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Abstract

In this paper, we have presented a new formula by applying the conjugacy
condition for the second-order Taylor expansion. In comparison with classic
conjugate gradient methods, the new formula uses both available gradient and
function value information. The formula's global convergence findings are
described. Numerical results demonstrate that this strategy is effective and its
application.
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1. Introduction
Numerous real-world applications have problems with non-linear optimization due to their
complexity and size. The first-order methods are the best choice as a result. One of the first-

order strategies that has continuously shown its effectiveness in tackling challenging
constrained and unconstrained image processing problems which are the gradient methods,

Recently, a two-phase method was proposed in [1]. The combined benefits of the adaptive
median filter and variational technique are to provide a two-phase system. For noise with salt
and pepper, the adaptive-median filter is used in the first-phase. Let X and A =
{1,2,3,..,M} x{1,23,..,N}, M = N =265 be the true image and index set of X,
respectively, and let N c A be the set of indices of the noise pixels found in the first phase.
Then, the second phase figures up a workable way to decrease the functional as follows:

* Email: ranen.sulyman@uomosul.edu.iq

5182


mailto:ranen.sulyman@uomosul.edu.iq

Sulaiman et al. Iragi Journal of Science, 2024, Vol. 65, No. 9, pp: 5182-5194

fa(u) = Z [|u&j — Vil + g(z X S¢j+ Sé,—)]
(x,J)EN

where B is the regularization parameter. S;; = Zz(m,n)EpK_jnNC(pa(uK,j — Ymn)s SEj =
L mmyep,nn @o(Ugj — Ymn) While @, =Va +x%,a >0 represents the edge-preserving
potential function. Let p,; be the four pixels that are the nearest neighbors to the pixel at
position (x,j) € A, y,; stands for the observed pixel value of the image at position u, ; =
|uK'j|(1<,j)eN’ and ¢ stands for a column-vector of length F ordered lexicographically. In this
case, ¢ stands for N which is component count. The functional of problem (1) is not smooth
due to the term |uK,j — y&j|. Since it maintains the minimizer u near to the original picture y,
it preserves the original image's unmodified pixels, it is generally agreed that this non-smooth

component may be removed from (1). Thus, the smooth-functional that results is as follows:

fa@= ) [2xSk+52)
(k. J)EN

The iterative approach to obtain the minimal value of the following issues is addressed by
unconstrained optimization algorithms:

f@) = mip f@

where f: R™ — R is a smooth function. For more details see [2].
Amongst numerous iterative methods for solving (3), the conjugate gradient methods
constitute a popular type of method. Let g; be the gradient of f(x;), then the iterative method

to solve (3) is given by:

U =y tody (4)

where a; denotes the step-length and d; denotes the search direction. «; can be computed by:
gi 4,

ai dTGd .......... (5)

Alternatively, various line search conditions such as Wolfe conditions [3], [4,5] can be used:

.......... (6)
df gis1 2 od g
.......... 7
where 0 < § <o <1, see [3], [6]. The search direction d. , is defined by:
di+1 = —gi+1 T Bid;
.......... 8)

where p; is referred to as the conjugate gradient coefficient. The conjugate gradient
coefficient is an essential factor in the conjugate gradient techniques. Other formulae to obtain
the conjugate parameters are also given in [6]-[15] .
We focus our attention on the best-known the Hestenes-Stiefel (called HS method) method
in which the formula is given as follows:
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where y; = gj+1 — g;- The most essential conjugate-gradient methods include the Fletcher-
Reeves (called FR method) in which the formula is given by:
FR _ g§:+191+1
U

More details can be found in [16].

