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Abstract

Let R be a commutative ring with identity and I be a fixed ideal of R and M be an
unitary R-module. A proper submodule N of M is said to be I-nearly primary if for
eacha € R, xe M with ax € N — IN,then either x e N + J(M) ora €

JIN +/(M):M].
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Introduction

Throughout this paper, R represents an associative ring with nonzero identity and I a fixed ideal of
R and M be a unitary R-module. A proper submodule N of M is called a primary submodule if
whenever reR and xeM with rxe N implies that re/[N:M]or xe N, [1]. Then, many
generalizations of primary submodules were studied such as weakly primary submodules in [2], -
primary submodules in [3], and nearly primary submodules in [4]. The authors in [5] introducing the
notions I- prime and |- primary submodules. A proper submodule N of M is called I- prime
submodule if rxeN —IN forallre R,xe M implies that eitherr € [N:M]orxeN. A proper
submodule N of M is called I- primary submodule if rxe N —IN forallre R, xe M implies that

eitherr € \/[N: M]or xe N . In this paper, we define and study /- nearly primary submodules which
are generalizations of weakly primary submodules and nearly primary submodules to I- nearly
primary submodules. We generalize some basic properties of primary and nearly primary to I- nearly
primary submodules and give some characterizations of I- nearly primary submodules.
1- Main result
Definition 1.1:Let I be an ideal of R and M an R—module. A proper submodule N of M is called I-
nearly primary submodule, if r x € N — INfor allr e R,x € M implies that either x € N + J(M) or
r™ € [N +J(M): M] for some n € Z,, where J(M) is the Jacobson radical of M.

For example: Consider the ring of integers Z and the Z-module Z,,. Take
| =4Z as an ideal of Z and N = (4) be a submodule of Z;, generated by
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4. Then N is an I-nearly primary submodule of Z;, since N — IN = (4) — 4Z. (4) =(4)—(4) = @.
Proposition 1.2.

1)Let N, K be two are submodules of a R-module M. If N is I-nearly primary in M such that J(M) ©
J(K), then N is I-nearly primary in K.

2)I; € I, . Then N is I, - nearly primary implies N is I,- nearly primary.

Proof (1): Suppose thata € R and m € K with am € N — IN. Since N is I-nearly primary submodule
of M, so either m € N + J(M)ora™ € [N + J(M): M] for some n € Z,. But J(M) < J(K), so either
me€ N+ J(M)ora™ € [N+ J(M): M]. Therefore N is I-nearly primary submodule of K.

2: Suppose that N is I; - nearly primary. Let a € R,m € M witham € N —I[,N Since I; € I,, N —
LN S N—LN.Thenam € N —I;N.But Nis I, - nearly primary. So m € N + J(M) ora™ € [N +
J(M): M] for some n € Z,. Thus N is I,- nearly primary.

The following theorem gives a useful characterization for I-nearly primarysubmodule.

Theorem 1.3 : Let N a proper submodule of an R—module M. Then N is I-nearly primary submodule

in M if and only if for any ideal J of R and submodule K of M such that JK € N - IN, we have

J<JIN+J(M):M]orK € N + J(M).

Proof: Suppose that N is I-nearly primary submodule of M, and JK € N - IN for some ideal J of R
and submodule K of M . If J&€ [N+ ]J(M):M]andK &€ N +J(M),s0 there exists r €] —
JIN +J(M):M]andx € K — [N + J(M)] such that rx € N- IN.By assuming N is I-nearly
primary submodule in M, either x € N + J(M) or r € \/[N + J(M): M]which is a contradiction.

Hence ] €S [N+ J(M):M] or K € N+ J(M). Conversely suppose that rm € N - INfor r €
Randm € M. Then (r)(m) = (rm) € N-IN. So by assumption, (r) < /[N +J(M): M] or
(m) € N +J(M). Thereforer € \/[N +J(M):M]Jor m € N + J(M). ThusN is I-nearly primary
submodule of M.

