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Abstract  

     The change in land cover eventually occurs as the population increases, resulting 

in high human activities. Monitoring this change can be beneficial for territorial 

planning and ecosystem monitoring. Therefore, this study aimed to evaluate the 

spatial-temporal patterns and rates of land cover change in Nampula City, 

Mozambique, over the past three decades (1989-2020). For this purpose, data from 

the Landsat-5 TM and Landsat-8 OLI / TIRS satellites were applied as input to two 

classification systems: (1) thresholding-NDVI and MNDWI and (2) supervised 

classification. The results showed that the supervised classification method 

performed better than the thresholding system, with an overall accuracy of 92.4% 

and a kappa coefficient of 0.89. Estimates pointed to a reduction of 0.04% in the 

water area and 20.3% in cultivated land. In contrast, barren rock and urban areas 

experienced an increase of 18.2%, while shrubs and grasslands showed a growth of 

2.1% of their area. The results showed a considerable change over the study period 

and that the spatial dynamics of crop and barren rock and urban areas resulting from 

human interventions require special consideration. This study provides an 

opportunity for further studies on the spatial dynamics of land cover change in 

Nampula City, facilitating effective land management and sustainable development 

strategies in the region. 

 

Keywords: Remote Sensing, Land Cover, NDVI, MNDWI, Supervised 

Classification, Nampula.  

 

1. Introduction 

     The increase in population and density always triggers pressure on natural resources and 

changes in land use over time. As a result, land cover may change, which includes loss of 

vegetation, expansion of urban areas, desertification, and reduction of water area, to name a 

few. According to Lambin et al. [1], land cover is the attribute of the land surface, such as 

vegetation, water, desert, ice, and other cover resulting from human activities.  

 

     Environmental and landscape changes are primarily the result of human activity, such as 

an increase in the impervious surface area [2] [3]. Lambin et al. [1] highlighted the 

complexity of understanding land use/cover change in tropical regions. The study suggested 

conducting a systematic analysis of land-use change at the local scale on a time scale to help 

uncover the general principles for predicting future changes. Although the phrases “land use” 
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and “land cover” are often used interchangeably, it should be noted that land cover is the 

vegetation and artificial constructions that cover the land surface [4]. 

 

     Remote sensing techniques are considered time-efficient for consistent spatial and 

temporal assessment of land cover changes [5] [6]. The Normalized Difference Vegetation 

Index (NDVI) is among the indices calculated from satellite remote sensing data. This index 

is applied to determine the amount of healthy vegetation in a site, depending on its density [7] 

[8]. The Normalized Difference Water Index (NDWI), later known as the Modified 

Normalized Difference Water Index (MNDWI), is another frequently used index for 

extracting water, which is effective in accurately discriminating water from non-water 

resources [9] [10] [11]. NDVI and MNDWI were selected due to their sensitivity to distinct 

surface characteristics and effectiveness in remote sensing applications. The NDVI can apply 

to various vegetation types, including forests, grasslands, and crops. Different vegetation 

types show distinct NDVI signatures, enabling differentiation between land cover classes, 

while the MNDWI is specifically designed to detect water bodies, making it a reliable index 

for tracking changes in aquatic features [8] [10]. Therefore, using the NDVI to monitor 

changes in vegetation cover alongside MNDWI to detect alterations in water bodies provides 

a comprehensive understanding of environmental changes. Phiri and Morgenroth [12] 

reviewed developments in cover classification methods and found that all classification 

methods applied to Landsat images had strengths and limitations, ranging from selecting the 

correct training samples to using a suitable Landsat image. Despite their limitations, Landsat 

images are often used in land cover mapping studies [2] [5] [13]. In addition, Landsat data are 

freely available, with multi-spectral and multi-temporal composition, and provide a source of 

information for environmental monitoring [2]. Despite the benefits and applications, the 

products derived from the program have not been widely used to monitor land cover changes 

at the local level in Mozambique.    

