Iraqi Journal of Science, 2019, Vol.60, No.10, pp: 2202-2206 DOI: 10.24996/ijs.2019.60.10.14

ISSN: 0067-2904

I-Nearly Primary Submodules

Adwia J. Abdul-AlKalik

Directorate General of Education In Diyala, Ministry of Education, Republic of Iraq

Abstract

Let *R* be a commutative ring with identity and *I* be a fixed ideal of *R* and *M* be an unitary *R*-module. A proper submodule *N* of *M* is said to be I-nearly primary if for each $a \in R$, $x \in M$ with $ax \in N - IN$, then either $x \in N + J(M)$ or $a \in \sqrt{[N + J(M):M]}$.

Keywords: Primary submodules, weakly primary submodules, nearly primary submodules, I- primary submodules.

المقاسات الجزئية الابتدائية تقريبا من النمط -Iعدوبة جاسم عبد الخالق المديرية العامة لتربية ديالى، وزارة التربية، العراق الخلاصة لتكن R حلقة ابدالية ذات عنصرمحايد، وليكن I مثالي من R، M مقاسا احاديا معرفا على R. يقال ان المقاس الجزئي الفعلي N من M هو مقاسا جزئيا ابتدائيا تقريبا من النمط -I اذ كان a ينتمي الى R، ينتمي الى M بحيث a ينتمي الى N - IN فانه يؤدي الى اما x ينتمي الى المقاس الجزئي (M - I)

Introduction

Throughout this paper, *R* represents an associative ring with nonzero identity and *I* a fixed ideal of *R* and *M* be a unitary *R*-module. A proper submodule *N* of *M* is called a primary submodule if whenever $r \in R$ and $x \in M$ with $rx \in N$ implies that $r \in \sqrt{[N:M]}$ or $x \in N$, [1]. Then, many generalizations of primary submodules were studied such as weakly primary submodules in [2], ψ -primary submodules in [3], and nearly primary submodules in [4]. The authors in [5] introducing the notions *I*- prime and *I*- primary submodules. A proper submodule *N* of *M* is called *I*- prime submodule if $rx \in N - IN$ for all $r \in R, x \in M$ implies that either $r \in [N:M]$ or $x \in N$. A proper submodule *N* of *M* is called *I*- primary submodule if $rx \in N - IN$ for all $r \in R, x \in M$ implies that either $r \in [N:M]$ or $x \in N$. A proper submodule *N* of *M* is called *I*- primary submodule if $rx \in N - IN$ for all $r \in R, x \in M$ implies that either $r \in [N:M]$ or $x \in N$. A proper submodule *N* of *M* is called *I*- primary submodule and study *I*- nearly primary submodules which are generalizations of weakly primary submodules and nearly primary and nearly primary to *I*- nearly primary submodules. We generalize some basic properties of primary and nearly primary to *I*- nearly primary submodules and give some characterizations of *I*- nearly primary submodules.

1- Main result

Definition 1.1:Let *I* be an ideal of *R* and *M* an *R*-module. A proper submodule *N* of *M* is called *I*-nearly primary submodule, if $r \ x \in N - IN$ for all $r \in R, x \in M$ implies that either $x \in N + J(M)$ or $r^n \in [N + J(M): M]$ for some $n \in Z_+$, where J(M) is the Jacobson radical of *M*.

For example: Consider the ring of integers Z and the Z-module Z_{12} . Take I = 4Z as an ideal of Z and N = ($\overline{4}$) be a submodule of Z_{12} generated by

4. Then N is an I-nearly primary submodule of Z_{12} since N – IN = $(\overline{4}) - 4Z$. $(\overline{4}) = (\overline{4}) - (\overline{4}) = \emptyset$. **Proposition 1.2**.

1)Let N, K be two are submodules of a R-module M. If N is I-nearly primary in M such that $J(M) \subseteq J(K)$, then N is I-nearly primary in K.

 $2|I_1 \subseteq I_2$. Then *N* is I_1 - nearly primary implies *N* is I_2 - nearly primary.