A little modification to the Hestenes-Stiefe to satisfy the descent property, specifically Wu
and Chen (called WC method) [6] derived the following CG formula, in which the formula is
defined by:

wce _ Y5-191+1 2(f1‘f1+1)+9£r"1

i aTy; ATy, 1D
The formula, which satisfies the Perry [12] conjugacy condition is specified by:
dl .y. = —vl g
1+1y; v; g1+1
.......... @2

As a result, attempts have been undertaken to design conjugate gradient algorithms that are
both globally and numerically efficient.
Furthermore, we state that the search directions d;,; meet the adequate descent requirement if

and only if:

91T+1d1+1 S —C||.91+1||2

where c is a nonnegative constant. The convergence study of our proposed method is aided
by the performance profile [13]. According to numerical measures, Wu and Chen [6] perform
better than the family of current ones. The effective numerical results inspired our idea to
consider other modifications which we believe will improve the numerical performance.
Much effort in both analytic and computational has been devoted to identifying the best
optimization method or even the best from the much wider class of optimization methods that
are introduced in [14]-[19].
We use the second-order Taylor expansion to derive a novel parameter conjugate gradient.
The derived approach investigates theoretical analysis as well as numerical outcomes.

2. Driving the new formula on the Conjugate Gradient method
Derivation from Taylor expansion. Take the second-order Taylor expansion around the
point:

1
) = f () = gl + EviTGHlvi

.......... (14)
To see this, the gradient of a second-order Taylor expansion form:
T — 2,7 T
WOTVIS T G 5)
Using exact line search giTﬂvi = 0 and noting that a;d; = v;, we obtain:
1
[ = f(xps1) + EviTGiﬂvi .......... (16)
From above equation and equation (5), which implies that:
aTGuy =~ D
el 20— f) e @7

From equation (15) and equation (12), we have:
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2
i+1Y] 2(f1+1_fi) iYL (18)
In addition, di;; = —gj+1 + B;d; and (18) imply that:
1 17
—giai + Bid{y = - 2o —1) v gi
1 1
pary LS @)
1171 2(f1+1 _fl) 1 J1 1+17]

Which yields :
2
_a o) 12U = 1) vig gl .
1 d;]"y! d;['yl (i;]‘:)]1 .......... ( )

We call this formula the RZB. The RZB conjugate gradient algorithm is given as follows.
Algorithm RZB.
Initialization. Given x,eR™ and the parameters € > 0,6¢(0,1),0€(5,1), Setj =0,

Yo
Stage 1. If ||gj|| <& then stop.

Stage 2. Compute q; by a suitable line-search.

Stage 3. Let x;,; = x; + a;d; and compute f; by (20).
Stage 4. Calculate the search direction d;,; = —gj+1 + fid;.
Stage 5. Let j = i + 1 and goto stage 2.

QU
<)
Il

3. Convergence analysis
In this part, we turn to the convergence property of the RZB method. We assume that:
i. f(x) isbounded on the set W = {xeR™: f(x) < f(x0)}.
ii.. g is Lipschitz continuous, i.e. there exists a positive constant L such that:
lg(z) — gl < Ll|z — ull, vz, ueR™

Underneath these assumptions on the function, there exists a constant i > 0 such that
IVE(x)|| < ¢ . See [19].
A significant role can be demonstrated for the sufficient descent condition.

Theorem 1:

If d;; is generated by the new Algorithm, then d} ; gj41 < —C||gi+1||2 holds.
Proof:

Since dy = —go, We obtain gfd, = —llgoll>. Let g/d; < —c”gi”z for all j € n. Now,
multiplying (8) by g/}, we obtain:
d;:r191+1 = _”91+1”2
N [af(d? 9) 12(in =) _vg
diTyi diTyi .......... (22)

TR

d{y;

+

diTgi+1

From (22) and (17), we have:
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T T
gi+1Yi YV} Gi+1
d1+191+1 ”91+1” l v_lTy_1 + viTyi lviTgi’fl .......... (23)

From above equation, we get:

dl 191 < _”g.+1”2 917;13’1 " 917;13’1(”;9&1)(17{311)
1 1 - i

vy, )’
B (viTng)z .......... (29)
(ViT i)
Using the inequality:
T 1 2 2 n
<l + sl wosi e R (25)
to derive that, let
up = 91+1(17'T3’1) ) (ngH'l)yl (26)

y; gl+1(vl g;+1)(v y; 2 [”gH‘l” (‘U y1)2 + ”yl” (‘Ul gl+1) ]
So, from (24) and (26), we obtain:

1
5 gl @Ty? + Il 7 91007
(ViTyi)z

T _
91+1d1+1 = Fi+19i+1

_ (viTng)z va
@lypz (27)

(17 gl+1)
—[1— ]“91+1“ + [2 |yl“ ( vy 1) (v yl)z

(v gi+1)?
ol [l - )| e

Using (21), we get, yi yi < Lv1 y; then:

1 2 2
gir1die1 < =3 lgi+2ll” < —cllgiell (29)

This completes the proof.

