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Abstract 

     The autocorrelation function calculations have been carried out on photon-

limited computer-simulated images of binary stars that recorded through 

kolmogorov atmospheric turbulence. The effect of the parameters of photon limited 

binary star on the variation of signal to noise, signal to background ratios, number of 

images that processed and the magnitude of binary stars are studied and mathematic 

equations are given to investigate this effect. The result indicates that signal to 

background ratio of photon limited images of a binary star is independent of the total 

number of recorded photons.  
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 نمذجة النجوم الثنائية ذات الفوتونات المحدودة بأستخدام احصائية كولموكوروف
 

دعلي طالب محم,   *سلمان فرحانأثيل   
قسم الفلك والفضاء, كلية العلوم , جامعة بغداد, بغداد, العراق    

. 
 الخلاصة:

تم حساب دالة الترابط الذاتي التي تم اجرائها على النجوم الثنائيه ذات الفوتونات المحدودة التي سجلت من     
خلال اضطراب غلاف جوي يخضع الى موديل كولموكوروف. أن تأثير معاملات هذه النجوم الفوتونية على  

ثيلها بمعادلات رياضية. النتائج اظهرت ان نسبة الأشارة الى الخلفية والأشارة الى الضوضاء قد تم حسابها وتم
 نسبة الأشارة الى الأرضيه لا تعتمد على عدد الفوتونات المسجلة.

 

1. Introduction: 

     The nature of the wavefront perturbations from a distant star that introduced by the atmosphere is 

firstly studied by the Russian mathematician Andrei Kolmogorov that developed by Tatarski [1]. The 

angular resolution or “seeing” is limited by atmospheric turbulence and not by the theoretical 

diffraction limit of the telescope [2].The kolmogorov model is supported by many of experimental 

measurements and is heavily used in simulations of astronomical imaging [3- 8]. The model assumes 

that the perturbations in the wavefront are due to the variations in the refractive index of the 

atmospheric layers that the wavefront should travel through.  

These variations introduce phase fluctuations. The amplitude fluctuations have not significant effect 

on the structure of the images that taken by large optical telescope [3].  
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Up to now, there are no publications in the literatures that studied photon limited images of an 

astronomical object using kolmogorov turbulent model [9-13]. For this reason, the analytical model of 

imaging a reference and binary star in the presence of such model is presented.  

 

2. Mathematical Formulations: 
The response of an incoherent optical system for the spatial frequency could be demonstrated in terms 

of the optical transfer function (OTF) by [15]. 
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Where          are the complex pupil function and its complex conjugate, 𝑓 is the focal length of the 

lens, λ is a wavelength and     are spatial frequency variables. If we assume the wavefront from a 

reference star is a plane wave and  (   ) is a circular function of a unity magnitude, then diameter of 

these functions depend on the diameter of the optical telescope. The wavefront from a reference star is 

distorted by the presence of atmospheric turbulence and therefore eq. (1) becomes: 
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   is described a perturbed complex wavefront of a reference star that introduced by atmospheric 

turbulence. The modulation transfer function (   ) is given by: 
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The phase screen is related to its kolmogorov spectrum by the following Fourier transform equations 

[16]: 
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 ( ) could be presented as a two-dimensional phase screen in the aperture of the telescope, and   is a 

two-dimensional coordinates. The phase screens that assume a pure kolmogorov spectrum are not 

stationary, i.e., 〈 ( ) 〉 increases without limit as | |   . Phase screens are scaled by multiplying 

the phase by (   ⁄ )  ⁄ . The phase structure function is defined by [16]: 

 

 (| |)  〈( (  )   (    )) 〉                                               (6) 

                (| |   ⁄ )  ⁄  

 

where    is the Fried parameter [17][18] and   is a distance that measured from the center of an array. 

The kolmogorov power spectral density (PSD) is given by: 

 ( )          
   ⁄ | |    ⁄                                                      (7) 

 

3. Computational methods: 
    Computer simulations are conducted to assess the quality of an astronomical images that taken by 

an optical telescope in the presence of kolmogorov atmospheric turbulence. The strength of 

atmospheric turbulence (sc) is given by:   

 

      ⁄                                                                          (8) 

 

 The simulations consist the followings: 
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(1) The complex wavefront of a reference star  (   ) that passed through the kolmogorov turbulence 

is generated by assigning a normal random distribution with zero mean and unit variance to its real 

and imaginary parts using different realizations. 

(2) The phase structure function,  (| |)  as given by eq. (6) is computed according to:  

 

  [(    )  (    ) ]  ⁄                                                  (9) 

 

(3) Power spectrum density (PSD) that defined in eq. (7) is also computed: 

 

   (   )   ( )                                                                       (10) 

 

(4) Set PSD (0, 0) =0 (set piston to zero, i.e the value of center of an array is equal to zero). 

(5) Multiply the result of step (1) by the square root of PSD. 

(6) perform inverse Fourier transform and the real part represents the kolmogorov phase screen, 

 (   )  
Lastly, the perturbed complex wave front of a reference star is represented by, 

 

 (   )   
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                                                               (11) 

 

Multiply eq. (11) by the telescope aperture, B(x,y), of radius R and of unity magnitude. |   | is 

computed by taking the absolute of eq. (2) and the psf is taken to be the absolute of the inverse Fourier 

transform of eq. (2). 

       We extend our study to include the effect of kolmogorov turbulence on binary stars. The binary 

star is taken to be a two impulse delta functions separated by a certain distance from the center of an 

array .This means that each star is a one pixel extent and of unity magnitude as shown below: 

 

 ( )  {
                   
                

                                                         (12) 

 

The separation is chosen with respect to the ratio             ⁄   (D=2R). This ratio is taken to be 

0.1. This will produce a binary star that has a separation to be just within the full extent of the base of 

the psf of the optical telescope in use (no turbulence) [11] .This binary star is then convolved with the 

psf of the telescope/atmosphere system in which the turbulent atmosphere are modeled by kolmogorov 

statistic. The power spectrum and autocorrelation function at different values of     are then computed. 