Proof (1): Suppose that $a \in R$ and $m \in K$ with $am \in N - IN$. Since N is *I*-nearly primary submodule of M, so either $m \in N + J(M)$ or $a^n \in [N + J(M): M]$ for some $n \in Z_+$. But $J(M) \subsetneq J(K)$, so either $m \in N + J(M)$ or $a^n \in [N + J(M): M]$. Therefore N is *I*-nearly primary submodule of K.

2: Suppose that N is I_1 - nearly primary. Let $a \in R, m \in M$ with $am \in N - I_2N$ Since $I_1 \subseteq I_2, N - I_2N \subseteq N - I_1N$. Then $am \in N - I_1N$. But N is I_1 - nearly primary. So $m \in N + J(M)$ or $a^n \in [N + J(M): M]$ for some $n \in Z_+$. Thus N is I_2 - nearly primary.

The following theorem gives a useful characterization for *I*-nearly primarysubmodule.

Theorem 1.3 : Let *N* a proper submodule of an *R*-module *M*. Then *N* is *I*-nearly primary submodule in *M* if and only if for any ideal *J* of *R* and submodule *K* of *M* such that $JK \subseteq N - IN$, we have $I \subseteq \sqrt{[N + I(M): M]}$ or $K \subseteq N + I(M)$.

Proof: Suppose that N is I-nearly primary submodule of M, and $JK \subseteq N - IN$ for some ideal J of R and submodule K of M. If $J \not\subseteq \sqrt{[N+J(M):M]}$ and $K \not\subseteq N + J(M)$, so there exists $r \in J - \sqrt{[N+J(M):M]}$ and $x \in K - [N + J(M)]$ such that $rx \in N - IN$. By assuming N is I-nearly primary submodule in M, either $x \in N + J(M)$ or $r \in \sqrt{[N+J(M):M]}$ which is a contradiction. Hence $J \subseteq [N+J(M):M]$ or $K \subseteq N + J(M)$. Conversely suppose that $rm \in N - IN$ for $r \in R$ and $m \in M$. Then $(r)(m) = (rm) \subseteq N - IN$. So by assumption, $(r) \subseteq \sqrt{[N+J(M):M]}$ or $(m) \subseteq N + J(M)$. Therefore $r \in \sqrt{[N+J(M):M]}$ or $m \in N + J(M)$. Thus N is I-nearly primary submodule of M.

Recall that a subset S of a ring R is called multiplicatively closed subset of R if $1 \in S$ and $ab \in S$ for every $a, b \in S$. Now, let M be a R-module and S be a multiplicatively closed subset of R and let R_s be the set of all fractional r / s where $r \in R$ and $s \in S$ and M_s be the set of all fractional x / s where $x \in M$ and $s \in S$. For $x_1, x_2 \in M$ and $s_1, s_2 \in S, x_1/s_1 = x_2/s_2$ if and only if there exists $t \in S$ such that $t (s_1x_2-s_2x_1) = 0$.

So, we can make M_s in to R_s -module by setting x/s + y/t = (tx + sy)/st and $r/t \cdot x/s = rx/ts$ for every $x, y \in M$ and $s, t \in S$, $r \in R$. So M_s is he module of fractions.

Recall that if N is a submodule of an *R*-module M and S be a multiplicatively closed subset of R so $N_s = \{n \mid s: n \in N, s \in S\}$ be a submodule of the R_s -module M_s , see [6].

The quotient and localization of primary submodules are again primary submodules. But in case of I- nearly primary submodules, we give a condition under which the localization becomes true as we see in the following theorem.

Theorem 1.4: If *N* is an *I*-nearly primary submodule of an *R*-module *M*. Then

1) Suppose that $N_s \neq M_s$ and $(IN)s \subseteq IsNs$. Then N_s is an I_s -nearly primary in M_s .

2) Suppose that $K \subseteq N$ and N/K + J(M/K) = N + J(M)/K, then N/K is an *I*-nearly primary submodule of M/K.