Using the Wolfe conditions, the next lemma that is proved in [20] for any conjugate
gradient method.

Lemma 1:
Suppose that assumptions (i) and (ii) hold and consider any conjugate gradient method (5)
where di.; = —gjs+1 + B1d; Is supposed to be a descent-direction and «; is selected by the

strong-Wolfe line-search. If

3 = o
k>1 ” !+1”2 .......... (29)

then
,}ijglo(inf||gi+1||):0-

The proof can be found in [20].
The next theorem presents the convergence property result of the new Algorithm.
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Theorem 2:
Assume that the previous assumptions are true. If £ is a uniformly convex function on R™ that
means if there is a constant u > 0 such that:

Vf@)-Vf@)' = ullz—ul*, Yzzu€er» ... (31)
then
lim (inf|ggsa|[) =0 (32

Proof:
From the definition of g; and (17), it follows that:

2
18] = laf(g{ a) /2(fisa=f) v g N gglyil

aly dfy; ~ dly
girYi Y gin
diy;  diy;
By using (21), we get ||y |l < L||vk|| and using (31), we obtain viTyi > pllvell?. Applying the
Cauchy inequality, of the above inequalities, then (33), we get:

Llvilllgiall | llwillllgi+sl
16 < +
1= 2 2
R @
= (—)ﬂ
Al
Therefore, using (34) in (8), we get: 1
ldiall < llgiall + B3l llwi]l -
<y+ (ﬂ)i”v,”
= w el (35)
S¢+¢L:¢S¢(ﬂ+uL+1)

Therefore, the equation (27) is true.

4. Numerical results

This section will outline the numerical tests with a few well-known optimization issues
and their applications to issues with picture restoration. All of the tests are programmed in
Matlab R2014a and they were run on a computer Intel (R) Core(TM) i7-6700 with a 2.50
GHz CPU and 4.00 GB of RAM.

1.Normal Unconstrained Optimization Problems.

The numerical performance of the RZB and the Fletcher-Reeves algorithms is evaluated in
this section. Algorithms are implemented in Fortran language. The following parameters are
used in our implementation § = 0.001 and o = 0.9. We used the termination criterion
as||gj+1|| < 107C.

The performance profile by Andrei [21,] is used to display the performance of the
algorithms. The number of iterations, the number of objective function evaluations and the
number of the restart are denoted by NI, NR and NF, respectively, and are used to compare
numerical performance.

Throughout the numerical behavior comparisons with FR-CG, this method is shown to be
efficient for the test problems.
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Table 1: Using multiple test functions to compare different conjugate gradient algorithms
with n=100.

FR algorithm RZB algorithm

P. No. n NI NR NF NI NR NF
1 100 19 12 35 18 9 34
2 100 47 18 93 38 21 80
3 100 43 18 88 32 16 71
4 100 32 15 52 13 7 26
5 100 10 6 27 13 8 31
6 100 95 33 150 100 27 151
7 100 25 11 43 22 6 44
8 100 32 13 64 12 6 25
9 100 15 6 25 18 10 29
10 100 37 8 67 44 19 65
11 100 12 5 25 10 6 19
12 100 15 9 31 8 6 17
13 100 89 32 174 71 33 169
14 100 124 41 231 54 8 98
15 100 71 35 110 32 13 60
16 100 101 40 217 79 50 174
17 100 108 41 174 103 32 157
18 100 11 6 26 10 7 24
19 100 32 12 65 24 13 56
20 100 130 49 196 111 36 170
21 100 121 65 218 90 30 139
22 100 74 21 123 83 25 129
23 100 69 50 1202 31 15 179
24 100 23 11 45 21 12 40
25 100 20 11 33 12 7 21
26 100 49 22 80 14 10 25
27 100 12 7 25 7 5 15
28 100 122 62 156 12 8 21
29 100 112 55 147 38 13 59
30 100 11 5 23 6 3 13

Total 1661 719 3945 1126 461 2141
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Table 2:Using multiple test functions to compare different conjugate gradient algorithms with
n=1000.