Recall that a subset S of a ring R is called multiplicatively closed subset of Rif 1€ Sandab €S
for every a,b € S. Now, let M be a R-module and S be a multiplicatively closed subset of Rand let
R be the set of all fractional r / swhere r € R and s € S and M, be the set of all fractional x / s
where x € M and s €S . For x;, x, € Mand sq,s, € S,x1/51= x,/s, if and only if there exists
t € Ssuchthat t (s;x,-s,x1) = 0.

So, we can make M, in to R;—module by setting x/s+ y /t= (tx+sy)/st andr /t . x /s =
rx /ts forevery x,y € Mands,t €S, r € R. S0 M; is he module of fractions.

Recall that if N is a submodule of an R—-module M and S be a multiplicatively closed subset of R so
Ny, = {n/s:n €N, s € S} be asubmodule of the R,— module M , see [6].

The quotient and localization of primary submodules are again primary submodules. But in case of
[- nearly primary submodules, we give a condition under which the localization becomes true as we
see in the following theorem.

Theorem 1.4: If N is an I-nearly primary submodule of an R-module M. Then

1) Suppose that N; # Mg and (IN)s cIsNs. Then Ny is an I -nearly primary in Ms.

2) Suppose that K< N and N/K+ J(M/K) = N+ ]J(M)/K, then N/K is an I-nearly primary
submodule of M/K.

Proof .1: For all r/s €Rg, x/t €Ms, let r/s.x/t € Ns—IsNs cNs— (IN)s = (N —IN)s.
Thenrx/st = m/u for me N —IN and u € S. So for some v € S,vurx = vstm e N —IN. As N

is I-nearly primary submodule, hence either vur € \/[N +J(M):M]or x € N + J(M) . So ruv/
suv =1/s € /[N +J(M): M]s = /[Ng + J(My): M¢]by [7] orx/t € [N +J(M)]s = Ny + (M) .
Hence N; is I;-nearly primary submodule of an R, _module Ms.

Proof.2: Leta € R,m € M suchthata(m+ K) =am+ K € N/K — I(N/K).Thenam + K € [N —
IN]/K.So am € N — IN. Since N is I-nearly primary submodule of M, so either m € N + J(M)

ora € \/[N + J(M): M]. Therefore

m+Ke[N+JM)/K=N/K+]JM/K)ora € \/[N/K +J(M/K):M/K].Therefore N/K is I-
nearly primary submodule of M /K. Therefore m+ K € [N +J(M)]/K =N/K+]J(M/K)ora €
JIN/K +J(M/K): M/K].Therefore N/K is I- nearly primary submodule of M/K.
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Theorem 1.5: If N is I-nearly primary in M and[N: M]N € IN, then N is a nearly primarysubmodule
M.
Proof: Suppose that [N: M]N & IN,we show that N is a nearly primary. Leta € R and y € M such

that ay € N. If ay € IN, since N is I- nearly primary givesy € N+ J(M) or a € /[N + J(M): M].
So let ay € IN. Now, assume that aN & IN,let an ¢ INwheren € N.Then a(y +n) € N —IN, s0
a € /[N+JM):M]Jor (y+n) € N+ J(M). Hencea € \/[N +J(M): MJory € N+ J(M). So we
can assume thataN < IN. Assume that y[N: M] & IN. So3b € [N: M] andyb & IN. So (a + b)y €
N. Therefore yeN+J(M) or (a+b) €/[N+]JM):M]. Then yeN+JM)or a €
VIN +J(M): M]. So we can assume that y[N:M] < IN. Since [N:M]N £ IN, there exist r €

[N:M]and xe N withrx € IN. Then (a +r)(y +x) € N—IN. Then (a +71r) €/[N+J(M): M] or

