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Abstract  

     Let   be a commutative ring with identity and   a fixed ideal of   and   be an 

unitary  -module.We say that a proper submodule   of   is  -semi prime 

submodule if            with                                 . In this paper, 

we investigate some properties of this class of submodules. Also, some 

characterizations of  -semiprime submodules will be given, and we show that under 

some assumptions  -semiprime submodules and semiprime submodules are 

coincided. 
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  -المقاسات الجزئية شبه الاولية من النمط
 

 عدوية جاسم عبد الخالق
 المجيخية العامة لتخبية ديالى،  وزارة التخبية، العخاق

 
 الخلاصة

. في هحا  مقاسا احاديا معخفا على   ،    مثالي من  حلقة ابجالية ذات عنصخمحايج، وليكن  لتكن      
ينتمي الى  r اذ كان   -هو مقاس جدئي شبه اولي من النمط  من   البحث ، نقول ان المقاس الجدئي 

. في  الى المقاس الجدئيينتمي     فانه يