

ISSN: 0067-2904

I-Nearly Primary Submodules

Adwia J. Abdul-AlKalik
Directorate General of Education In Diyala, Ministry of Education, Republic of Iraq

Abstract

Let R be a commutative ring with identity and I be a fixed ideal of R and M be an unitary R-module. A proper submodule N of M is said to be I-nearly primary if for each $a \in R, x \in M$ with $a x \in N-I N$, then either $x \in N+J(M)$ or $a \in$ $\sqrt{[N+J(M): M]}$.

Keywords: Primary submodules, weakly primary submodules, nearly primary submodules, I- primary submodules.
I-المقاسات الجزئية الابتدائية تقريبا من النمط I

> المديرية العامة لتربية دياللى، وزارة عبد الخالتق عبية، العراق

الخلاصة

$$
\begin{aligned}
& \text { لتكن R حلقة ابدالية ذات عنصرمحايد، وليكن I مثالي من R M R مقاسا احاديا معرفا على R. يقال ان } \\
& \text { المقاس الجزئي الفعلي N من M هو مقاسا جزئيا ابتدائيا تقريبا من النمط-I اذ كان } a \text { ينتمي الى R، }
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \sqrt{[M+J(M): M]}] \text { Jاو } a \text { ينتمي الى المثالى } \text { (M) }
\end{aligned}
$$

Introduction

Throughout this paper, R represents an associative ring with nonzero identity and I a fixed ideal of R and M be a unitary R-module. A proper submodule N of M is called a primary submodule if whenever $r \in R$ and $x \in M$ with $r x \in N$ implies that $r \in \sqrt{[N: M]}$ or $x \in N$, [1]. Then, many generalizations of primary submodules were studied such as weakly primary submodules in [2], ψ primary submodules in [3], and nearly primary submodules in [4]. The authors in [5] introducing the notions I - prime and I - primary submodules. A proper submodule N of M is called I - prime submodule if $r x \in N-I N$ for all $r \in R, x \in M$ implies that either $r \in[N: M]$ or $x \in N$. A proper submodule N of M is called I - primary submodule if $r x \in N-I N$ for all $r \in R, x \in M$ implies that either $r \in \sqrt{[N: M]}$ or $x \in N$. In this paper, we define and study I - nearly primary submodules which are generalizations of weakly primary submodules and nearly primary submodules to I - nearly primary submodules. We generalize some basic properties of primary and nearly primary to I - nearly primary submodules and give some characterizations of I - nearly primary submodules.

1- Main result

Definition 1.1:Let I be an ideal of R and M an R-module. A proper submodule N of M is called I nearly primary submodule, if $r x \in N-I N f o r$ all $r \in R, x \in M$ implies that either $x \in N+J(M)$ or $r^{n} \in[N+J(M): M]$ for some $n \in Z_{+}$, where $J(M)$ is the Jacobson radical of M.

For example: Consider the ring of integers Z and the Z -module Z_{12}. Take $\mathrm{I}=4 \mathrm{Z}$ as an ideal of Z and $\mathrm{N}=(\overline{4})$ be a submodule of Z_{12} generated by
4. Then N is an I-nearly primary submodule of Z_{12} since $N-I N=(\overline{4})-4 Z .(\overline{4})=(\overline{4})-(\overline{4})=\emptyset$.

Proposition 1.2.

1)Let N, K be two are submodules of a R-module M. If N is I-nearly primary in M such that $J(M) \subseteq$ $J(K)$, then N is I-nearly primary in K.
2) $I_{1} \subseteq I_{2}$. Then N is I_{1} - nearly primary implies N is I_{2} - nearly primary.