Proof .1: For all $r/s \in R_s$, $x/t \in Ms$, let $r/s \cdot x/t \in Ns - Is Ns \subseteq Ns - (IN)s = (N - IN)s$. Then rx/st = m/u for $m \in N - IN$ and $u \in S$. So for some $v \in S$, $vurx = vstm \in N - IN$. As N is I-nearly primary submodule, hence either $vur \in \sqrt{[N + J(M):M]}$ or $x \in N + J(M)$. So $ruv/suv = r/s \in \sqrt{[N + J(M):M]_s} = \sqrt{[N_s + J(M_s):M_s]}$ by [7] or $x/t \in [N + J(M)]_s = N_s + J(M_s)$. Hence N_s is I_s -nearly primary submodule of an R_s -module Ms.

Proof.2: Let $a \in R, m \in M$ such that $a(m + K) = am + K \in N/K - I(N/K)$. Then $am + K \in [N - IN]/K$. So $am \in N - IN$. Since N is *I*-nearly primary submodule of M, so either $m \in N + J(M)$ or $a \in \sqrt{[N + J(M): M]}$. Therefore

 $m + K \in [N + J(M)/K = N/K + J(M/K)$ or $a \in \sqrt{[N/K + J(M/K) : M/K]}$. Therefore N/K is *I*-nearly primary submodule of M/K. Therefore $m + K \in [N + J(M)]/K = N/K + J(M/K)$ or $a \in \sqrt{[N/K + J(M/K) : M/K]}$. Therefore N/K is *I*-nearly primary submodule of M/K.

Theorem 1.5: If N is *I*-nearly primary in M and $[N:M]N \not\subseteq IN$, then N is a nearly primary submodule M.

Proof: Suppose that $[N:M]N \not\subseteq IN$, we show that N is a nearly primary. Let $a \in R$ and $y \in M$ such that $ay \in N$. If $ay \notin IN$, since N is I- nearly primary gives $y \in N + J(M)$ or $a \in \sqrt{[N + J(M):M]}$. So let $ay \in IN$. Now, assume that $aN \not\subseteq IN$, let $an \notin IN$ where $n \in N$. Then $a(y + n) \in N - IN$, so $a \in \sqrt{[N + J(M):M]}$ or $(y + n) \in N + J(M)$. Hence $a \in \sqrt{[N + J(M):M]}$ or $(y + n) \in N + J(M)$. Hence $a \in \sqrt{[N + J(M):M]}$ or $y \in N + J(M)$. So we can assume that $aN \subseteq IN$. Assume that $y[N:M] \not\subseteq IN$. So $\exists b \in [N:M]$ and $yb \notin IN$. So $(a + b)y \in N$. Therefore $y \in N + J(M)$ or $(a + b) \in \sqrt{[N + J(M):M]}$. Then $y \in N + J(M)$ or $a \in \sqrt{[N + J(M):M]}$. So we can assume that $y[N:M] \subseteq IN$. Since $[N:M]N \not\subseteq IN$, there exist $r \in [N:M]$ and $x \in N$ with $rx \notin IN$. Then $(a + r)(y + x) \in N - IN$. Then $(a + r) \in \sqrt{[N + J(M):M]}$ or $(y + x) \in N + J(M)$. Hence $a \in \sqrt{[N + J(M):M]}$ or $y \in N + J(M)$. So N is a nearly primary submodule M.

Corollary 1.6: If N is 0- nearly primary in M and $[N:M]N \neq 0$, then N is an nearly primary submodule of M.

Propostion 1.7: Let *N* be a submodule of an R – module *M*.

1- If N is *I*-nearly primary and $J(M) \subseteq N$, then N is a *I*-primary.

2- If M is a local module and N is a maximal I- nearly primary in M, then N is a I- primary in M.

3- If M is an semisimple module and N is a I- nearly primary in M, then N is a I- primary in M.

Proof (1): The proof is trivial.

(2). Let $a \in R, m \in K$ such that $am \in N - IN$. Since N is *I*-nearly primary inM, so either $m \in N + J(M)$ or $a \in \sqrt{[N + J(M): M]}$. Since N is a maximal and *M* is alocal, so J(M) = N by [8]. Hence either $m \in N$ or $a \in \sqrt{[N:M]}$. Therefore N is *I*-primary in M.

(3). Suppose $a \in R$, $m \in K$ such that $am \in N - IN$. Since N is *I*-nearly primary in M, so either $m \in N + J(M)$ or $a \in \sqrt{[N + J(M): M]}$. But M is semisimple, so J(M) = 0 by [9]. Then either $m \in N$ or $a \in \sqrt{[N:M]}$. Therefore N is *I*-primary in M.

