

I-Semiprime Submodules

Adwia J. Abdul-AlKhalik

Republic of Iraq, Ministry of Education, Directorate General of Education In Diyala, Diyala, Iraq.

Abstract

Let R be a commutative ring with identity and I a fixed ideal of R and M be an unitary R-module. We say that a proper submodule N of M is I-semi prime submodule if $a \in R, x \in M$ with $a^{2} x \in N-I N$ implies that $a x \in N$. In this paper, we investigate some properties of this class of submodules. Also, some characterizations of I-semiprime submodules will be given, and we show that under some assumptions I-semiprime submodules and semiprime submodules are coincided.

Keywords: Prime submodules, weakly semiprime submodules, semiprime submodules, I-semiprime submodules.

المقاسات الجزئية شبه الاولية من النمط-I

```
            عدويـة جاسم عبد الخالق
المديرية العامة لتربية ديالى، وزارة التربية، العراق
```

الخلاصة

$$
\begin{aligned}
& \text { لتكن R حلقة ابدالية ذات عنصرمحايد، وليكن I مثالي من R M R مقاسا احاديا معرفا على R. في هذا } \\
& \text { البحث ، نقول ان المقاس الجزئي N من M هو مقاس جزئي شبه اولي من النمط-I اذ كان r ينتمي الى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { هذا البحث لقد درسنا واعطينا بعض خواص ومميزات هذا النوع من الدقاسات الجزئية .وبرهنا تحت شروط } \\
& \text { معينة ان المقاسات الجزئية شبه الاولية وهذا النوع من المقاسات الجزئية يكونان متكافئيين. }
\end{aligned}
$$

Introduction

Throughout, R represents an associative ring with nonzero identity and I a fixed ideal of R and M be a unitary R-module. The concept of semiprime submodules was introduced and studied in [1980], where a proper submodule N of M is called a semiprime submodule if for each $r \in R, x \in M$, $\mathrm{k} \in Z_{+}$with $r^{k} x \in N$ implies that $\mathrm{r} x \in N,[1]$. Then, many generalizations of semiprime submodules were studied such as weakly semiprime submodules in [2], S-semiprime submodules in [3]and nearly semiprime submodules in [4].

In this paper, we extend the concept of semiprime submodules. Let I a fixed ideal of R.A proper submodule N of M is called I-semiprime if whenever $a \in R, x \in M$ with $a^{2} x \in N-I N$ implies that $a x \in N$. We generalize some basic properties of prime and semiprime to I - semiprime submodules and give some characterizations of I-semiprime submodules.

[^0]
1. Main result

Definition (1.1):(i) Let I be an ideal of R and M an R-module. A proper submodule N of M is called a I-semiprime submodule of M, if $a^{2} x \in N-I N$ for all $a \in R, x \in M$ implies that $\in N$.
(ii)An ideal A is called I-semiprime ideal iff for every $a \in R$ and any ideal $I,\left(a^{2}\right) \subseteq A-$ $I A$ implies $(\mathrm{a}) \subseteq \mathrm{A}$.

Now, it is clear that every semiprime submodule N of M is an I-semiprime submodule of M. But the converse need not be true. For example, consider Z-module $M=Z_{24}$ and $N=\langle\overline{8}\rangle$. Then if $I=[N: M] N=\left[\langle\overline{8}\rangle: Z_{24}\right]\langle\overline{8}\rangle=\langle\overline{8}\rangle$. So N is an I-semiprime submodule of M. But N is not semiprime in M, since $2^{2} .(\overline{2})=\overline{8} \in N$, but $2 . \overline{2} \notin N$.