Proof (1): Suppose that $a \in R$ and $m \in K$ with $a m \in N-I N$. Since N is I-nearly primary submodule of M, so either $m \in N+J(M)$ or $a^{n} \in[N+J(M): M]$ for some $n \in Z_{+}$. But $J(M) \subsetneq J(K)$, so either $m \in N+J(M)$ or $a^{n} \in[N+J(M): M]$. Therefore N is I-nearly primary submodule of K.
2: Suppose that N is I_{1} - nearly primary. Let $a \in R, m \in M$ with $a m \in N-I_{2} N$ Since $I_{1} \subseteq I_{2}, N-$ $I_{2} N \subseteq N-I_{1} N$. Then $a m \in N-I_{1} N$. But N is I_{1} - nearly primary. So $m \in N+J(M)$ or $a^{n} \in[N+$ $J(M): M]$ for some $n \in Z_{+}$. Thus N is I_{2} - nearly primary.
The following theorem gives a useful characterization for I-nearly primarysubmodule.
Theorem 1.3 : Let N a proper submodule of an R-module M. Then N is I-nearly primary submodule in M if and only if for any ideal J of R and submodule K of M such that $J K \subseteq N-I N$, we have $J \subseteq \sqrt{[N+J(M): M]}$ or $K \subseteq N+J(M)$.
Proof: Suppose that N is I-nearly primary submodule of M, and $J K \subseteq N-I N$ for some ideal J of R and submodule K of M. If $J \nsubseteq \sqrt{[N+J(M): M]}$ and $K \nsubseteq N+J(M)$, so there exists $r \in J-$ $\sqrt{[N+J(M): M]}$ and $x \in K-[N+J(M)]$ such that $r x \in N-I N$. By assuming N is I-nearly primary submodule in M, either $x \in N+J(M)$ or $r \in \sqrt{[N+J(M): M]}$ which is a contradiction. Hence $J \subseteq[N+J(M): M]$ or $K \subseteq N+J(M)$. Conversely suppose that $r m \in N-I N$ for $r \in$ R and $m \in M$. Then $(r)(m)=(r m) \subseteq N-I N$. So by assumption, $(r) \subseteq \sqrt{[N+J(M): M]}$ or $(m) \subseteq N+J(M)$. Therefore $r \in \sqrt{[N+J(M): M]}$ or $m \in N+J(M)$. Thus N is I-nearly primary submodule of M.

Recall that a subset S of a ring R is called multiplicatively closed subset of R if $1 \in S$ and $a b \in S$ for every $a, b \in S$. Now, let M be a R-module and S be a multiplicatively closed subset of R and let R_{s} be the set of all fractional r / s where $r \in R$ and $s \in S$ and M_{s} be the set of all fractional x / s where $x \in M$ and $s \in S$. For $x_{1}, x_{2} \in M$ and $s_{1}, s_{2} \in S, x_{1} / s_{1}=x_{2} / s_{2}$ if and only if there exists $t \in S$ such that $t\left(s_{1} x_{2}-s_{2} x_{1}\right)=0$.
So, we can make M_{s} in to R_{s}-module by setting $x / s+y / t=(t x+s y) / s t$ and $r / t . x / s=$ $r x / t s$ for every $x, y \in M$ and $s, t \in S, r \in R$. So M_{s} is he module of fractions.
Recall that if N is a submodule of an $R-$ module M and S be a multiplicatively closed subset of R so $N_{s}=\{n / s: n \in N, s \in S\}$ be a submodule of the $R_{s}-$ module M_{s}, see [6].

The quotient and localization of primary submodules are again primary submodules. But in case of I- nearly primary submodules, we give a condition under which the localization becomes true as we see in the following theorem.
Theorem 1.4: If N is an I-nearly primary submodule of an R-module M. Then