Theorem 1.8: Let M be an R- module and N be a submodule of M. Then, the following statements are equivalent:

(1) N is a I-nearly primary in M.

(2) $[N:r] = [N + J(M)] \cup [IN:r]$ for each $r \in R \setminus \sqrt{[N + J(M):M]}$ (3) [N:r] = N + J(M) or [N:r] = [IN:r] for each $r \in R \setminus \sqrt{N + J(M):M]}$. **Proof:**

(1) \rightarrow (2): Let $r \notin \sqrt{[N+J(M):M]}$ and $m \in [N:r]$. So $rm \in N$. If $rm \notin IN$. So $m \in N + J(M)$, since N is I-nearly primary in M. If $rm \in IN$, then $m \in [IN:r]$. So $[N:r] \subsetneq [N+J(M)] \cup [IN:r]$. Now since IN \subsetneq N, the other inclusion is hold.

 $(2) \rightarrow (3)$: Because if a submodule is a union of two submodules, then it is equal to one of them.

(3) → (1): Suppose $rm \in N - IN$ for each $r \in R, m \in M$. If $r \notin \sqrt{[N + J(M): M]}$, then. Since $rm \notin IN$, so $m \notin [IN: r]$. But $rm \in N$, so $m \in [N: r]$. Hence [N: r] = N + J(M). Therefore $m \in N + J(M)$. Thus N is an I-nearly prime submodule of M.

Theorem 1.9: Suppose M_1 be an R_1 -module and M_2 be an R_2 -module. Then we have:

(1) If N_1 is an I_1 - nearly primary submodule of M_1 such that $IN_1 \times M_2 \subsetneq I(N_1 \times M_2)$ and $J(M_1) \times M_2 \subsetneq J(M_1 \times M_2)$, then $N_1 \times M_2$ is an *I*- nearly primary in $M_1 \times M_2$.

(2) If N_2 is an I_2 - nearly primary in M_2 such that $IN_2 \times M_1 \subseteq I(N_2 \times M_1)$ and $J(M_2) \times M_1 \subseteq J(M_2 \times M_1)$, then $M_1 \times N_2$ is an *I*- nearly primary in $M_1 \times M_2$

Proof:1) Assume that N_1 is an I_1 - nearly primary M_1 . Suppose $(a, b) \in R_1 \times R_2$, $(m_1, m_2) \in M$ with $(a, b)(m_1, m_2) = (am_1, bm_2) \in N_1 \times M_2 - I(N_1 \times M_2)$, and $N_1 \times M_2 - I(N_1 \times M_2) \subseteq N_1 \times M_2 - IN_1 \times M_2 = (N_1 - IN_1) \times M_2$. We have $am_1 \in N_1 - IN_1$ but N_1 is I_1 - nearly primary submodule of M_1 . Then $a^n \in [N_1 + J(M_1): M_1]$ for some positive integer n or $m_1 \in N_1 + J(M_1)$. So $(a, b)^n = (a^n, b^n) \in [N_1 + J(M_1): M_1] \times (M_2: M_2) = [(N_1 + J(M_1)) \times M_2:_{R_1 \times R_1} M_1 \times M_2] = [N_1 \times M_2 + J(M_1) \times M_2:_{R_1 \times R_1} M_1 \times M_2] \subseteq [N_1 \times M_2 + J(M_1 \times M_2):_{R_1 \times R_1} M_1 \times M_2]$ for some

 $n \in Z_+$ or $(m_1, m_2) \in [N_1 + J(M_1)] \times M_2 = N_1 \times M_2 + J(M_1) \times M_2 \subseteq N_1 \times M_2 + J(M_1 \times M_2)$. Hence $N_1 \times M_2$ is an *I*-nearly primary submodule of $M_1 \times M_2$.

Proposition 1.10: Let I_1 and I_2 ideals of R_1 and R_2 respectively with $I = I_1 \times I_2$. Then :

1. If N_1 , N_2 submodules of M_1 and M_2 respectively such that $I_i N_i = N_i$ for i = 1, 2, then $N_1 \times N_2$ is an *I*-nearly primary in $M_1 \times M_2$.