 

     Following the Civil War in Mozambique, efforts primarily concentrated on infrastructure 

development and reconstruction of the country rather than considering the impacts of 

economic development and other human activities on the environment, including 

documenting temporal environmental changes. Consequently, there exists a gap in the 

available information on land cover maps at the local or regional level with medium to high 

spatial resolution in Mozambique. Therefore, this study aims to examine the spatiotemporal 

distribution of different land covers using satellite images from Landsat-5 TM (Thematic 

Mapper) and Landsat-8 OLI (Operational Land Imager) covering the period from 1989 to 

2020 [14] [15]. Considering that land cover change in the city of Nampula has not been 

comprehensively studied, the objectives of this study were: (1) to create land cover maps 

using NDVI and MNDWI through thresholding and Supervised Classification using 

Maximum Likelihood Classification (MLC), (2) to compare the performance of each 

classification method (3) to estimate patterns of spatiotemporal land cover change.     

 

2. Methodology 

2.1 Study Area 

     The city of Nampula is located in the central part of Nampula Province between 

15°06’59’’S and 39°15’60’’E. Encompassing an approximate area of 329.81 km², the city 

rests at an average elevation of 258 m above sea level (refer to Fig. 1). Utilizing the Global 

multi-resolution terrain elevation data 2010 (GMTED2010) [16], an analysis was conducted 

to determine the distribution of the city’s area across various altitude ranges. The 

GMTED2010 dataset, designed for global and continental scale applications, increases the 

accuracy of global topographic data, making it suitable for worldwide and continental use. 

Part of the city is between 279-408 m (58%) and (10%) above 408 m. Hills and plateaus 
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characterize the topography surrounding Nampula City. In terms of climate, the average daily 

temperature is around 31°C, accompanied by high humidity levels. The city has a rainy 

season from December to March. As of 2017, the city’s population, as reported by the 

National Institute of Statistics [17], stood at 666,212 residents, making it the third most 

populous city in the country at that time.  

 

 
Figure 1: Study area based on 2010 Global Multi-resolution Terrain Elevation Data 

(GMTED-2010) 

 

2.2 Image Pre-processing   

     According to the Landsat-Earth Observation Satellites Program [18] and Wulder et al. 

[19], the Landsat program’s sensors have evolved, bringing advancements in capabilities, 

image quality, and data acquisition. The Multispectral Scanner (MSS) on Landsat Satellites 1 

to 5 provided the first set of sensors for Earth observation. The Thematic Mapper (TM) on 

Landsat Satellites 4 and 5 introduced an improved spatial resolution of 30 meters and an 

additional thermal band for land surface temperature estimation. However, further 

improvements were made, like the Enhanced Thematic Mapper Plus (ETM+), featured on 

Landsat Satellite 7, enhancing radiometric and geometric accuracy. Including an onboard 

Scan Line Corrector (SLC) reduced data gaps arising from sensor malfunctions. This was 

succeeded by the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) on 

Landsat 8, which offered nine bands, including a panchromatic band, visible, near-infrared, 

and thermal infrared bands. This sensor marked a significant advancement with an improved 

spatial resolution of 15 meters for some bands, a more comprehensive spectral range, and 

enhanced accuracy in thermal infrared measurements. Landsat 9 continued this trajectory with 

similar spectral bands to Landsat 8, incorporating OLI and TIRS sensors. Despite inherent 

limitations, Landsat data remains an invaluable resource for researchers, scientists, and 

decision-makers. 

 

     The Landsat data used was obtained free of charge from the United States Geological 

Survey-USGS website [20] in the dry season of 1989 and 2020 (Table 1). Due to the large 

size of the Landsat data, only one scene (path/raw (165/70)) was needed. All images were 

reprojected for Geographical Projection and WGS 1984 Ellipsoid Datum Geocentric. Only 
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clear images were used with cloud cover equal to or less than 5% for the entire Landsat scene, 

not affecting the study area. Landsat data bands have different spatial resolutions, so the study 

used the Landsat-5 and Landsat-8 OLI multispectral bands with a spatial resolution of 30 m 

[21]. Satellite images were subsets for the study area using a shapefile in ENVI 5.2, 

individually converted from digital number (DN) to radiance and reflectance, and then stuck 

in a layer to calculate spectral indices and further processing and mapping using ArcGIS 10.2.     