1) Suppose that $N_{s} \neq M_{s}$ and (IN)s $\subseteq I s N s$. Then N_{s} is an I_{S}-nearly primary in M_{S}.
2) Suppose that $\mathrm{K} \subseteq \mathrm{N}$ and $\mathrm{N} / \mathrm{K}+\mathrm{J}(M / \mathrm{K})=\mathrm{N}+\mathrm{J}(\mathrm{M}) / \mathrm{K}$, then N / K is an I-nearly primary submodule of M / K.
Proof .1: For all $r / s \in R_{s}, x / t \in M s$, let $r / s . x / t \in N s-I s N s \subseteq N s-(I N) s=(N-I N) s$. Thenrx/st $=m / u$ for $m \in N-I N$ and $u \in S$. So for some $v \in S$, vurx $=v s t m \in N-I N$. As N is I-nearly primary submodule, hence either $\operatorname{vur} \in \sqrt{[N+J(M): M]}$ or $x \in N+J(M)$. So ruv/ $\operatorname{suv}=r / s \in \sqrt{[N+J(M): M]_{s}}=\sqrt{\left[N_{s}+J\left(M_{s}\right): M_{s}\right]}$ by [7] or $x / t \in[N+J(M)]_{s}=N_{s}+J\left(M_{s}\right)$. Hence N_{s} is I_{s}-nearly primary submodule of an R_{s} module $M s$.
Proof.2: Let $a \in R, m \in M$ such that $a(m+K)=a m+K \in N / K-I(N / K)$. Then $a m+K \in[N-$ $I N] / K$. So $a m \in N-I N$. Since N is I-nearly primary submodule of M, so either $m \in N+J(\mathrm{M})$ or $a \in \sqrt{[N+J(M): M]}$. Therefore
$m+K \in[N+J(M) / K=N / K+J(M / K)$ or $a \in \sqrt{[N / K+J(M / K): M / K]}$. Therefore N / K is I nearly primary submodule of M / K. Therefore $m+K \in[N+J(M)] / K=N / K+J(M / K)$ or $a \in$ $\sqrt{[N / K+J(M / K): M / K]}$. Therefore N / K is I - nearly primary submodule of M / K.

Theorem 1.5: If N is I-nearly primary in M and $[N: M] N \nsubseteq I N$, then N is a nearly primarysubmodule M.

Proof: Suppose that $[N: M] N \nsubseteq I N$, we show that N is a nearly primary. Let $a \in R$ and $y \in M$ such that $a y \in N$. If $a y \notin I N$, since N is I - nearly primary gives $y \in N+J(M)$ or $a \in \sqrt{[N+J(M): M]}$. So let $a y \in I N$. Now, assume that $a N \nsubseteq I N$, let $a n \notin I N$ where $n \in N$.Then $a(y+n) \in N-I N$, so $a \in \sqrt{[N+J(M): M]}$ or $(y+n) \in N+J(M)$. Hence $a \in \sqrt{[N+J(M): M]}$ ory $\in N+J(M)$. So we can assume that $a N \subseteq I N$. Assume that $y[N: M] \nsubseteq I N$. So $\exists b \in[N: M]$ andyb $\notin I N$. So $(a+b) y \in$ N. Therefore $y \in N+J(M)$ or $(a+b) \in \sqrt{[N+J(M): M]}$. Then $y \in N+J(M)$ or $a \in$ $\sqrt{[N+J(M): M]}$. So we can assume that $y[N: M] \subsetneq I N$. Since $[N: M] N \nsubseteq I N$, there exist $r \in$ $[N: M]$ and $x \in N$ with $r x \notin I N$. Then $(a+r)(y+x) \in N-I N$. Then $(a+r) \in \sqrt{[N+J(M): M]}$ or $(y+x) \in N+J(M)$. Hence $a \in \sqrt{[N+J(M): M]}$ or $y \in N+J(M)$. So N is a nearly primary submodule M.
Corollary 1.6: If N is 0 - nearly primaryin M and $[N: M] N \neq 0$, then N is an nearly primary submodule of M.
Propostion 1.7: Let N be a submodule of an $R-$ module M.
1 - If N is I-nearly primary and $J(M) \subseteq N$, then N is a I-primary .
2- If M is a local module and N is a maximal I - nearly primary in M, then N is a I - primary in M.
3- If M is an semisimple module and N is a I - nearly primaryin M, then N is a I - primary in M.
Proof (1): The proof is trivial.
(2). Let $a \in R, m \in K$ such that $a m \in N-I N$. Since N is I-nearly primary in M, so eitherm $\in N+$ $J(M)$ or $a \in \sqrt{[N+J(M): M]}$. Since N is a maximal andMis alocal, so $J(M)=N$ by [8].Hence eitherm $\in N$ or $a \in \sqrt{[N: M]}$. Therefore N is I-primary in M.
(3).Suppose $a \in R, m \in K$ suchthat $a m \in N-I N$. Since N is I-nearly primaryin M, so either $m \in N+J(M)$ or $a \in \sqrt{[N+J(M): M]}$. But M is semisimple, so $J(M)=0$ by [9]. Then either $m \in N$ or $a \in \sqrt{[N: M]}$. Therefore N is I-primary in M.
Theorem 1.8: Let M be an R - module and N be a submodule of M.Then, the following statements are equivalent:
(1) N is a I-nearly primary in M .
(2) $[\mathrm{N}: \mathrm{r}]=[\mathrm{N}+\mathrm{J}(\mathrm{M})] \cup[\mathrm{IN}: r]$ for each $r \in R \backslash \sqrt{[N+J(M): M}]$
(3) $[\mathrm{N}: r]=\mathrm{N}+\mathrm{J}(\mathrm{M})$ or $[\mathrm{N}: r]=[\mathrm{IN}: r]$ for each $r \in R \backslash \sqrt{N+J(M): M]}$.