2. If N₁ is primary in M_1 , then $N_1 \times M_2$ is an *I*-nearly primary in $M_1 \times M_2$.

3. If N_1 is an I_1 -nearly primary in M_1 and $I_2M_2 = M_2$, then $N_1 \times M_2$ is an *I*-nearly primary in $M_1 \times M_2$.

4. If N₂ is a primary in M_2 , then $M_1 \times N_2$ is an *I*-nearly primary in $M_1 \times M_2$.

5. If N₂ is an I₂-nearly primary in M_2 and I₁M₁ = M_1 .

Proof 1. Since $I_1N_1 = N_1$ and $I_2N_2 = N_2$. Then $I_1N_1 \times I_2N_2 = (I_1 \times I_2)(N_1 \times N_2) = I(N_1 \times N_2) = N_1 \times N_2$. So $N_1 \times N_2$ -I ($N_1 \times N_2$) = \emptyset . Thus there is nothing to prove.

2. Let N_1 be a primary in M_1 . So $N_1 \times M_2$ is a primary in $M_1 \times M_2$, [5] and hence *I*- nearly primary in $M_1 \times M_2$.

3. Let N_1 is an I_1 - nearly primary in M_1 such that $I_2M_2 = M_2$. Suppose that $(r_1, r_2) \in R$, $(m_1, m_2) \in M$ and $(r_1, r_2) (m_1, m_2) = (r_1m_1, r_2m_2) \in N_1 \times M_2 - I(N_1 \times M_2) = N_1 \times M_2 - (I_1 \times I_2) (N_1 \times M_2) = (N_1 \times M_2 - (I_1N_1 \times I_2M_2) = (N_1 \times M_2 - (I_1N_1 \times M_2) = (N_1 - IN_1) \times M_2$. Then $r_1m_1 \in N_1 - IN_1$ and N_1 is I_1 - nearly primary submodule of M_1 , so $r_1^n \in [N_1 + J(M_1): M_1]$ for some $n \in Z_+$ or $m_1 \in N_1 + J(M_1)$. Therefore $(r_1, r_2)^n = (r_1^n, r_2^n) \in [N_1 + J(M_1): M_1] \times R_2 = [(N_1 + J(M_1)) \times M_2: R_1 \times M_2] = [N_1 \times M_2 + J(M_1) \times M_2: R_1 \times M_2] \subseteq [N_1 \times M_2 + J(M_1) \times M_2: R_1 \times M_2]$.

 $M_2 :_{R_1 \times R_1} M_1 \times M_2] \text{ for some } n \in Z_+ \text{ or } (m_1, m_2) \in [N_1 + J(M_1)] \times M_2 = N_1 \times M_2 + J(M_1) \times M_2 \subseteq N_1 \times M_2 + J(M_1 \times M_2).$ So $N_1 \times M_2$ is an *I*-nearly primary in $M_1 \times M_2$.

The proof of (3) and (4) is similar to part (2) and (3) respectively.

Theorem 1.11. Let *M* be an R-module and let N be a proper submodule of *M* such that N/IN + J(M/IN) = N + J(M) / IN. Then N is an I-nearly primary in M iff N/IN is an 0-nearly primary in M/IN.

Proof: \Rightarrow) Let *N* is an I-nearly primary in *M*. Let $a \in R, m \in M$ such that $0 \neq am + IN = a(m + IN) \in N/IN$ in M/IN. Then $am \in N - IN$. Since *N* is *I*-nearly primary submodule of *M*, so either $m \in N + J(M)$ or $a \in \sqrt{[N + J(M):M]} = \sqrt{[(N + J(M))/IN : M/IN]}$. Therefore $m + IN \in [N + J(M)]/IN = N/IN + J(M/IN)$ or $a \in \sqrt{[N/IN + J(M/IN) : M/IN]}$. Hence N/IN is 0 - nearly primary in M/IN.

⇐) Let N/IN is an 0-nearly primary in M/IN. Let $a \in R, m \in M$ such that $am \in N - IN$. So $0 \neq a(m + IN) = am + IN \in N/IN$. But N/IN is an 0-nearly primary in M/IN. Thus $m + IN \in N/IN$.