Propostion (1.2):

1-Let N, K are two submodules of an R-module M. If $N \leq K$ and N is I-semiprime submodule of M and then N is I-semiprime submodule of K.
2- If $I_{1} \subseteq I_{2}$. Then if N is I_{1} - semiprime implies N is I_{2} - semi prime.
3- If N is semiprime then N is I-semiprime.
Proof: 1, 2 and 3 are trivial.
The following theorem gives a useful characterization for I-semiprime submodules.
Theorem(1.3): Let N a proper submodule of an $R-$ module M. Then N is I-semiprime submodule in M if and only if for any ideal A of R and submodule K of M such that $A^{2} K \subseteq N-I N$, we have $A K \subseteq \mathrm{~N}$.
Proof.Suppose that N is I-semi prime submodule of M, and $A^{2} K \subseteq N-I N$ for A is an ideal of R and submodule K of M. If A $K \nsubseteq N$,so there exist $x \in K$ and a $\in A$ such that $a x \notin N$.Now, $a^{2} x \in a^{2} K \subseteq$ $N-I N$. We claim that $a^{2} x \in I N$, because if $a^{2} x \notin I N$, we get a $x \in N$ which is a contradication. Thus $a^{2} x \in I N$. Since $a^{2} K \subseteq N-I N$, there exists $m \in K$ such that $a^{2} m \in a^{2} K \subseteq N-I N$. This implies a $m \in N$. On the other hand $a^{2} x+a^{2} m=a^{2}(x+m) \in N-I N$. This implies $\mathrm{a}(x+m) \in N$; that is $a x+a m \in N$. But am $\in N$, so a $x \in N$ which is a contradication. Therefore $A \mathrm{~K} \subseteq \mathrm{~N}$.
Conversely suppoes that $a^{2} m \in N-I N$ for $a \in R$ and $m \in M$. Then $\left(a^{2}\right)(m) \subseteq N-I N$. So by assumption, (a) $(m) \subseteq N$. Therefore a $m \in N$. Thus N is an I-semiprime submodule of M.
Corollary(1.4): Let N a proper submodule of an $R-$ module M. Then N is I-semiprime submodule in M if and only if for any ideal A of R such that $A^{2} M \subseteq N-I N$, we have $A \mathrm{M} \subseteq \mathrm{N}$.
Remark (1.5): If I-semiprime submodule of an R-module M, then it is not necessarily that [$N: M$] I semi prime ideal, for example: If $N=\langle\overline{0}\rangle$ of the Z - module Z_{4}, then N is I-semiprime. But $[N: M]=$ $\left[\langle\overline{0}\rangle: Z_{4}\right]=4 Z$ is not an I-semiprime ideal of Z where $I=[N: M]$, since $2^{2} \in[N: M]-I[N: M]$, but $2 \notin\left[\langle\overline{0}\rangle: Z_{4}\right]=4 Z$.