Proof:

(1) \rightarrow (2): Let $r \notin \sqrt{[N+J(M): M]}$ and $m \in[\mathrm{~N}: \mathrm{r}]$. So $r m \in N$. If $\quad r m \notin I N$. So $m \in N+$ $J(M)$, since N is I-nearly primary in M. If $r m \in I N$,then $m \in[\mathrm{IN}: r]$. So $[N: r] \subsetneq[\mathrm{N}+\mathrm{J}(\mathrm{M})] \cup$ [IN: r]. Now since IN $\subsetneq \mathrm{N}$, the other inclusion is hold.
$(2) \rightarrow(3)$: Because if a submodule is a union of two submodules, then it is equal to one of them.
(3) \rightarrow (1): Suppose $r m \in N-I N$ for each $r \in R, m \in M$. If $\mathrm{r} \notin \sqrt{[\mathrm{N}+\mathrm{J}(\mathrm{M}): \mathrm{M}]}$, then. Since $r m \notin$ $I N$, so $m \notin[I N: r]$. But $r m \in N$, so $m \in[N: r]$. Hence $[N: r]=N+J(M)$. Therefore $m \in N+\mathrm{J}(\mathrm{M})$. Thus N is an I-nearly prime submodule of M .
Theorem 1.9: Suppose M_{1} be an R_{1}-module and M_{2} be an R_{2}-module. Then we have:
(1) If N_{1} is an I_{1} - nearly primary submodule of M_{1} such that $I N_{1} \times M_{2} \subsetneq I\left(N_{1} \times M_{2}\right)$ and $J\left(M_{1}\right) \times$ $M_{2} \subsetneq J\left(M_{1} \times M_{2}\right)$,then $N_{1} \times M_{2}$ is an I - nearly primary in $M_{1} \times M_{2}$.
(2) If N_{2} is an $I_{2^{-}}$nearly primary in M_{2} such that $I N_{2} \times M_{1} \subsetneq I\left(N_{2} \times M_{1}\right)$ and $J\left(M_{2}\right) \times M_{1} \subsetneq$ $J\left(M_{2} \times M_{1}\right)$, then $M_{1} \times N_{2}$ is an I - nearly primary in $M_{1} \times M_{2}$
Proof:1) Assume that N_{1} is an I_{1} - nearly primaryin M_{1}. Suppose $(a, b) \in R_{1} \times R_{2},\left(m_{1}, m_{2}\right) \in$ M with $(a, b)\left(m_{1}, m_{2}\right)=\left(a m_{1}, b m_{2}\right) \in N_{1} \times M_{2}-I\left(N_{1} \times M_{2}\right)$, and $N_{1} \times M_{2}-I\left(N_{1} \times M_{2}\right) \subsetneq N_{1} \times$ $M_{2}-I N_{1} \times M_{2}=\left(N_{1}-I N_{1}\right) \times M_{2}$. We have $a m_{1} \in N_{1}-I N_{1}$ but N_{1} is I_{1} - nearly primary submodule of M_{1}. Then $a^{n} \in\left[N_{1}+J\left(M_{1}\right): M_{1}\right]$ for some positive integer n or $m_{1} \in N_{1}+J\left(M_{1}\right)$. So $(a, b)^{n}=$ $\left(a^{n}, b^{n}\right) \in\left[N_{1}+J\left(M_{1}\right): M_{1}\right] \times\left(M_{2}: M_{2}\right)=\left[\left(N_{1}+J\left(M_{1}\right)\right) \times M_{2}:_{R_{1} \times R_{1}} M_{1} \times M_{2}\right]=\left[N_{1} \times M_{2}+\right.$ $\left.J\left(M_{1}\right) \times M_{2}:_{R_{1} \times R_{1}} M_{1} \times M_{2}\right] \subseteq\left[N_{1} \times M_{2}+J\left(M_{1} \times M_{2}\right):_{R_{1} \times R_{1}} M_{1} \times M_{2}\right]$ forsome
$n \in Z_{+}$or $\left(m_{1}, m_{2}\right) \in\left[N_{1}+J\left(M_{1}\right)\right] \times M_{2}=N_{1} \times M_{2}+J\left(M_{1}\right) \times M_{2} \subseteq N_{1} \times M_{2}+J\left(M_{1} \times M_{2}\right)$.
Hence $N_{1} \times M_{2}$ is an I-nearly primary submodule of $M_{1} \times M_{2}$.
Proposition 1.10: Let I_{1} and I_{2} ideals of R_{1} and R_{2} respectively with $I=I_{1} \times I_{2}$. Then :