 

Table 1: Characteristics of Landsat data selected for the study 
Date 

Acquired 

 

Satellite Sensor 
Path 

/Row 

Spatial 

Resolution 

(m) 

Wavelength (μm) 

Range 

Cloud cover 

(%) 

 

1989-10-23 

 

Landsat 5 

 

TM (Thematic 

Mapper) 

 

165/70 

 

30 

 

0.45-1.75 

 

5.00 

 

 

2020-09-26 

 

 

Landsat 8 

 

OLI (Operational 

Land Imager) 

and TIRS 

(Thermal 

Infrared 

Sensor) 

 

 

165/70 

 

 

30 

 

 

0.45-1.65 

 

 

0.01 

 

     The bands were radiometrically corrected from the original DN to spectral radiance using 

Equation 1 for Landsat-5 [22] and Equation 2 for Landsat-8 [23] [24]. Conversion to spectral 

radiance was performed using the radiance scale factors provided in each image’s metadata 

file.  

Lλ =(
𝐿𝑀𝐴𝑋λ−𝐿𝑀𝐼𝑁λ

𝑄𝑐𝑎𝑙𝑚𝑎𝑥
) 𝑄𝑐𝑎𝑙 + 𝐿𝑀𝐼𝑁λ                                                                 (1) 

  

  Lλ =ML* Qcal + AL                                                                 (2) 

 

   Where Lλ is the spectral radiance in (W/(m2 * sr * μm)); LMAXλ is the maximum radiance 

of the Top Of Atmosphere (TOA) in (W / (m2 * sr * μm)); LMINλ is the minimum TOA 

radiances in (W / (m2 * sr * μm)); Qcal is the Level 1 pixel value in DN; Qcalmax is the 

maximum DN (65535 for 16-bit Landsat-8 and 255 for Landsat-5); ML is the multiplicative 

radiance scale factor for the band, and AL is the additive radiance scale factor for the band.     

The data were transformed into TOA reflectance after converting from DN to spectral 

radiance. To ensure data consistency and reduce scene variability, practices like normalizing 

solar irradiance and converting spectral radiance into top-of-atmosphere (TOA) reflectance 

are recommended, as suggested by Chander and Markham [25] and Chander et al. [22]. This 

normalization process can enhance the usability and reliability of Landsat data for accurate 

analysis and interpretation. Therefore, radiance data was converted to surface reflectance 

using Equation 3: 

     

𝜌p = 
𝜋∗𝐿λ ∗ 𝑑2

𝐸𝑆𝑈𝑁λ ∗𝐶𝑂𝑆𝜃s 
                                                                 (3) 

 

 Where 𝜌p is the unitless planetary reflectance; 𝐿λ  is the spectral radiance at the sensor 

aperture. The d represents the earth-sun distance in astronomical units. The Earth-Sun 

distance, an astronomical unit (AU), is approximately 152.09 million km = 1 au. This value is 

considered a constant and is used as a fundamental unit of measurement in astronomy to 

describe distances within the solar system; 𝐸𝑆𝑈𝑁λ  is a mean of the solar exoatmospheric 

irradiances; 𝜃s  is the solar zenith angle in degrees.     
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2.3 Calculation of the Landsat Spectral Index from Surface Reflectance 

     To obtain the NDVI and MNDWI, the surface reflectance derived from the previous 

processing step (Equation 3) into Equations 4 and 5 was incorporated. The NDVI, which 

utilizes the near-infrared and red bands, primarily reflects the presence of vegetation. A higher 

NDVI value indicates denser and healthier vegetation. On the other hand, the MNDWI [10] 

significantly enhances the identification of open water characteristics and effectively 

distinguishes water from non-water areas. Employing the MNDWI can more accurately 

capture water bodies and differentiate them from other features in the landscape [10]. 

 

NDVI = 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
                                                                 (4) 

 

MNDWI = 
(𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅)
                                                                 (5) 

 

 NIR is the near-infrared band; Red and Green are the red and green bands, respectively; 

SWIR is the short-wave infrared band. These bands were channeled to positions 2 (Green), 3 

(Red), 4 (NIR), and 5 (SWIR) for Landsat-5 and 3, 4, 5, and 6 for Landsat-8. 