(y+x)EN+J(M). Hence a €. /[N+]J(M):M]Jor yeE N+J(M). So Nis a nearly primary
submodule M.
Corollary 1.6: If N is 0- nearly primaryin M and [N:M]N # 0, then N is an nearly primary
submodule of M.
Propostion 1.7: Let N be a submodule of an R — module M.
1- If N is I-nearly primary and /(M) € N, then N isa [-primary .
2- If M is a local module and N is a maximal I- nearly primary in M, then N isa I- primary in M.
3- If M is an semisimple module and N is a I- nearly primaryin M, then N is a I- primary in M.
Proof (1): The proof is trivial.
(2). Let a € R,m € K such that am € N — IN. Since N is [-nearly primary inM, so eitherm € N +
J(M) ora € /[N +J(M): M]. Since N is a maximal andMis alocal, so J(M) = N by [8].Hence

eitherm € N ora € \/[N: M].Therefore N is I-primary in M.
(3).Suppose a € R, m € Ksuchthatam € N —IN. Since N is I-nearly primaryin M, so either

meN+J(M) or a € /[N+J(M):M]. But Mis semisimple, so J(M) =0 by [9]. Then either
m € N ora € ,/[N: M].Therefore N is I-primary in M.

Theorem 1.8: Let Mbe an R- module and N be a submodule of M.Then, the following statements are
equivalent:

(1) N isaI-nearly primary in M .

(2) [N:r] = [N+ J(M)] U [IN: r] for each r € R\{/[N + J(M): M]

(3) [N:r] =N +]J(M)or [N:r] = [IN:r] for eachr € R\\/N + J(M): M].

Proof:

(1)—>(@2): Letrg [N+JM):M]and me [N:r]. SormeN. If rmegIN. Som€eN +
J(M),since N is I-nearly primary inM. If rm € INthen m € [IN:r].So [N:r] € [N+ ]J(M)]uU
[IN: r]. Now since IN < N, the other inclusion is hold.

(2) - (3): Because if a submodule is a union of two submodules, then it is equal to one of them.

(3) = (1): Suppose rm € N — IN for each r € R,m € M. If r ¢ /[N + J(M): M], then. Since rm ¢
IN,som & [IN:r]. Butrm € N,som € [N:r]. Hence [N:r] = N + J(M). Therefore m € N + J(M).
Thus N is an I-nearly prime submodule of M.

Theorem 1.9: Suppose M, be an R{-module and M, be an R,-module. Then we have:

(1) If N 4is an I;- nearly primary submodule of M; such that IN; x M, & I(N; X My)and J(M;) X
M, € J(M; X M,),then N; X M, is an I- nearly primary inM; X M,.

(2)IfN ,is an I,- nearly primary inM, such that IN, X M; SI(N, X M;) and ] (M;) X M; &
J (M, x M;),then M; X N, is an I- nearly primary in M; X M,

Proof:1) Assume thatN; is an I;- nearly primaryin M,.Suppose (a,b) € R; X R,,(my,m,) €
M with(a, b)(m;,m,) = (amy, bm,) € Ny x My — |(N; X M,), and N; x M, — I(N; x M,) & N; X
M, — IN; X M, = (N; —IN;) X M,.We have am,; € N; — IN;but Nyis I;- nearly primary submodule
of M;. Then a™ € [N, + J(M;): M;] for some positive integer n orm; € N; + J(M;). So (a,b)"™ =
(@™, b™) € [Ny +J(My): My] X (Ma: Mp)=[(Ny +J(M1)) X My:g,xg, My X Mp] = [N; X My +

J (My) X My:p xp, My X My © [Ny X My + J(My X My ):g, g, My X M,|forsome
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n € Z,or(my,my) € [Ny +J(M)] X My = Ny X My +] (My) X My € N; X My + J(My X My ).
Hence N; x M,is an I-nearly primary submodule of M; X M,.

Proposition 1.10: Let I;and I, ideals of R;andR, respectively withI =1I; X I,. Then:

1. If Ny, N, submodules of M; and M, respectively such that I;N; =N; for i = 1,2, then N; X N, is an
[-nearly primary in M; X M.