1. If N_{1}, N_{2} submodules of M_{1} and M_{2} respectively such that $\mathrm{I}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}}=N_{i}$ for $i=1,2$, then $N_{1} \times N_{2}$ is an I-nearly primary in $M_{1} \times M_{2}$.
2. If N_{1} is primary in M_{1}, then $N_{1} \times M_{2}$ is an I-nearly primary in $M_{1} \times M_{2}$.
3. If N_{1} is an I_{1}-nearly primary in M_{1} and $I_{2} M_{2}=M_{2}$, then $N_{1} \times M_{2}$ is an I-nearly primary in $M_{1} \times M_{2}$.
4. If N_{2} is a primary in M_{2}, then $M_{1} \times N_{2}$ is an I-nearly primary in $M_{1} \times M_{2}$.
5. If N_{2} is an I_{2}-nearly primary in M_{2} and $\mathrm{I}_{1} \mathrm{M}_{1}=M_{1}$.

Proof 1. Since $I_{1} N_{1}=N_{1}$ and $I_{2} N_{2}=N_{2}$. Then $I_{1} N_{1} \times I_{2} N_{2}=\left(I_{1} \times I_{2}\right)\left(N_{1} \times N_{2}\right)=I\left(N_{1} \times N_{2}\right)=$ $N_{1} \times N_{2}$. So $N_{1} \times N_{2}-I\left(N_{1} \times N_{2}\right)=\emptyset$. Thus there is nothing to prove.
2. Let N_{1} be a primary in M_{1}. So $N_{1} \times M_{2}$ is a primary in $M_{1} \times M_{2}$, [5] and hence I - nearly primary $\operatorname{in} M_{1} \times M_{2}$.
3. Let N_{1} is an I_{1} - nearly primary in M_{1} such that $I_{2} M_{2}=M_{2}$. Suppose that $\left(r_{1}, r_{2}\right) \in R,\left(m_{1}, m_{2}\right) \in$ M and $\quad\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right) \in N_{1} \times M_{2}-I\left(N_{1} \times M_{2}\right)=N_{1} \times M_{2}-\left(I_{1} \times I_{2}\right)\left(N_{1} \times\right.$ $\left.M_{2}\right)=\left(N_{1} \times M_{2}-\left(I_{1} N_{1} \times I_{2} M_{2}\right)=\left(N_{1} \times M_{2}-\left(I_{1} N_{1} \times M_{2}\right)=\left(N_{1}-I N_{1}\right) \times M_{2}\right.\right.$. Then $r_{1} m_{1} \in$ $N_{1}-I N_{1}$ and N_{1} is I_{1} - nearly primary submodule of M_{1}, so $r_{1}{ }^{n} \in\left[N_{1}+J\left(M_{1}\right): M_{1}\right]$ for some $n \in$ Z_{+}or $m_{1} \in N_{1}+J\left(M_{1}\right) \quad . \quad$ Therefore $\left(r_{1}, r_{2}\right)^{n}=\left(r_{1}{ }^{n}, r_{2}{ }^{n}\right) \in\left[N_{1}+J\left(M_{1}\right): M_{1}\right] \times R_{2}=\left[\left(N_{1}+\right.\right.$ $\left.\left.J\left(M_{1}\right)\right) \times M_{2}:_{R_{1} \times R_{1}} M_{1} \times M_{2}\right]=\left[N_{1} \times M_{2}+J\left(M_{1}\right) \times M_{2}:_{R_{1} \times R_{1}} M_{1} \times M_{2}\right] \subseteq\left[N_{1} \times M_{2}+J\left(M_{1} \times\right.\right.$ $\left.\left.M_{2}\right):_{R_{1} \times R_{1}} M_{1} \times M_{2}\right]$ for some $n \in Z_{+}$or $\left(m_{1}, m_{2}\right) \in\left[N_{1}+J\left(M_{1}\right)\right] \times M_{2}=N_{1} \times M_{2}+J\left(M_{1}\right) \times$ $M_{2} \subseteq N_{1} \times M_{2}+J\left(M_{1} \times M_{2}\right)$. So $N_{1} \times M_{2}$ is an I-nearly primaryin $M_{1} \times M_{2}$.
The proof of (3) and (4) is similar to part (2) and (3) respectively.