 

2.4 Image classification system  

     The study applies two image classification systems: (1) thresholding and (2) supervised 

classification. The thresholding technique was applied to NDVI and MNDWI images. The 

unique characteristics of each land cover were identified using high-resolution images from 

Google Earth Pro and basic statistics results from ENVI 5.2 software in NDVI and MNDWI. 

Classes were defined using the information and the basic statistics in Table 2 by considering 

their values, frequency, and pixel distribution within the data. As a result, the thresholds 

presented in Table 3 were obtained (compared to the USGS), along with the corresponding 

land cover classes described in Table 4. To estimate the land cover classes, the supervised 

classification was employed using its widely used Maximum Likelihood Classifier algorithm 

to estimate the land cover classes. In order to achieve the classification, Google Earth images 

were used as a reference, and different combinations of bands were used to help identify the 

different classes to define the training data through polygon delineation to create various 

regions of interest. The temporal changes in the values of each index are particularly evident 

in the mean, Table 2. From 1989 to 2020, there was a decrease in the mean values of 0.4 in 

the NDVI and -0.1 in the MNDWI. Likewise, differences were found in the maximum and 

minimum values. 

 

Table 2: The statistical description of NDVI and MNDWI in the study area 

 
NDVI  MNDWI 

1989 2020  1989 2020 

Min -0.35 -0.22  -0.69 -0.87 

Max 0.75 0.70  0.79 0.59 

Mean 0.30 0.26  -0.44 -0.45 

StdDev 0.09 0.07  0.05 0.07 
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Table 3: Index thresholding 

Index 
Land 

Cover 
USGS_Brown 1989 2020 Index 1989 2020 

 

 

 

 

NDVI 

 

Water --------- ≤ -0.00 ≤ -0.00 

 

 

 

 

MNDWI 

≥ 0.00 ≥ 0.00 

 

Barren 

rock and 

urban 

 

< 0.15 

 

>-0.00 ≤ 

0.20 

 

> -0.00 ≤ 

0.18 

 

> -0.30 ≤ -

0.00 

 

> -0. 40 ≤ -

0.00 

 

Shrubs 

and 

grasslands 

 

≥ 0.15 < 0.50 

 

>0.20 ≤ 

0.50 

 

>0.18≤0.40 

 

≥ -0.69 ≤ -

0.40 

 

≥ -0.87 ≤ -

0.49 

 

Crop ≥ 0.50 ≤ 0.90 > 0.5 >0.40 
> -0.40 ≤ -

0.30 

> -0.49 ≤ -0. 

40 

 

     In Table 3, an NDVI value of negative zero implies an absence of vegetation and 

corresponds to a water-covered area. On the other hand, a value of positive zero obtained 

from MNDWI means the detection of water bodies within the observed region. Our study’s 

threshold values align closely with those the US Geological Survey (USGS) suggested. 

Considering the distinct attributes of the study location, such as elevation, precipitation, solar 

exposure, and soil moisture, these newly established threshold values were adopted for 

categorizing different land cover classes. The land cover classes based on the threshold 

classification scheme are detailed in Table 4. 

 

Table 4: Description of land cover classes 

Class Description 

Water Lakes, permanent ponds, rivers, and streams. 

Barren rock and 

urban land 
All impervious surfaces, including rocky mountains and hills and sandy areas. 

Shrubs and 

grasslands 
Sparse vegetation, grass, shrubs. 

Crop Vegetables at their peak growth stage (cabbage, lettuce, kidney beans, maize). 

 

2.5 Accuracy Assessment 

     Following the classification of the images, an accuracy assessment process was performed. 

According to Olofsson et al. [26], there must be reference data to validate the estimates from 

the satellite data. Ideally, the reference data should be significantly more accurate than the 

map classification derived from satellite imagery, and the most accurate source of information 

should come from ground observations [26] [27]. However, due to various constraints in 

collecting such data, visual observations from aerial or satellite imagery were used for 

assessment purposes. Based on these considerations, the validation approach involved 706 

randomly collected sample data from Google Earth images. This method holds scientific 

merit due to its well-documented effectiveness in prior remote sensing and land cover studies. 