 

 4. Results and discussion: 
    We consider the telescope aperture is infinitely large and the observations at very bad seeing 

condition (i.e,     ). The Kolmogorov phase screen function,  (   ), til  sti, and its 

corresponding  lolp ec  sti are shown in figure - 1. 
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Figure 1 -  (   )        ; a-Image; b-Surface plot of )a); c-Cross section through the center of (a). 

 

The cross section through the center of  (   ) for different values of    are shown in figure -2. 

 

Figure 2- Cross section through the center of  (   )  at different values of   . 
 

It is quite clear from this figure that as    increases, the fluctuations in  (   )get smoother and 

approaching constant value. It should be pointed out here that the phase becomes perfectly constant at 

      . 

Now our aim is to observe a reference star that taken by infinitely large optical telescope. This star is 

taken to be a dirac delta function, as given by eq. (12). In this case, the iwt dimensional dirac delta 

function could be represented by a matrix of size 256 by 256 pixels of zero values except the center 

that has a value of one.  

 Psf  is computed via the inverse Fourier transform of eq. (11) and the MTF is computed by taking the 

absolute Fourier transform of psf. 

The binary star is taken to be a two dirac delta function separated by a distant of 5 by 5 pixels from the 

center of an array.  The binary star is convolved with the computed psf and the result is normalized to 

one at its maximum value. This result is then subjected to poisson distribution as given by: 
 

𝑓        (  )   ⁄                                                                                    (13) 

(a) (b) 

(c) 
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Where   is a nonnegative integer and   is a parameter that define both the mean and the variance of 

the distribution. 

In our model we set      and   inside the exponentiation is taken to be the value of the normalized 

binary star. The result is a photon limited image at a certain value of q.  

The poisson distribution is appropriate for applications that involve counting the number of times a 

random event occurs in a given amount of time, distance, area, ets. This is an approximate application 

for receiving photon from astronomical objects especially at low-light level. For poisson distribution, 

  must be equal or less than one and above that, the physical distribution changes toward normal 

distribution. 

Now   is taken to be the value of each pixel of a normalized binary star multiplied by   parameter (q 

must be less than one for poisson distribution). The output is a matrix of binary star represents the 

number of photon that received at each pixel. This binary star is then Fourier transformed and the 

absolute squared is performed. The results demonstrate the power spectrum of this binary star at a 

certain value of  . The autocorrelation function is then computed by taking the inverse Fourier 

transform of the power spectrum.  

 The results of implementing loes processing using different values of  ,  number of images, and 

magnitude of binary star at      are shown in figure - 3- 6. 
 

 

Figure 3- Psf, Binary star of equal magnitude [mag (1,1)],     , q=1 and number of images=1; a-Psf; b-MTF; 

c-Binary star (         ); d-Fringes of (c); e-Surface plot of the autocorrelation function; f-

Cross section through (e). 

 

(a) (b) 

(c) 
(d) 

   (e)                           (f) 
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Figure 4 - Psf, Binary star of mag (1,1),     , q=50 and number of images=1; a-Psf; b-MTF; c-Binary star 

(           ); d-Fringes of (c); e- Surface plot of the autocorrelation function; f-Cross section 

through (e). 

(a) (b) 

(c) (d) 

(e) 
(f) 
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Figure 5- Psf, Binary star of mag (1,1),     , q=1 and number of images=10; a-Psf; b-MTF; c-Binary star 

(         ); d-Fringes of (c); e- Surface plot of the autocorrelation function; f-Cross section 

through (e). 

(a) 
(b) 

(c) 
(d) 

(e) 
(f) 
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Figure 6- Psf, Binary star of mag (1,0.25),     , q=50 and number of images=10; a-Psf; b-MTF; c-Binary star 

(           ); d-Fringes of (c); e- Surface plot of the autocorrelation function; f-Cross section 

through (e). 

 
SNR and SBR are calculated by taking the value of the pixel that is located at (Nc+sep,Nc+sep) to be 

S+B. Where (Nc,Nc) is the index of the central array that demonstrate autocorrelation function. The 

background is computed from averaging all points that located at a distance of 10 pixels from the 

center of an array. The noise is calculated as the standard deviation of these points. 

Figure - 7&8 represent the SNR and SBR as a function of q that used to generate photon limited image 

of a binary star.  

(a) (b) 

(c) (d) 

(e) 

(f) 



Farhan & Mohammed                            Iraqi Journal of Science, 2015, Vol 56, No.1B, pp: 538-547 

546 

 

Figure 7- a- SNR as a function of q (         (   )) b- SBR as a function of q (         (   )). 

 

 

Figure 8- a- SNR as a function of q (         (      )) b- SBR as a function of q (         (      )). 

 

5. Conclusion: 
     The results that obtained from modeling the turbulent atmosphere as a kolmogorov statistics and 

then generating photon limited images of a binary star using different values of q, number of images, 

and magnitude difference indicate the following: 

1.The mathematical behaviors of SNR & SBR of photon limited images of binary star for mag (1,1) 

and mag (1,0.25) are demonstrate and shown in figure - 7 & figure - 8 respectively. 

2. SBR is independent of the total number of recorded photons of the limited image of binary star. 

3. SBR for mag (1,1) is about 0.15 while SBR for mag (1,0.25) is about 0.05. This is because the 

signal in the autocorrelation function is decreases while the background remains unchanged. 

4.SNR for mag(1,1) is about 5 times that of SNR for mag (1,0.25).  
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