Theorem 1.11. Let M be an R-module and let N be a proper submodule of M such that $N / I N+$ $J(M / I N)=N+J(M) / I N$. Then N is an I-nearly primary in M iff $\mathrm{N} / \mathrm{INis}$ an 0 -nearly primary in M/IN.
Proof: $\Rightarrow)$ Let N is an I-nearly primary in M. Let $a \in R, m \in M$ such that $0 \neq a m+I N=a(m+$ $I N) \in N / I N$ in $M / I N$. Then $a m \in N-I N$. Since N is I-nearly primary submodule of M, so either $m \in N+J(M)$ or $a \in \sqrt{[N+J(M): M]}=\sqrt{[(N+J(M)) / I N: M / I N]}$. Therefore $m+I N \in[N+$ $J(M)] / I N=N / I N+J(M / I N)$ or $a \in \sqrt{[N / I N+J(M / I N): M / I N]}$. Hence $N / I N$ is $0-$ nearly primary in $M / I N$.
$\Longleftarrow)$ Let $N / I N$ is an 0-nearly primary in $M / I N$. Let $a \in R, m \in M$ such that $a m \in N-I N$. So
$0 \neq a(m+I N)=a m+I N \in N / I N$. But $N / I N$ is an 0 -nearly primary in $M / I N$. Thus $m+I N \in$
$N / I N+J(M / I N)=[N+J(M)] / I N$ or $a \in \sqrt{\left[\frac{\mathrm{~N}}{\mathrm{IN}}+\mathrm{J}\left(\frac{\mathrm{M}}{\mathrm{IN}}\right): \mathrm{M} / \mathrm{IN}\right]}=$
$\sqrt{[(N+J(M)) / I N: M / I N]}$ and som $\in N+J(M)$ or $a \in \sqrt{[N+J(M): M]}$. Hence N is an 0-nearly primary.
Theorem1.12: If M is an R-module and I is an ideal of R, then the following statements are equivalent.
1-IM is an I-nearly primary in M;
2- For $x \in[M-(I M+J(M))] ;[I M: x]=[I(I M): x] \cup \sqrt{[I M+J(M): M]}$;
3- For $x \in[M-(I M+J(M))],[I M: x]=[I(I M): x]$ or $[I M: x]=[I M+J(M): M]$.
4-If $J D \subsetneq I M-I(I M)$, then $J \subsetneq \sqrt{[I M+J(M): M]}$ or $D \subsetneq I M+J(M)$ for each an ideal J of R and submodule D of M.
Proof. (1) \rightarrow (2): Suppose that $x \in[M-(I M+J(M))], r \in[I M: x]$.So $r x \in I M$.If $r x \notin I(I M)$, but $I M$ is a I-nearly primary submodule and $x \notin I M+J(M)$, so $\mathrm{r} \in \sqrt{[\mathrm{IM}+\mathrm{J}(\mathrm{M}): \mathrm{M}]}$. If $r x \in I(I M)$, so $r \in[I(I M): x]$. So $[I M: x] \subsetneq \sqrt{[I M+J(M): M]} \cup[I(I M): x]$. On other hand, $I(I M) \subsetneq I M$, then $[I(I M): x] \subsetneq[I M: x] \cup \sqrt{[I M+J(M): M]}$.
$(2) \rightarrow(3)$: It is clear that because if an idea is a union of two ideals, then it is equal to one of them.
(3) \rightarrow (4): Suppose that $J D \subsetneq I M$. Let $J \nsubseteq \sqrt{[I M+J(M): M]}$ and $D \nsubseteq I M+J(M)$. Aussmex $\in D$. If $x \notin I M+J(M)$. So $J \subset \subsetneq I M$ and hence $J \subsetneq[I M: x]$. But $J \nsubseteq \sqrt{[I M+J(M): M]}$, so $J \subsetneq[I M: x]=$
[I(IM): $x]$.Thus, $x J \subsetneq I(I M)$, so $D J \subseteq I(I M)$. Suppose that $x \in I M$. let $y \in D-I M$. Then $(x+$ $y) \in D-I M$. Hence $y J \subseteq I(I M),(x+y) J \subseteq I(I M)$. Let $r \in J$. Then $x=(x+y) r-y r \in$ $I(I M)$. So $x J \subsetneq I(I M)$. Thus $J D \subsetneq I(I M)$.
(4) \rightarrow (1): By theorem (1.3).