Similar validation strategies have been employed by Vivekananda et al. [28] and Stehman 

[29] in their investigations of land cover classifications. By adhering to this established 

procedure, the robustness of our findings and contribution to the methodological consistency 

that advances the broader scientific understanding of land cover assessment through remote 

sensing techniques were enhanced [26] [27].  

 

PA = 
Total no.  of correctly classified samples in each category

Total no.of correctly classified samples in that category(col total)
∗ 100                                (6) 
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UA = 
Total no.  of correctly classified samples in each category

Total no.  of correctly classified samples in that category(row total)
∗ 100                                (7) 

 

OA = 
Total no.  of correctly classified samples 

Total no.  of reference samples 
∗ 100                                (8) 

 

KC = 
[(Total sum of correct) −sum of all(col  total ∗ row total )]

[(Total sum of correct)2 −sum of all(col  total ∗ row total )]
                                (9) 

 

     The implementation of an error matrix and the calculation of metrics such as producer’s 

accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and the kappa coefficient (KC) 

align with well-established standards for accuracy assessment. Furthermore, Equation 6-9, as 

detailed in previous works by Alam et al. [30], Olofsson et al. [26], and Vivekananda [28], 

provides a robust framework for summarizing the accuracy assessment outcomes. This 

approach ensures the reliability and validity of our accuracy assessment methodology, 

aligning with the best practices outlined by previous studies in the field. 

 

3. Results and discussion 

     Based on the initial MNDWI and NDVI results, both the 1989 and 2020 datasets indicate 

that areas with high and low values of each index are primarily concentrated in the central 

region. This observation becomes evident when examining the distribution of the MNDWI 

thematic maps (a) for 1989 and (b) for 2020, alongside the NDVI thematic maps (c) for 1989 

and (d) for 2020. In these thematic maps, the central region consistently exhibits lower values 

of NDVI, suggesting an absence or poor health of vegetation. These findings are illustrated in 

Fig. 2. 

 
Figure 2: MNDWI maps (a-1989, b-2020) and NDVI maps (c-1989, d-2020) 

 

The threshold and Maximum Likelihood Classification (MLC) analysis results 

demonstrated stability and a slight decrease in the water area. Contrarily, the barren rock and 



Vundo et al.                                           Iraqi Journal of Science, 2024, Vol. 65, No. 12, pp: 7312-7324 

 

7319 

urban areas exhibited an increase of 15.6%, 0.7%, and 18.2% for the Modified Normalized 

Difference Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and 

MLC, respectively. 

 

   Regarding the shrubs and grasslands, the NDVI thresholding scheme was reduced by 3.3%, 

and the MNDWI showed a significant decrease of 54.2%. However, the MLC approach 

showed an increase of 2.1% in this class. In contrast, the cropland area displayed an increase 

in both NDVI (2.6%) and MNDWI (38.6%) using the threshold mechanism, while the MLC 

analysis indicated a decrease of approximately 20.3% in the cropland area (refer to Fig. 3 and 

Table 5). 

 

 
Figure 3: (A) MNDWI_Thresholding maps (1989, 2020), (B) NDVI_Thresholding maps 

(1989, 2020), and (C) Supervised Classification maps (1989, 2020) 

 

 

Meanwhile, threshold and MLC results showed stability and a slight reduction in the water 195 

area, while the barren rock and urban area showed an increase of 15.6%, 0.7%, and 18.2% for 196 

MNDWI, NDVI, and MLC, respectively. As for shrubs and grasslands, there was a reduction in 197 

this class for the NDVI thresholding scheme, -3.3% and MNDWI -54.2%, but an increase of 198 

2.1% for the MLC. Unlike the previous class, the cropland area showed an increase in NDVI 199 

(2.6%) and MNDWI (38.6%) for the threshold mechanism and a decrease of about 20.3% of 200 

MLC (Table 5 and Figure 3). 201 

 202 

 203 

(A) 

1989 2020 

 

 

  204 

 205 

 206 

Figure 3. (A) MNDWI_Thresholding maps (1989, 2020) and (B) NDVI_Thresholding maps 207 

(1989, 2020),  and (C) Supervised Classification  maps (1989, 2020). 208 

 209 

Table 5. The proportion of land cover change indicators from all estimation schemes 210 