FR algorithm RZB algorithm
P. No. n NI NR NF NI NR NF
1 1000 38 23 65 34 19 62
2 1000 78 45 131 34 18 76
3 1000 46 19 92 35 20 79
4 1000 22 10 42 14 8 27
5 1000 24 16 191 22 13 47
6 1000 349 95 568 337 86 522
7 1000 46 28 741 1000 28 15
8 1000 77 46 129 13 7 26
9 1000 127 117 3531 112 104 3077
10 1000 73 27 115 69 30 108
11 1000 14 6 29 11 6 21
12 1000 8 6 17 7 5 15
13 1000 107 40 211 116 76 514
14 1000 445 196 711 173 33 303
15 1000 47 15 84 28 10 54
16 1000 101 40 214 77 49 167
17 1000 313 76 520 367 109 579
18 1000 16 12 125 8 6 21
19 1000 53 22 116 35 20 85
20 1000 364 119 593 353 108 552
21 1000 345 169 634 251 68 399
22 1000 370 88 616 304 74 506
23 1000 98 82 1967 39 24 397
24 1000 27 11 55 20 12 45
25 1000 19 11 35 9 6 18
26 1000 129 67 166 12 9 23
27 1000 11 7 23 7 5 15
28 1000 130 66 166 12 8 23
29 1000 110 54 145 31 9 54
30 1000 11 5 23 6 3 13
Total 3598 1518 12055 3536 973 7843

Problems-numbers indicant for:“1. is the Trigonometric, 2. is the Extended Rosenbrock, 3.
is the Extended-White & Holst, 4. is the Extended-Beale, 5. is the Penalty, 6. is the Perturbed-
Quadratic, 7. is the Generalized-Tridiagonal 1, 8. is Extended-Tridiagonal 1, 9. is the
Extended Three Expo Terms, 10. is the Generalized Tridiagonal 2,11 is the Extended-
Himmelblau, 12. is the Extended-PSC1,13. is the Extended-Maratos, 14. is the Quadratic-
Diagonal-Perturbed, 15. is the Extended-Wood, 16. is the Extended-Hiebert, 17. is the-
Quadratic QF1,18 is the Extended-Quadratic-Penalty QP1, 19. is Extended-Quadratic Penalty
QP2, 20. is the Quadratic QF2, 21. is the DIXMAANE (CUTE), 22. is the Partial Perturbed-
Quadratic, 23. is the EDENSCH-(CUTE), 24. is the LIARWHD-(CUTE), 25. is the
DENSCHNA-(CUTE),26. is the DENSCHNC-(CUTE), 27. is the-DENSCHNB-(CUTE), 28.
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is the Extended-Block-Diagonal, 29.is the Generalized-quartic GQ2, 30. is the HIMMELBH-
(CUTE)”.

2. Image Restoration Problems.

The aforementioned algorithms will be used to solve issues with picture restoration in this
subsection. Here, the impulse noise-damaged original pictures are treated as objects. The
results of applying the suggested BNN and FR methods on the test pictures, namely, Lena,
House, Elaine and Cameraman are provided in Table 3 in order to assess how well algorithms
work in practice. The technique was applied using Matlab, with the following stopping
criteria:

VeIl < 107 and [If (ol 1074 A+ 1@l . (36)
k

More details can be found in [1], [22]. There is modern research in the field of
mathematics, see [23 -24].