Recall that a proper submodule L of an R -module M is called small in M if for every proper submodule K of $\mathrm{M}, \mathrm{L}+\mathrm{K} \neq M$, [9].
Theorem 1.13: Suppose N is a submodule of a R-module M_{1} and P is a submodule of an R module M_{2}.
1- If $N \oplus P$ is an I-nearly primary and small submodule of $M=M_{1} \oplus M_{2}$ such that $J\left(M_{1} \oplus M_{2}\right) \subsetneq$ $J\left(M_{1}\right) \oplus M_{2}$ and $J\left(M_{1} \oplus M_{2}\right) \subsetneq M_{1} \oplus J\left(M_{2}\right) \quad$, then N and P are I-nearly primary in M_{1}, M_{2} respectively.
2- Let N be a small submodule of an R-module M_{1} and $J\left(M_{1}\right)+M_{2}$ is small in M. If N is I-nearly primary, then $N \oplus M_{2}$ is an I-nearly primary submodule of $M=M_{1} \oplus M_{2}$.
Proof. (1). Let $a m_{1} \in N-I N$ where $a \in R, m_{1} \in M_{1}$. Then $\left.a\left(m_{1}, 0\right) \in(N \oplus P)-I N \oplus P\right)$. Since $N \oplus P$ is small, so $N+P \subsetneq J(M)$ by [9]. But $N+P$ is an I-nearly primary, then either $\left(m_{1}, 0\right) \in$ $N \oplus P+J(M)=J\left(M_{1}\right) \oplus J\left(M_{2}\right)$ and so $m_{1} \in J\left(M_{1}\right) \subsetneq N_{1}+J\left(M_{1}\right)$ or $\mathrm{a}^{n} \in[N \oplus P+J(M): M]$ $=[J(M): M] \subsetneq\left[J\left(M_{1}\right) \oplus M_{2}: M_{1} \oplus M_{2}\right] \quad$ for some $n \in Z_{+}$and so an $\in\left[J\left(M_{1}\right): M_{1}\right] \subsetneq[N+$ $\left.J\left(M_{1}\right): M_{1}\right]$.It follows that either $m_{1} \in N_{1}+J\left(M_{1}\right)$ or a ${ }^{n} \in\left[N+J\left(M_{1}\right): M_{1}\right]$. Hence N is I-nearly primary in M_{1}.
By a similar proof, N_{2} is an I-nearly primary in M_{2}.
(2). Let $a\left(m_{1}, m_{2}\right) \in\left(N \oplus M_{2}\right)-I\left(N \oplus M_{2}\right)$, where $a \in R,\left(m_{1}, m_{2}\right) \in M$. Then $a m_{1} \in N-I N$. Since N is an I-nearly primary and small in M_{1}, then either $m_{1} \in N+J\left(M_{1}\right)=J\left(M_{1}\right)$ or a ${ }^{n} \in[N+$ $J\left(M_{1}\right): M_{1}$] for some $n \in Z_{+}$by [9]. So that
If $m_{1} \in N+J\left(M_{1}\right)=J\left(M_{1}\right)$, then $\left(m_{1}, m_{2}\right) \in J\left(M_{1}\right) \oplus \mathrm{M}_{2} \subsetneq \mathrm{~J}(\mathrm{M}) \subsetneq N \oplus M_{2}+J(M)$.
If $\mathrm{a}^{n} \in\left[N+J\left(M_{1}\right): M_{1}\right]$ for some $n \in Z_{+}$and since N is small in M_{1}, then $\mathrm{a}^{n} \in\left[J\left(M_{1}\right) \oplus M_{2}\right.$: M]. But $J\left(M_{1}\right) \oplus M_{2}$ is small in M_{2}, so $\left[J\left(M_{1}\right) \oplus M_{2}: M\right] \subsetneq[J(M): M] \subsetneq\left[N \bigoplus M_{2}+J(M): M\right]$ by [10], so $N \oplus M_{2}$ is an I-nearly primarysubmodule of $M=M_{1} \oplus M_{2}$.
Corollary 1.14: Suppose that N and P are two submodules of an R-modules M_{1}, M_{2} respectively.
1- If $N \oplus P$ is an I-nearly primary in a hollow R-module $M_{1} \oplus M_{2}$ with $J\left(M_{1} \oplus M_{2}\right) \subsetneq J\left(M_{1}\right) \oplus$ M_{2} and $J\left(M_{1} \oplus M_{2}\right) \subsetneq \mathrm{M}_{1} \oplus J\left(M_{2}\right)$,then N and P are I-nearly primary in M_{1}, M_{2} respectively.
2-If N a I-nearly primary submodule of a hollow R-module M_{1} and M_{2} be any R-module such that $M=M_{1} \oplus M_{2}$ is a hollow R-module, then $N \oplus M_{2}$ is an I-nearly primary submodule of $M=M_{1} \oplus$ M_{2}.
Proof (1): Since $M_{1} \oplus M_{2}$ is a hollow module, so every submodules are small by [10] . Hence the result follows direct of $(1.13,1)$.
(2): Since M_{1}, M_{2} are two hollow modules, so every submodules of them are small by [10]. Hence the result follows direct of $(1.13,2)$.