 $N/IN + J(M/IN) = [N + J(M)]/IN \text{ or } a \in \sqrt{\left[\frac{N}{IN} + J\left(\frac{M}{IN}\right): M/IN\right]} =$

 $\sqrt{[(N + J(M))/IN : M/IN]}$ and som $\in N + J(M)$ or $a \in \sqrt{[N + J(M):M]}$. Hence N is an 0-nearly primary.

Theorem1.12: If M is an R-module and I is an ideal of R, then the following statements are equivalent.

1-*IM* is an *I*-nearly primary in *M*;

2- For $x \in [M - (IM + J(M))]; [IM : x] = [I(IM): x] \cup \sqrt{[IM + J(M):M]};$

3- For $x \in [M - (IM + J(M))], [IM : x] = [I(IM) : x] \text{ or } [IM : x] = [IM + J(M) : M].$

4-If $JD \subseteq IM - I(IM)$, then $J \subseteq \sqrt{[IM + J(M): M]}$ or $D \subseteq IM + J(M)$ for each an ideal J of R and submodule D of M.

Proof. (1) \rightarrow (2): Suppose that $x \in [M - (IM + J(M))]$, $r \in [IM: x]$. So $rx \in IM$. If $rx \notin I(IM)$, but *IM* is a *I*-nearly primary submodule and $x \notin IM + J(M)$, so $r \in \sqrt{[IM + J(M): M]}$. If $rx \in I(IM)$, so $r \in [I(IM): x]$. So $[IM : x] \subsetneq \sqrt{[IM + J(M): M]} \cup [I(IM) : x]$. On other hand, $I(IM) \subsetneq IM$, then $[I(IM): x] \subsetneq [IM : x] \cup \sqrt{[IM + J(M): M]}$.

(2) \rightarrow (3): It is clear that because if an idea is a union of two ideals, then it is equal to one of them.

(3) \rightarrow (4): Suppose that $JD \subseteq IM$. Let $J \not\subseteq \sqrt{[IM + J(M):M]}$ and $D \not\subseteq IM + J(M)$. Aussmex $\in D$. If $x \notin IM + J(M)$. So $Jx \subseteq IM$ and hence $J \subseteq [IM:x]$. But $J \not\subseteq \sqrt{[IM + J(M):M]}$, so $J \subseteq [IM:x] =$ [I(IM): x]. Thus, $xJ \subseteq I(IM)$, so $DJ \subseteq I(IM)$. Suppose that $x \in IM$. let $y \in D - IM$. Then $(x + y) \in D - IM$. Hence $yJ \subseteq I(IM)$, $(x + y)J \subseteq I(IM)$. Let $r \in J$. Then $x = (x + y)r - yr \in I(IM)$. So $xJ \subseteq I(IM)$. Thus $JD \subseteq I(IM)$.

 $(4) \rightarrow (1)$: By theorem (1.3).

Recall that a proper submodule L of an R-module M is called small in M if for every proper submodule K of M, $L+K \neq M$, [9].

Theorem 1.13: Suppose N is a submodule of a R-module M_1 and P is a submodule of an R-module M_2 .

1- If $N \oplus P$ is an *I*-nearly primary and small submodule of $M = M_1 \oplus M_2$ such that $J(M_1 \oplus M_2) \subsetneq J(M_1) \oplus M_2$ and $J(M_1 \oplus M_2) \subsetneq M_1 \oplus J(M_2)$, then *N* and *P* are *I*-nearly primary in M_1 , M_2 respectively.

2- Let N be a small submodule of an R-module M_1 and $J(M_1) + M_2$ is small in M. If N is I-nearly primary, then $N \bigoplus M_2$ is an I-nearly primary submodule of $M = M_1 \bigoplus M_2$.