Now, we give characterizations of I-semiprime submodule. But first, we need the following definitions.
[Recall that an R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R, [5]. And an R-module M is called faithful if it has zero annihiilator, [6].
Theorem (1.6): Let N a proper submodule of a finitely generated faithful multiplaction $R-$ module M with $I[N: M]=[I N: M]$. If N is I-semiprime submodule in M if and only if $[N: M]$ is an I-semi prime ideal of R.
Proof. \Rightarrow)Supposethat N is I-semi prime submodule in M.Let $a \in R$ with $a^{2} \in[N: M]-I[N: M]$. Then $a^{2} M \subseteq N$. If $a^{2} M \subseteq I N$. Then $a^{2} \in[I N: M]=I[N: M]$ which is contradiction. Assume $a^{2} M \nsubseteq I N$. Then $a^{2} M \subseteq N-I N$. But N is I-semi prime submodule. So $a M \subseteq N$, thus $a \in[N: M]$. Hence $[N: M$]is an I-semi prime ideal of R.
$\Leftarrow)$ Supposethat $[N: M]$ is I-semi prime ideal. Let $a \in R, m \in M$, such that $a^{2} m \in N-I N$. $a^{2}[R m: M]=\left[a^{2} R m: M\right] \subseteq[N: M]$ and $a^{2}[R m: M] \nsubseteq I[N: M]$ otherwise $a^{2} R m=a^{2}[R m: M] M \subseteq$ $I[N: M] M=I N$. Thus $a^{2}[R m: M] \subseteq[N: M]-I[N: M]$. But $[N: M]$ is an I-semi prime ideal, so $a[R m: M] \subseteq[N: M]$ and implies that $[a R m: M] \subseteq[N: M]$. Hence $a R m \subseteq N$, so $a m \in N$. Thus N is an I-semiprime submodule of M.
Recall that a proper submodule N of M is called I - prime submodule if $r x \in N-I N$ for all $r \in R$, $x \in M$ implies that either $r \in[N: M]$ or $x \in N$, [7]. Also a proper submodule N of M is called I -
primary submodule if $\quad r x \in N-I N$ for all $r \in R, x \in M$ implies that either $r \in \sqrt{[N: M]}$ or $x \in N$, [8]. And recall that an ideal I is called radical if $I=\sqrt{I}$, [9].
By using these concepts we can give the following proposition.
Proposition (1.7):Let N a proper submodule of an R-module M. If N is I-prime then N is I semiprime.
Proof: Let N is I-prime submodule of an R-module M , Assume that $a^{2} m \in N-I N$, where $a \in$ $R, m \in M$. Since $a^{2} m=a(a m) \in N-I N$ and N is I-prime submodule of M, then either $a m \in N$ or $a \in[N: M]$. In any case, we have $a m \in N$. Therefore N is I-semi prime submodule of M.
Proposition(1.8):Let N a proper submodule of an $R-$ module M such that $[N: M]$ is radical ideal . If N is I-primary submodule in M, then N is an I-prime (and hence I-semi prime) submodule of M.
Proof:Let N is I-primary submodule and [$N: M$] is radical ideal. Assume that $a^{2} m \in N-I N$, where $a \in R, m \in M$, suppose $\mathrm{m} \notin N$. Since N is I-primary submodule of M and $\mathrm{m} \notin N$, then $a \in \sqrt{[N: M]}$. But [$N: M$] is radical, so $a \in[N: M]$.Therefore N is I - prime (and hence I-semi prime)submodule of M.
From proposition (1.8) we get the following:
Corollary (1.9):Let N a proper submodule of an R-module M such that [$N: M$] is semi prime ideal of R. If N is I-primary submodule in M, then N is an I - prime (and hence I-semiprime) submodule of M.
Propostion (1.10): Let M be an R-module. Let N be an I - semiprime submodule M. If $\quad(r+$ $[N: M])^{2} N \nsubseteq I N$ for all $r \in R-[N: M]$, then N is a semiprime submodule M.
Proof: Suppose that $(r+[N: M])^{2} N \nsubseteq I N$, we show that N is a semiprime. Let $a \in R$ and $m \in$ M such that $a^{2} m \in N$. If $a^{2} m \notin I N$, then N, I - semiprime gives $a m \in N$. So assume that $a^{2} m \in I N$. First suppose that $a^{2} N \nsubseteq I N$, say $a^{2} n \notin I N$ where $n \in N$. Then $a^{2}(m+n) \in N-I N$, so $a(m+n) \in$ N. Hence $a m \in N$. So we can assume that $a^{2} N \subseteq I N$. Next, suppose that $(a+b)^{2} m \notin I N$ for some $b \in[N: M]$. Therefore $(a+b)^{2} m \in N-I N$ and so $(a+b) m \in N$. Hence $a m \in N$. So we can assume that $(a+[N: M])^{2} m \subseteq I N$. Since $(a+[N: M])^{2} m \nsubseteq I N$ there exists $r \in[N: M]$ and $x \in N$ with $(a+r)^{2} x \notin I N \quad$ Then $(a+r)^{2}(m+x) \in N-I N . \quad \operatorname{So}(a+r)(m+x) \in N$.
Hence $a m \in N$. So N is a semiprime submodule M.
Propostion (1.11): Let M be an $\mathrm{R}-$ module. Let N be an I- semiprime submodule M . If (r) $)^{2} \mathrm{~N} \nsubseteq \mathrm{IN}$ for somer $\in[N: M]$, then N is a semiprime submodule M .
Proof: Let $a \in R$ and $m \in$ Msuch that $a^{2} m \in N$. Suppose $a^{2} N \subseteq I N$. If $a^{2} m \notin I N$, then $a^{2} m \in N-I N$, and N is an I- semiprime gives $a m \in N$. Suppose that $r^{2} m \notin I N$. Therefore $(a+r)^{2} m=\left(a^{2}+\right.$ $\left.r^{2}\right) m \in N-I N$ and hence $(a+r) m \in N$. So am $\in N$. Now, we can assume that $r^{2} m \in I N$. But $(r)^{2} N \nsubseteq I N$, so there exists $x \in N$ such that $r^{2} x \notin I N$. Then $(a+r)^{2}(m+x)=\left(a^{2}+r^{2}\right)(m+x) \in N-$ IN and hence $(a+r)(m+x) \in N$. So $a m \in N$. Then N is a semiprime submodule M.