 NDVI  MNDWI Supervised 

Classification 

 (%) 

 1989 2020 1989 2020 1989 2020 

Water 0.10 0.10 0.10 0.06 0.10 0.06 

Barren 

rock, 

urban  

9.30 10.00 0.92 16.55 8.00 26.20 

Shrubs 89.00 85.70 86.95 32.75 68.03 70.14 

(B) 

1989 2020 

(C) 

1989 
2020 
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Table 5: The proportion of land cover change indicators from all estimation schemes 

 

NDVI MNDWI Supervised Classification 

(%) 

1989 2020 1989 2020 1989 2020 

Water 0.10 0.10 0.10 0.06 0.10 0.06 

Barren rock, urban land 9.30 10.00 0.92 16.55 8.00 26.20 

Shrubs and grasslands 89.00 85.70 86.95 32.75 68.03 70.14 

Crop at their peak growth 

stage 
1.70 4.30 12.03 50.64 23.87 3.61 

 

     In the context of remote sensing [26], the assessment of classification models depends 

heavily on two metrics: User’s Accuracy and Producer’s Accuracy. These metrics indicate 

how well a model or classifier can identify and categorize objects. User’s Accuracy (UA) 

measures the model’s ability to correctly identify positive instances (i.e., true positives) of a 

specific class, while Producer’s Accuracy (PA) evaluates the model’s capability in precisely 

classifying positive instances without mistakenly including negatives [26] [30]. Combining 

these metrics with error matrices provides a reliable framework for assessing model 

performance when an accurate classification is essential. Tables 6 to 8 show the assessment of 

the maps in Figure 3 as percentages. 

 

Table 6: Error matrix derived from the MNDWI threshold land cover maps 

 Water 

Barren rock 

and urban 

land 

Shrubs 

and 

grasslands 

Crop 
Total 

(User) 

UA 

(%) 

Water 5 0 0 0 5 100 

Barren rock and urban land 0 182 18 30 230 79 

Shrubs and grasslands 0 13 145 46 204 71 

Crop 0 145 31 91 267 34.1 

Total (Producer) 5 340 194 167 706  

PA (%) 100 53.5 74.7 54.5   

  

Table 7: Error matrix derived from the NDVI threshold land cover maps 

 Water 
Barren rock 

and urban land 

Shrubs and 

grasslands 
Crop 

Total 

(User) 

UA (%) 

 

Water 3 1 0 1 5 60.0 

Barren rock and urban 

land 
0 145 85 0 230 63.0 

Shrubs and grasslands 0 0 201 3 204 98.5 

Crop 0 2 60 205 267 76.8 

Total (Producer) 3 148 346 209 706  

PA (%) 100 98.0 58.1 98.1   

 

Table 8: Error matrix derived from the supervised classification land cover map 

 Water 
Barren rock 

and urban land 

Shrubs and 

grasslands 
Crop 

Total 

(User) 

UA (%) 

 

Water 4 0 0 1 5 80 

Barren rock and urban 0 206 6 18 230 89.57 

Shrubs and grasslands 0 7 194 3 204 95.10 

Crop 0 0 19 248 267 92.9 

Total (Producer) 4 213 219 270 706  

PA (%) 
100 

 
96.7 88.6 91.9   
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     The results of the three estimation maps, Maximum Likelihood Classification (MLC), 

NDVI Threshold, and MNDWI Threshold, were evaluated. MLC outperformed the other two 

in individual classes, with an Overall Accuracy (OA) of 92.4%. Furthermore, the MNDWI 

Threshold could delineate barren rock and urban land cover types, previously acknowledged 

only for NDVI and other indices, excluding MNDWI [31]. As for the agreement, the kappa 

coefficient ranged from 0.41 to 0.89, Table 9. 