References

1. Mohammed, L. J. 2005 . On primary submodules, M. Sc. Thesis, Unversity of Technology.
2. Atain, S. E. and Farzalipour, F.2005. On weakly primary ideals, Georgian Math. J., 3: 423-429.
3. Abdul-Alkalik, A. J. 2017. Some Generalizations of prime submodules, PhD. Thesis, University of Al-Mustansiriyah.
4. Hashem, M.B. 2016. Nearly semiprime submodules, M. Sc. Thesis, University of Baghded.
5. Akray, I. and Hussein, H. S. 2016. I-primary submodules. Math. AC, 1(7).
6. Larsen, M.D. and McCarlthy, P.J. 1971 , Multiplicative theory of ideals, New York: Academic Press.
7. Atiyah, M. F. and MacDonald, I.G. 1969. Introduction to commutative algebra, New York. Oxford. Universtiy Press.
8. Hirano, Y. and Mogani, I. 1986. On restricted anti-hopfian modules, Math. J. Okayama Universtiy, 28: 119-131.
9. Kash, F. 1982. Modules and rings, Academic Press, London.
10. Dung, N. V., Huynh, D. V., Smith, P. F. and Wishbauer, R. 1994. Extending modules. Pitman Reseaech Notes in Mathematics Series Longman Harlow.