Recall that a proper submodule N of M is called an irreducible submodule if for each K, L be two submodules of M such that $\mathrm{L} \cap K=N$, then either $\mathrm{L}=\mathrm{N}$ or $\mathrm{K}=\mathrm{N}$, [1].
Theorem (1.12): Let N be an irreducible submodule of an R-module M.Then N is an I-prime if and only if I-semiprime submodule of M.
Proof: \Rightarrow)Supposethat N is I-semi prime irreducible submodule in M. Assume that N is not I-prime, so there exists $a \in R ; a \notin[N: M]$ and $m \in M ; m \notin N$ such that a $m \in N-I N$. Since $a \notin[N: M]$, so there exists $x \in \mathrm{M}$ such that $a x \notin N$. Claim that $\mathrm{L} \cap K=N$ where $K=N+(a x), L=N+(m)$. Now, let $\mathrm{b} \in \mathrm{L} \cap K$, so $\mathrm{b} \in N+(a x)$, and $\mathrm{b} \in N+(m)$, therefore there exists n , $\mathrm{w} \in N$ and $\mathrm{r}, \mathrm{s} \in R$ such that stisfiey $\mathrm{b}=\mathrm{w}+\mathrm{sax}=\mathrm{n}+\mathrm{rm}$, then $\mathrm{sax}=\mathrm{n}-\mathrm{w}+\mathrm{rm}$ and so $\mathrm{s} a^{2} x=\mathrm{an}-\mathrm{aw}+\mathrm{ram}$. Therefore $\mathrm{s} a^{2} x \in N-I N$. But N is I-semi prime, then $\operatorname{sax} \in N$ and so $\mathrm{b}=$ sax+ $\mathrm{n} \in N$. Thus, $\mathrm{L} \cap K \subseteq$ N and it is clear that $N \subseteq \mathrm{~L} \cap K$. Therefore the claim $\mathrm{L} \cap K=N$ is true. But N an irreducible, so which is contradiction. Therefore N is an I - prime submodule of M .
$\Leftarrow)$: It follows direct by (1.7).
Theorem (1.13): Let N a proper submodule of a faithful multiplaction R-module M and A be a finitely generated faithful multiplaction ideal of R. Then N is I-semiprime submodule in $A M$ if and only if $[N: A]$ is an I-semi prime in M .
Proof. \Rightarrow)Supposethat N is I-semiprime submodule in AM. Let $a \in R$ and $m \in M$ such that $a^{2} m \in[N: A]-I[N: A]$. Then $a^{2} A m \subseteq N-I N$. If $a^{2} A m \nsubseteq I N$, so by [8, lemma 2.15]
$a^{2} m \in[I N: A]=I[N: A]$ which a contradication. Since N is I-semiprime in AM, then a $A m \subseteq N$ and so a $m \in[N: A]$. Hence $[N: A]$ is an I-semi prime in M
$\Leftarrow)$ Suppose that $[N: A]$ is I-semiprime submodule in M. Let J be an ideal of R , and K be a submodule of AM such that $J^{2} K \subseteq N-I N$. Then $J^{2}[K: A] \subseteq\left[J^{2} K: A\right] \subseteq[N: A]$. Moreover, if $J^{2}[K: A] \subseteq$ $I[N: A]$, by [8], lemma 2.15] $J^{2} \mathrm{~K}=\left[J^{2}[A K: A]\right]=J^{2}[K: A] A \subseteq I[N: A] A=$ AN which is a contradiction. Hence $J^{2}[K: A] \subseteq[N: A]-I[N: A]$. Since $[N: A]$ is an I-semi prime in M, so $\mathrm{J}[K: A] \subseteq[N: A]$ which impliesthat $[\mathrm{JK}: \mathrm{A}] \subseteq[N: A]$. Thus $\mathrm{JK} \subseteq N$ and therefore N is I-semiprime submodule in $A M$.
[Recall that a subset S of a ring R is called multiplicatively closed subset of R if $1 \in S$ and $a b \in S$ for every $a, b \in S$. We known that a proper ideal P of R is prime if and only if $R-P$ is a multiplicatively closed subset of $R,[10]$.
[Now, let M be an R-module and S be a multiplicatively closed subset of R and let R_{s} be the set of all fractional r / s where $r \in R$ and $s \in S$ and M_{s} be the set of all farctional x / s where $x \in M$ and $s \in S$. For $x_{1}, x_{2} \in M$ and $s_{1}, s_{2} \in S, x_{1} / s_{1}=x_{2} / s_{2}$ if and only if there exists $t \in S$ such that $t\left(s_{1} x_{1}-s_{2} x_{2}\right)=0$.]
[So, we can make M_{s} in to R_{s}-module by setting $x / s+y / t=(t x+s y) / s t$ and $r / t . x / s=$ $r x / t s$) for every $x, y \in M$ ands, $t \in S, r \in R$. And M_{s} is the module of fractions.]
[Recall that if N is a submodule of an R-module M and S be a multiplicatively closed subset of R so $N_{s}=\{n / s: n \in N, s \in S\}$ be a submodule of the $R_{S^{-}}$module M_{S}, see [10].]
The quotient and localization of prime submodules are again prime submodules. But in case of I semiprime submodules. We give a condition under which the quotient and localization becomes true as we see in the following theorem.
Theorem(1.14): Let M be an R-module. Let N be an I-semi prime submodule of M.
Then:

