the minimization processes terminated when allowed tolerance for
solution or objective function is reached which is set to 10~8. The related numerical solution
of p(t) obtained inversions is presented in Figure 11 with no noise. Whilst, the noise amount
increases from 0.1% to 1% as illustrated in Table 2 which indicates the impact of noise
inclusion.

exact
—H&—— numerical

=
= 0.75 -

Figure 11: Numerical and exact solution for potential term p(t) when M = N = 40.
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Figure 12: Numerical reconstructions in comparison with exact solution for p(t), with noise
level g = {0,0.1%, 1%}, without regularization applied Example 2.
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Figure 13: The unregularized objective function (18), with q = 0,0.1%, 1% noise data,
Example 2.

To restore stability, some regularization should be applied. To replicate real input data,
noise of g € {0.1,1}% is included with regularization g = {107°,107*} for case q =
0.1% and B = {10~%,1073} for case g = 1%. Figures 15 and 17 reveal the objective function
minimization (18). For both cases, no more than 26 iterations are taken to achieve a
minimum value after speed convergence in early iterations followed by steady and slow
convergence to reach a stationary value. Figures 14 and 16 show the reconstruct potential
unknown coefficient. Before instabilities, it begins to show up when the noise levels increase
from 0.1% to 1%. A very excellent agreement which established when there is § = 1073, and
f = 107*, respectively. Moreover, Table 2 informs that the associated values show a
reasonable range of values that can be seen with the best retrieval occurring at the smallest
rmse(p).

4544



Gani and Hussein Iragi Journal of Science, 2024, Vol. 65, No. 8, pp: 4529-4549

p(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 14: Numerical reconstructions and exact solution for p(t), with regularization
parameter 8 = {107>,107*}and q = 0.1% noise.
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Figure 15: The regularized objective function (18), with regularization parameter g =
{107°,107*} and g = 0.1% noise.
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Figure 16: Numerical reconstructions and exact solution for p(t), with regularization
parameter 5 = {107%,1073}and q = 1% noise.
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Figure 17: The regularized objective function (18), with regularization parameter g =
{107%,1073}and g = 1% noise.
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Figure 18: Numerical and exact temperature u(x,t) with (3) ¢ = 0.1% and f = 107*, (b)
q = 1%noiseand g = 1073,

Table 2: Number of iterations required to achieve the minimization, value of the minimised
functional (18) at final iteration, rmse value and consumed computational time, for Example

2 with g € {0.1%, 1%} noise.

q = 0.1% g = 1073 g = 10"* g = 107°
No. of iterations 31 21 25
Obijective function (18) at final iteration 0.0175 0.0021 2.3940E-04
rmse(p) 0.3420 0.2323 0.2162
computational time (seconds) 327 224 259
qg=1% B =103 g = 10"* f = 107°
No. of iterations 27 26 26
Obijective function (18) at final iteration 0.0225 0.0059 0.0020
rmse(p) 0.3747 0.5535 1.3412
computational time(seconds) 286 271 269

4547




Gani and Hussein Iragi Journal of Science, 2024, Vol. 65, No. 8, pp: 4529-4549

5. Conclusions

The fourth order pseudoparabolic inverse problem to identify numerically the potential
coefficient has been investigated under periodic and nonlocal boundary conditions and
overdetermination data. The finite difference scheme in cooperation with the trapezoidal rule
has been used for direct problems. The Von Neumann technique was employed to study the
stability of the proposed numerical direct method. Therefore, to reconstruct the stability,
Tikhonov’s regularization was employed. Stable results are obtained under various noise
levels.
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