 

Table 9: Summary of Land Cover Maps Classification Accuracy 

Classification Source Classification Accuracy 

 OA KC 

NDVI_Threshold 78% 0.68 

MNDWI_Threshold 59.9% 0.41 

Supervised Classification_MLC 92.4% 0.89 

 

The findings of this study indicate that supervised classification using MLC produced the 

most accurate estimates. Notably, (Fig. 3C) provides evidence of significant changes in land 

cover in Nampula City from 1989 to 2020. In 1989, a mixture of cropland, shrubland, and 

grassland characterized a considerable portion of the study area. Water resources were 

limited, with small ponds in the central region and one in the north. The central part of the 

city consisted of barren rock and urban land, surrounded by cropland, shrubland, and 

grassland. At that time, Nampula City did not serve as a primary food source for the rest of 

the province due to its low soil moisture and high elevation. However, there were a few 

streams where people utilized fertile land for vegetable production. 

 

     Throughout the 31 years, significant changes occurred in the geographical distribution of 

land cover. Barren rock and urban land stopped being concentrated only in the central part 

and expanded in all directions, including areas adjacent to main roads, railways, and existing 

water resources. Consequently, the water area experienced a reduction of 0.1 km2, while 

barren rock and urban land increased by approximately 60 km2. This decrease in water area 

can be attributed to changes in the streams within production fields due to sedimentation over 

time, inadequate management practices, and the demand for sand for construction purposes. 

The sand excavation for the construction, a lucrative activity in the city, intensifies erosion. 

The growing population has increased the demand for this resource. 

 

     On the other hand, the cultivation area became more localized instead of being dispersed 

throughout the city. By 2020, the cultivated area had reduced significantly and was 

predominantly found along streams, in contrast to 1989, when cultivated land was scattered 

across the entire city. The cultivation areas were replaced by other land cover classes, except 

for water, resulting in a reduction of approximately 66.8 km2. These findings highlight a 

deterioration in food security over time in Nampula City. Therefore, the city relies mainly on 

surrounding districts to meet its population’s food needs since its agricultural land has been 

converted to other land cover classes. Unlike 1989, where shrubs and grasslands were mixed 

with crop fields, the current scenario exhibits a clear demarcation of land classes. The land 

cover of the city in 2020 consisted of a mere 0.2 km2 of water area, 11.9 km2 of cultivated 

land, 86.4 km2 of barren rock and urbanized areas, and 231.3 km2 of shrubs and grasslands, as 

indicated in Table 5. As documented in historical records [17], the population growth in 

Nampula has led to spontaneous urban expansion, the loss of agricultural land, and the 

depletion of freshwater resources. These changes can be attributed to a combination of 

factors, including the lack of environmental awareness and the rising economic power of the 
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population. This dual influence of population growth and economic development has played a 

crucial role in transforming the city’s land cover. Furthermore, the impact of urban expansion 

on climate change [32] cannot be ignored in the city transformation over the last three 

decades. 

  

4. Conclusion 

     The present study was carried out to estimate the spatial-temporal land cover change 

pattern in Nampula City. The city experienced rapid economic development due to population 

growth, leading to increased economic activities and infrastructure expansion. Satellite data 

from Landsat-5 (TM) and Landsat-8 (OLI/TIRS) encompassing 31 years between 1989 and 

2020 were used to study land cover change. Three estimation schemes were used: (1) based 

on thresholding_NDVI, (2) based on thresholding_MNDWI, (3) Supervised 

Classification_MLC. The results were evaluated using an error matrix, comparing them to 

706 reference samples obtained from Google Earth Pro images. The results showed that the 

Supervised Classification method generated more accurate estimates than the other 

approaches. The results indicated a significant transformation in land cover over the past three 

decades. Major changes included extensive loss of agricultural land and water areas, 

substantial expansion of urban areas in all directions through urban sprawl, and a minimal 

increase in shrubs and grasslands.  

 

     This study successfully generated a comprehensive map illustrating the changes in land 

cover and their rates over time using Landsat data. The produced map can serve as a valuable 

reference for future studies, particularly in land management by the municipal council and 

other government authorities. Improved land use planning and management practices could 

effectively prevent the loss of agricultural land and minimize unplanned urban sprawl. This 

procedure must include active participation of the local community to increase environmental 

awareness of the current changes. Further studies are needed to refine and meticulously 

identify the relationship between land cover change and the effects of temperature variation in 

the city. Furthermore, future studies shall include the assessment of the relationship between 

urbanization and changes in the local climate [33]. Additionally, mobile phone data could 

validate the results of land cover change and migration in Nampula City [34].  
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