1) Suppose that S is a multiplicatively closed subset of R such that $N_{S} \neq M_{S}$ and (IN) $S \subseteq I s N s$. Then N_{S} is an I_{S}-semiprime submodule of an R_{S}-module M_{S}.
2) If $K \subseteq N$ is a submodule of M, then N / K is an I-semiprime submodule of M / K.

Proof.(1): For all $a / s \in R_{S}$ and $x / t \in M s$, let $(a / s)^{2} \cdot x / t=a^{2} x / s^{2} t \in N s-I s N s \subseteq N_{S}-(I N) s=$ $(N-I N) s$. Then $a^{2} x / s^{2} t=n / u$ for $n \in N-I N$ and $u \in S$. So there exists $v \in S$ such that $v^{2} x=a^{2}(v u x) \in N-I N$. As N is $I-$ semiprime submodule, then axvu $\in N$. So axvu/ stvu $=a / s . x / t \in N_{S}$. Hence N_{S} is an I_{S}-semiprime submodule of an R_{S}-module M_{S}.
(2):Let $a \in R, m \in M$ such that $a^{2}(m+K)=a^{2} m+K \in N / K-I(N / K)$. Then $a^{2} m+K \in[N-$ $I N] / K$. So $a^{2} m \in N-I N$. Since N is I-semiprime submodule of M, so am $\in N$.Therefoream + $K \in N / K$. Hence N / K is I - nearly prime submodule of M / K.
Theorem (1.15): Let M be an R-module. Let N and K be a submodules of M such that $\mathrm{K} \subseteq I N$. Then N is I-semiprime submodule of M if and only if N / K is an I-semiprime submodule of M / K.
Proof: \Rightarrow) It follows by part 2 of Theorem (1.14).
$\Leftarrow)$ Let N / K is an I-semiprime submodule of M / K and assume that $a^{2} m \in N-I N$, where $a \in$ R and $m \in M$. If $a^{2}(m+K) \in I(N / K)=I N / K$, then $a^{2} m \in I N$, which is a contradication. So we have $a^{2}(m+K) \in N / K-I(N / K)$. Thus a $(m+K) \in N / K$, because N / K is an I-semiprime. So a $m \in N$. Thus N is an I-semiprime submodule of M.
Recall that asubmodule N of an R -module M is called 0 -semiprime if for $r \in R, x \in M$ with $0 \neq$ $r^{2} x \in N$ implies that $r x \in N$, [2].
Propostion (1.16): Let M be an R-module and let N be a proper submodule of M. Then N is I semiprime in M if and only if $N / I N$ is 0 -semiprime in $M / I N$.
Proof: Suppose that N is I-semiprime in M. Let $a \in R, x \in M$ such that $0 \neq a^{2} x+I N=a^{2}(x+$ $I N) \in N / I N$ in $M / I N$. Then $a^{2} x \in N-I N$. Since N is I-semiprime submodule of M, so $a x \in N$. Therefore $a(x+I N) \in N / I N$. Hence $N / I N$ is 0 - semiprime submodule of $M / I N$.
Conversely suppose that (N)/IN is 0 -nearly prime in M / IN. Let $a \in R, x \in M$ such that $a^{2} x \in N-$ $I N$. So $0 \neq a^{2}(x+I N) \in N / I N$. But $N / I N$ is 0 -semiprime in $M / I N$. Thus $a(x+I N) \in N /$ $I N$.Hence, $a x \in N$ and N is 0 -semiprime.
Proposition (1.17): Let M_{1}, M_{2} be two R-modules and $M=M_{1} \oplus M_{2}$. If $N_{1} \oplus N_{2}$ is an I-semiprime submodule of $M=M_{1} \oplus M_{2}$ such that then N_{1} and N_{2} are I-semiprime in M_{1}, M_{2} respectively.