2. If Ny is primary in M; , then N; X M, is an I-nearly primary in M; X M,.

3. If Ny is an I;-nearly primary in M, and I,M, = M, , then N; X M, is an I-nearly primary in
M; X M,.

4. 1f N, isaprimary in M, , then M; X N, is an I-nearly primary in My X M,.

5. If N, is an I,-nearly primary in M, and I;M; =M.

Proof 1. Since ;N; = N; and I,N, =N, . Then I;N; X I,N, = (I; X I,) (Ny X Ny) =1 (Ny XNy )=
N; X N,. S0 N; X Np-1 ( Ny X N, ) = @. Thus there is nothing to prove.

2. Let Ny be a primary inM; . So N; X M, is a primary inM; X M,,[5] and hence |- nearly primary
inM; X M,.

3. Let Ny is an I;- nearly primary in M;such that I,M, = M, . Suppose that (r;,7, )€ R,(in;,m,) €
Mand  (r,r,  )(my,my) =(rymy,ramy) € Ny X My = I(Ny X My) = Ny X My - (I X I3) (Ny X
M,) = (N; X My — (I;N; X I,My) = (Ny X My — (I;N; X M) = (N; —IN;) X M,. Then rym, €
N; —IN; and N;is I;- nearly primary submodule of M;, so r,™ € [N; + J(M,): M;] for some n €
Z,ormy € Ny +J(M;) . Therefore(ry, )" = (™, ™) € [Ny + J(My): My]1 xR, = [(N, +
J(M1)) X My:g, xg, My X Mz] = [N1 X My +] (My) X My:g xg, My X Mz] c [N1 X My + J(My X

My )ip,xr, M1 X Mp] for  some n € Z,or (my,my) € [Ny +J(My)] X My = Ny X My + ] (My) X
M, € N; X M, + J(M; X M, ). So N; X M,is anl-nearly primaryinM; x M,.

The proof of (3) and (4) is similar to part (2) and (3) respectively.

Theorem 1.11. Let M be an R-module and let N be a proper submodule of M such thatN/IN +
J(M/IN) =N +J(M) /IN. Then N is an I-nearly primary in M iff N/INis an 0-nearly primary in
M/IN.

Proof:=) Let N is an I-nearly primary in M. Let a € R,m € M such that0 # am + IN = a(m +
IN) € N/IN in M/IN. Then am € N — IN. Since N is I-nearly primary submodule of M, so either

meN +J(M) ora €/[N+](M):M] =/[(N +](M))/IN : M/IN]. Therefore m+IN € [N +
J(M)]/IN = N/IN + J(M/IN) ora € \/[N/IN + J(M/IN) : M/IN].Hence N/INis 0— nearly
primary in M/IN.

&) Let N/IN is an 0-nearly primary in M/IN . Leta € R,m € M such thatam € N — IN. So
0#a(m+IN)=am+IN € N/IN .But N/IN is an 0-nearly primary in M/IN. Thusm + IN €

N/IN 4+ J(M/IN) = [N + J(M)]/IN ora € J [%+](%):M/IN] =

\/[(N +J(M))/IN : M/IN]andsom € N + J(M)ora € \/[N + J(M): M]. Hence N is an 0-nearly
primary.

Theorem1.12: If M is an R-module and Iis an ideal of R, then the following statements are
equivalent.

1-IM is an I-nearly primary in M;

2-Forx € [M — (IM + J(M)]; [IM : x] = [I(IM): x] U\/[IM + J(M): M];

3-Forx € [M — (IM + J(M))],[IM : x] = [I(IM) : x]or[IM:x] = [IM + J(M) : M].

4-If JD € IM — I(IM), then ] & \/[IM + J(M):MJorD &< IM + J(M) for each an ideal J of R and
submodule D of M.

Proof. (1) — (2): Suppose that x € [M — (IM + J(M))], r € [IM:x].So rx € IMIf rx ¢ I(IM),

but IM is a I-nearly primary submodule and x ¢ IM + J(M), sor € \/[IM + J(M): M]. If rx € I(IM),
sor € [I(IM):x]. S0 [IM : x] & \/[IM + J(M): M] U [I(IM) : x]. On other hand, I(IM) < IM, then
[I(IM):x] G [IM : x] U J[IM + J(M): M].