The pictures that were put to the test are shown in Table 1, and the precise numerical
results of our testing are presented in the format NI/NF/PSNR, where NI, NF, and PSNR
stand for the number of iterations, function evaluations, and peak signal to noise ratio, or
PSNR (peak signal to noise ratio), which is defined as:

2552
PSNR = 10log,o 1 = . e (37)

- ro_ % )2
MIN Zi,j(ui,j u; ;)
where the restored and original pictures' pixel values are shown by u/; and u;

ij?

respectively

Table 3: Performance of FR and RZB methods.

Noise FR Method RZB-Method
Image level r
(%) NI NF PSNR (dB) NI NF PSNR (dB)
50 82 153 30.5529 57 102 30.6121
Lena 70 81 155 27.4824 59 100 27.3595
90 108 211 22.8583 63 99 22.7329
50 52 53 30.6845 38 67 34.9191
House 70 63 116 31.2564 46 74 31.0837
90 111 214 25.287 52 82 25.1628
50 35 36 33.9129 31 51 33.9109
Elaine 70 38 39 31.864 36 52 31.8718
90 65 114 28.2019 41 77 28.1123
50 59 87 35.5359 40 71 35.5251
Cameraman 70 78 142 30.6259 42 75 30.6805
90 121 236 24.3962 56 95 24,7723
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Figure 2: Demonstratesthe results of methods FR and RZB of 256 * 256 House image.
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Figure 3: Demonstratesthe results of methods FR and RZB of 256 * 256 Elaine image.
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Figure 4: Demonstrates theresults of methods FR and RZB of 256 * 256 Cameraman image.
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5. Conclusions

Using the second-order Taylor expansion for derivation a new formulae conjugate
gradient. The revised formulas retained the goal function value but it is decreased the
comparison to the conjugate gradient approaches. The global convergence results of the
formula are discussed and numerical results are presented to show that this formula is very
efficient. Experimental results in Table (2) confirm that the new algorithm is superior to the
standard FR method. It is applied to remove burst noise in images, and it is also proved
effective by compared with the standard FR method too.

References

[1] B. A. Hassan and H. M. Sadiq, “A new formula on the conjugate gradient method for removing
impulse noise images,” Vestn. YuUrGU. Ser. Mat. Model. Progr, vol. 15, no. 4, pp. 123-130,
2022, doi: doi.org/10.14529/mmp220412.

[2] W.J. Leong and M. A. Hassan, “Scaled memoryless symmetric rank one method for large-scale
optimization,” Appl. Math. Comput., vol. 218, no. 2, pp. 413-418, Sep. 2011, doi:
10.1016/j.amc.2011.05.080.

[3] P. Wolfe, “Convergence Conditions for Ascent Methods,” SIAM Rev., vol. 11, no. 2, pp. 226—
235, Apr. 1969, doi: 10.1137/1011036.

[4] P. Wolfe, “Convergence Conditions for Ascent Methods. II: Some Corrections,” SIAM Rev., vol.
13, no. 2, pp. 185-188, Apr. 1971, doi: 10.1137/1013035.

[5] C. Wu and G. Chen, “New type of conjugate gradient algorithms for unconstrained optimization
problems,” J. Syst. Eng. Electron., vol. 21, no. 6, pp. 1000-1007, Dec. 2010, doi:
10.3969/j.issn.1004-4132.2010.06.012.

[6] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong global
convergence property,” SIAM J. Optim., vol. 10, no. 1, pp. 177-182, 1999, doi:
10.1137/S1052623497318992.

[7]1 R. Fletcher, “Function minimization by conjugate gradients,” Comput. J., vol. 7, no. 2, pp. 149—
154, Feb. 1964, doi: 10.1093/comjnl/7.2.149.

[8] C. Witzgall and R. Fletcher, “Practical Methods of Optimization,” Math. Comput., vol. 53, no.
188, p. 768, Oct. 1989, doi: 10.2307/2008742.

[9] Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms, part 1: Theory,” J.
Optim. Theory Appl., vol. 69, no. 1, pp. 129-137, 1991, doi: 10.1007/BF00940464.

[10] E. Polak and G. Ribiere, “Note sur la convergence de méthodes de directions conjuguées,” Rev.
frangaise d’informatique Rech. opérationnelle. Série rouge, vol. 3, no. 16, pp. 35-43, 1969, doi:
10.1051/m2an/196903r100351.