Proof. Let $a^{2} m_{1} \in N_{1}-I N_{1}$ where $a \in R, m_{1} \in M_{1}$.Then $a^{2}\left(m_{1}, 0\right) \in\left(N_{1} \oplus N_{2}\right)-I\left(N_{1} \oplus N_{2}\right)$. Since $\left(N_{1} \oplus N_{2}\right)$ is an I-semiprime, then $\mathrm{a}\left(m_{1}, 0\right) \in N_{1} \oplus N_{2}$ and so $a m_{1} \in N_{1}$. Hence N_{1} is I semiprime in M_{1}.
similarly N_{2} is an I-semiprime in M_{2}.
In what follows give some of charactrizations for I-semiprime submodules.
Theorem (1.18): Let N be a proper submodule of M, then the following are equivalent:
(1) N is an I-semiprime submodule M.
(2) For $r \in R,\left[N:_{M}\left(r^{2}\right)\right]=\left[I N:_{M}\left(r^{2}\right)\right] \cup\left[N:_{M}(r)\right]$.
(3) For $r \in R,\left[N:_{M}\left(r^{2}\right)\right]=\left[I N:_{M}\left(r^{2}\right)\right]$ or $\left[N:_{M}\left(r^{2}\right)\right]=\left[N:_{M}(r)\right]$.

Proof: (1) \rightarrow (2): Suppose that N is an I-semiprime submodule of M. Let $r \in R, m \in\left[N: M\left(r^{2}\right)\right]$. So $r^{2} m \in N$. If $r^{2} m \notin I N$, then $r m \in N$,because N is an I-semiprime submodule in $M . I f r^{2} m \in I N$, then $m \in\left[I N:_{M}\left(r^{2}\right)\right]$. Hence $\left[N:_{M}\left(r^{2}\right)\right] \subseteq\left[I N:_{M}(r)\right] \cup\left[N:_{M}(r)\right]$. Since $I N \subseteq N$, so $\left[I N:_{M}\left(r^{2}\right)\right] \cup\left[N:_{M}(r)\right] \subseteq\left[N:_{M}\left(r^{2}\right)\right]$. Therefore $\left[N:_{M}\left(r^{2}\right)\right]=\left[I N:_{M}\left(r^{2}\right)\right] \cup\left[N:_{M}(r)\right]$.
(2) \rightarrow (3): It is clear because $[N: r]$ is a submodule of M.
(3) \rightarrow (1): Let $r \in R$ and $m \in M$ such that $r^{2} m \in N-I N$. Then $m \in\left[N:_{M}\left(r^{2}\right)\right]$ and $m \notin$ $\left[I N:_{M}\left(r^{2}\right)\right]$. Then by assumption, $m \in\left[N:_{M}(r)\right]$. Thereforerm $\in N$. Thus N is an I-semiprime submodule of M.
Proposition (1.19): Let N be a proper submodule of M . If N is an I-semiprime submodule $\mathrm{M}, \sqrt{[N: m]}=\sqrt{[I N: m]}$ or $\sqrt{[N: m]}=[N: m]$, for all $m \in M-N$.
Proof: Suppose that N is an I-semiprime submodule of M. Let $\mathrm{m} \in M-N$ and $\mathrm{r} \in \sqrt{[N: m]}-$ $\sqrt{[I N: m]}$. So $\mathrm{r}^{n} \mathrm{~m} \in N-I N$ for some $\mathrm{n} \in Z_{+}$. Since N is an I-semiprime submodule of M , sor \in $[N: m]$. Hence $\sqrt{[N: m]} \subseteq \sqrt{[I N: m]} \cup[N: m]$. Since $I N \subseteq N$, so $\sqrt{[I N: m]} \cup[N: m] \subseteq$ $\sqrt{[N: m]}$ and hence $\sqrt{[N: m]}=\sqrt{[I N: m]} \cup[N: m]$. Therefore $\sqrt{[N: m]}=\sqrt{[I N: m]}$ or $\sqrt{[N: m]}=$ [$N: m$].