(2)—(3): Itis clear that because if an idea is a union of two ideals, then it is equal to one of them.

(3 )—(4 ): Suppose that JD & IM. Let] & \/[IM + J(M):M]and D & IM + J(M). Aussmex € D.
Ifx ¢ IM +J(M). Sojx & IM and hence ] G [IM:x]. But] & /[IM +J(M):M],s0] S [IM:x] =
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[I(IM): x].Thus,xJ] & I(IM),so D] < I(IM).Suppose thatx € IM. let y € D—IM. Then (x+

y) €ED—IM. Hence yJ] € I(IM), (x+y)] €I(IM). Let r €]. Then x=(x+y)r-yr €

I(IM). So x] € I(IM). Thus JD & I(IM).

(4) - (1): By theorem (1.3).

Recall that a proper submodule L of an R-module M is called small in M if for every proper

submodule K of M, L+K+# M, [9].

Theorem 1.13: Suppose N is a submodule of a R-moduleM; and P is a submodule of an R-

module M,.

1- If N @ P is an I-nearly primary and small submodule of M = M; @ M,such that J(M; @ M, ) &

JM) & MyandJ(M; & My)ES M, DJ(M,) , then Nand Pare [-nearly primary inM,,

M,respectively.

2- Let N be a small submodule of an R-module M;and J(M;) + M,is small in M. If N is I-nearly

primary, then N @ M, is an I-nearly primary submodule of M = M; & M,.

Proof. (1). Let am; € N — IN where a € R,m; € M;.Then a(m,0) € (N @ P) — IN @ P). Since

N@Pissmall, so N+ P < J(M) by [9]. But N + P is an I-nearly primary, then either (m4,0) €

N®P+]M)=]JM)DJM;)and so my € J(My) & N, +](My)or a™ € [N D P+ ](M): M]

=JM): M]S[JM)DM,: My &M,] forsomen€Z,and soa™ € [J(My):M]<E [N+

J(My): My].1t follows that either m; € N; +J(M;) or a™ € [N + J(M,): M;]. Hence N is I-nearly

primary in M;.

By a similar proof, N, is an I-nearly primary in M,.

(2). Let a (my,my) € (NP M,) —I(N @ M;), where a € R,(m;,m,) € M. Then am; € N —IN.

Since N is an I-nearly primary and small in My, then either m; € N + J(M;) = J(My) or a" € [N +

J(M;): M,] for some n € Z, by [9]. So that

Ifmy; € N +J(M;) =] (My), then (my, m;) € J(My) ® M, S J(M) &S N © M, + J(M).

If a" € [N + J(M;): M;] for some n € Z,and since N is small in My, then a™ €[J(M;)@M,: M]. But

J(M;) @ M, is small inM,, so [J(M;) ® M,: M| S [J(M): M]S [N & M, +](M) : M] by [10],

so N @ M,is an I-nearly primarysubmodule of M = M; @ M,.

Corollary 1.14: Suppose that N and P are two submodules of an R-modules M; , M, respectively.

1- If N@ P is an I-nearly primary in a hollowR-module M; @ M, withJ(M; @& M,) < J(M,) &

M,and J(M; @ M,) & M; @ J(M;),thenN andP are I-nearly primary inM;, M,respectively.

2-1f N al-nearly primary submodule of a hollow R-module M;and M,be any R-module such that

M = M; @ M, is a hollow R-module, then N @ M,is an I-nearly primary submodule of M = M, &

M,.

Proof (1): Since M; @ M, is a hollow module, so every submodules are small by [10] . Hence the

result follows direct of (1.13, 1).

(2): Since M;, M,are two hollow modules, so every submodules of them are small by [10]. Hence the

result follows direct of (1.13, 2).
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