Proof. (1). Let $am_1 \in N - IN$ where $a \in R, m_1 \in M_1$. Then $a(m_1, 0) \in (N \oplus P) - IN \oplus P$). Since $N \oplus P$ is small, so $N + P \subsetneq J(M)$ by [9]. But N + P is an *I*-nearly primary, then either $(m_1, 0) \in N \oplus P + J(M) = J(M_1) \oplus J(M_2)$ and so $m_1 \in J(M_1) \subsetneq N_1 + J(M_1)$ or $a^n \in [N \oplus P + J(M): M] = [J(M): M] \subsetneq [J(M_1) \oplus M_2: M_1 \oplus M_2]$ for some $n \in Z_+$ and so $a^n \in [J(M_1): M_1] \subsetneq [N + J(M_1): M_1]$. Hence N is *I*-nearly primary in M_1 .

By a similar proof, N_2 is an *I*-nearly primary in M_2 .

(2). Let $a(m_1, m_2) \in (N \oplus M_2) - I(N \oplus M_2)$, where $a \in R$, $(m_1, m_2) \in M$. Then $am_1 \in N - IN$. Since N is an *I*-nearly primary and small in M_1 , then either $m_1 \in N + J(M_1) = J(M_1)$ or $a^n \in [N + J(M_1): M_1]$ for some $n \in Z_+$ by [9]. So that

If $m_1 \in N + J(M_1) = J(M_1)$, then $(m_1, m_2) \in J(M_1) \oplus M_2 \subsetneq J(M) \subsetneq N \oplus M_2 + J(M)$.

If $a^n \in [N + J(M_1): M_1]$ for some $n \in Z_+$ and since N is small in M_1 , then $a^n \in [J(M_1) \bigoplus M_2: M]$. But $J(M_1) \bigoplus M_2$ is small in M_2 , so $[J(M_1) \bigoplus M_2: M] \subsetneq [J(M): M] \subsetneq [N \bigoplus M_2 + J(M): M]$ by [10], so $N \bigoplus M_2$ is an *I*-nearly primary submodule of $M = M_1 \bigoplus M_2$.

Corollary 1.14: Suppose that N and P are two submodules of an R-modules M_1 , M_2 respectively.

1- If $N \oplus P$ is an *I*-nearly primary in a hollow *R*-module $M_1 \oplus M_2$ with $J(M_1 \oplus M_2) \subsetneq J(M_1) \oplus M_2$ and $J(M_1 \oplus M_2) \subsetneq M_1 \oplus J(M_2)$, then *N* and *P* are *I*-nearly primary in M_1 , M_2 respectively.

2-If N a *I*-nearly primary submodule of a hollow R-module M_1 and M_2 be any R-module such that $M = M_1 \bigoplus M_2$ is a hollow R-module, then $N \bigoplus M_2$ is an *I*-nearly primary submodule of $M = M_1 \bigoplus M_2$.

Proof (1): Since $M_1 \bigoplus M_2$ is a hollow module, so every submodules are small by [10]. Hence the result follows direct of (1.13, 1).

(2): Since M_1 , M_2 are two hollow modules, so every submodules of them are small by [10]. Hence the result follows direct of (1.13, 2).

References

- 1. Mohammed, L. J. 2005. On primary submodules, M. Sc. Thesis, Unversity of Technology.
- 2. Atain, S. E. and Farzalipour, F.2005. On weakly primary ideals, *Georgian Math. J.*, 3: 423-429.
- **3.** Abdul-Alkalik, A. J. **2017**. Some Generalizations of prime submodules, PhD. Thesis, University of Al-Mustansiriyah.
- 4. Hashem, M.B. 2016. Nearly semiprime submodules, M. Sc. Thesis, University of Baghded.
- 5. Akray, I. and Hussein, H. S. 2016. *I*-primary submodules. *Math. AC*, 1(7).
- 6. Larsen, M.D. and McCarlthy, P.J. 1971, *Multiplicative theory of ideals*, New York: Academic Press.
- 7. Atiyah, M. F. and MacDonald, I.G. 1969. *Introduction to commutative algebra*, New York. Oxford. University Press.
- 8. Hirano, Y. and Mogani, I. 1986. On restricted anti-hopfian modules, *Math. J.* Okayama University, 28: 119-131.
- 9. Kash, F. 1982. Modules and rings, Academic Press, London.
- **10.** Dung, N. V., Huynh, D. V., Smith, P. F. and Wishbauer, R. **1994.** *Extending modules.* Pitman Research Notes in Mathematics Series Longman Harlow.