Theorem (1.20):

Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ with $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$ be an R-module, where $r_{i} \in R_{i}, m_{i} \in M_{i}$. Then we have:
(1) If N_{1} is an I_{1}-semiprime submodule of M_{1} such that $I N_{1} \times M_{2} \subseteq I\left(N_{1} \times M_{2}\right)$,then $N_{1} \times M_{2}$ is an I semiprime submodule of M.
(2) If N_{2} is an I_{2}-semiprime submodule of M_{2} such that $I N_{2} \times M_{1} \subseteq I\left(N_{2} \times M_{1}\right)$, then $M_{1} \times N_{2}$ is an I semiprime submodule of M.
Proof:Because the prove of (1) and (2) are similar, so we only prove (1). Hence suppose that N_{1} is an I_{1}-semiprime submodule of M_{1} and
let $\quad(a, b) \in R_{1} \times R_{2}$ and $\left(m_{1}, m_{2}\right) \in M$ with $(a, b)^{2}\left(m_{1}, m_{2}\right)=\left(a^{2} m_{1}, b^{2} m_{2}\right) \in N_{1} \times M_{2} \quad-$ $I\left(N_{1} \times M_{2}\right)$, and $N_{1} \times M_{2}-I\left(N_{1} \times M_{2}\right) \subseteq N_{1} \times M_{2}-I N_{1} \times M_{2}=\left(N_{1}-I N_{1}\right) \times M_{2}$. We have $a^{2} m_{1} \in N_{1}-I N_{1}$ but $\quad N_{1}$ is $\quad I_{1}$-semiprime submodule of M_{1}. Then a $m_{1} \in N_{1}$. This give $(a, b)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$. Hence $N_{1} \times M_{2}$ is an I-semiprime submodule of $M_{1} \times M_{2}$.
Proposition (1.21):Let $R=R_{1} \times R_{2}, M_{i}$ be an $R_{i}-\operatorname{module}$ ($\mathrm{i}=1,2$) with $M=M_{1} \times M_{2}$. Let I_{1} and I_{2} be ideals of R_{1} and R_{2} respectively with $I=I_{1} \times I_{2}$. Then all the following types are I semiprime submodule of $M_{1} \times M_{2}$.

1. $N_{1} \times M_{2}$ where N_{1} is an I_{1} - semiprime submodule of M_{1} and $I_{2} M_{2}=M_{2}$.
2. $M_{1} \times N_{2}$ where N_{2} is an I_{2} - semiprime submodule of M_{2} and $I_{1} M_{1}=M_{1}$.

Proof.