[11] B. A. Hassan, K. Muangchoo, F. Alfara, A. H. Ibrahim, and A. B. Abubakar, “An improved
quasi-Newton equation on the quasi-Newton methods for unconstrained optimizations,” Indones.
J. Electr. Eng. Comput. Sci, wvol. 22, no. 2, pp. 389-397, 2020, doi:
10.11591/ijeecs.v22.i2.pp389-397.

[12] D. F. Shanno, “Conjugate Gradient Methods with Inexact Searches,” Math. Oper. Res., vol. 3, no.
3, pp. 244-256, Aug. 1978, doi: 10.1287/moor.3.3.244.

[13] G. Zhou, “A descent algorithm without line search for unconstrained optimization,” Appl. Math.
Comput., vol. 215, no. 7, pp. 2528-2533, Dec. 2009, doi: 10.1016/j.amc.2009.08.058

[14] A. Hassan Ibrahim, P. Kumam, B. A. Hassan, A. Bala Abubakar, and J. Abubakar, “A derivative-
free three-term Hestenes—Stiefel type method for constrained nonlinear equations and image
restoration,” Int. J. Comput. Math., vol. 99, no. 5, pp. 1041-1065, May 2022, doi:
10.1080/00207160.2021.1946043.

[15] I. M. Sulaiman, N. A. Bakar, M. Mamat, B. A. Hassan, M. Malik, and A. M. Ahmed, “A new
hybrid conjugate gradient algorithm for optimization models and its application to regression
analysis,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 2, p. 1100, Aug. 2021, doi:
10.11591/ijeecs.v23.i2.pp1100-1109.

[16] B. A. Hassan and R. M. Sulaiman, “A new class of self-scaling for quasi-newton method based
on the quadratic model,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1830, Mar. 2021,
doi: 10.11591/ijeecs.v21.i3.pp1830-1836.

[17] H. N. Jabbar and B. A. Hassan, “Two-versions of descent conjugate gradient methods for large-

5193



Sulaiman et al. Iragi Journal of Science, 2024, Vol. 65, No. 9, pp: 5182-5194

scale unconstrained optimization,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 3, p. 1643,
Jun. 2021, doi: 10.11591/ijeecs.v22.i3.pp1643-1649.

[18] B. A. Hassan, “A modified quasi-Newton methods for unconstrained optimization,” Ital. J. Pure
Appl. Math., no. 42, pp. 504-511, 2019.

[19] S. Babaie Kafaki, “An eigenvalue study on the sufficient descent property of a modified Polak-
Ribiére-Polyak conjugate gradient method,” Bull. Iran. Math. Soc., vol. 40, no. 1, 2014.

[20] Y. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y. Yuan, “Convergence Properties of Nonlinear
Conjugate Gradient Methods,” SIAM J. Optim., vol. 10, no. 2, pp. 345-358, Jan. 2000, doi:
10.1137/S1052623494268443.

[21] N. Andrei, “An Unconstrained Optimization Test Functions Collection,” Adv. Model. Optim., vol.
10, no. 1, pp. 147-161, 2008.

[22] B. A. Hassan and H. Alashoor, “A New Type Coefficient Conjugate on the Gradient Methods for
Impulse Noise Removal in Images,” Eur. J. Pure Appl. Math., vol. 15, no. 4, pp. 2043-2053, Oct.
2022, doi: 10.29020/nybg.ejpam.v15i4.4579.

[23] S. Makki, Emad Bakr, “Use Algebra of Group Action to Find Special Types of Caps in PG(3,13)
,” Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 492-5001 DOI: 10.24996/ijs.2023.64.8.31.

[24] O. Mahdi, A. Majeed, “Computational methods for solving nonlinear ordinary differential
equations arising in engineering and applied sciences,” Iragi Journal of Science, 2023, Vol. 64,
No. 8, pp: 4970-4991 DOI: 10.24996/ijs.2023.64.8.30.

5194