1. Suppose that N_{1} is an I_{1} - semiprime submodule of M_{1} and $I_{2} M_{2}=M_{2}$. Let (a, b $) \in R$ and $\left(m_{1}, m_{2}\right) \in M$ such that $\left(a^{2}, b^{2}\right)\left(m_{1}, m_{2}\right)=\left(a^{2} m_{1}, b^{2} m_{2}\right) \in N_{1} \times M_{2}-I\left(N_{1} \times M_{2}\right)=$ $N_{1} \times M_{2}-\left(I_{1} \times I_{2}\right)\left(N_{1} \times M_{2}\right)=\left(N_{1} \times M_{2}-\left(I_{1} N_{1} \times I_{2} M_{2}\right)=\left(N_{1} \times M_{2}-\left(I_{1} N_{1} \times M_{2}\right)=\left(N_{1}-\right.\right.\right.$ $\left.I N_{1}\right) \times M_{2}$. Then $a^{2} m_{1} \in N_{1}-I N_{1}$ and N_{1} is I_{1} - semi prime submodule of M_{1}, so am $\in N_{1}$. Therefore (a, b) $\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$. $\operatorname{So} N_{1} \times M_{2}$ is an I-semiprime submodule of $M_{1} \times M_{2}$.
2. The proof is similar to part (1).

Remark (1.22):Let $R=R_{1} \times R_{2}$. Let M_{i} be an R_{i-} module (i=1,2) with $M=M_{1} \times M_{2}$. Let I_{1} and I_{2} be ideals of R_{1} and R_{2} respectively with $I=I_{1} \times I_{2}$. Then all the following types are I semiprime submodule of $M_{1} \times M_{2}$.
1- $N_{1} \times N_{2}$ where N_{i} is a proper submodule of M_{i} with $I_{i} N_{i}=N_{i}$ for $i=1,2$.
2- $N_{1} \times M_{2}$ where N_{1} is a prime submodule of M_{1}.
3- $M_{1} \times N_{2}$ where N_{2} is a prime submodule of M_{2}.
Proof. 1. Since $I_{1} N_{1}=N_{1}$ and $I_{2} N_{2}=N_{2}$. Then $I_{1} N_{1} \times I_{2} N_{2}=\left(I_{1} \times I_{2}\right)\left(N_{1} \times N_{2}\right)=I\left(N_{1} \times N_{2}\right)=$ $N_{1} \times N_{2}$. So $N_{1} \times N_{2}-I\left(N_{1} \times N_{2}\right)=\emptyset$. Thus there is nothing to prove.
2. Let N_{1} be a prime submodule of M_{1}. Then $N_{1} \times M_{2}$ is a prime submodule of $M_{1} \times M_{2}$ [11] and hence I - prime (I - semiprime) submodule of $M_{1} \times M_{2}$ by (1.6).
3 . The proof is similar to the part (2).

References

1. Dauns, G. 1980. Prime module and one-sided ideals in "Ring theory and Algbera III" (Proceedings of the Third Oklahoma Conference, B. R. McDonald(edittor) (Dekker, NewYork).
2. Tavallaee, H. A. and Zolfagghari, M. 2012. Some remarks on weakly Prime and weakly semiprime submodules, Journal of Advanced Research in Pure Mathematics, 1: 19-30.
3. Shireen, Dakheel, O. 2010. S-Prime submodules and some related concepts. M. Sc. Thesis, University of Baghdad, Iraq.
4. Mohammed, Baqer. H. 2010. Nearly semiprime submodules, M. Sc. Thesis, University of Baghdad, Iraq.
5. El-Bast, Z. A. and Smith, P. F. 1988. Multiplcation modules, Comm. Algebra, 16 :755-779.
6. Kash, F. 1982. Modules and Rings, Acad. Press, London
7. Akray, I. and Hussein, H. S. 2017. I-prime submodules, Acta. Math. Academic Paedagogicae Nyiregyhaziensis, 33:165-173.
8. Akray, I. and Hussein, H. S. 2016. I-primary submodules, arXiv: 1612.02476 v 1 [Math. AC].Burton, D. M. 1971, Abstract and Linear Algebra, University of New Hamphire.
9. Larsen, M. D. and McCarlthy, P. J. 1971. Multiplicative theory of ideals, Academic Press, New York.
10. Khaksari, A. 2011. φ-prime submodules. International journal of algebra , 29: 1443-1449.

[^0]: *Email: adwiaj@yahoo.com

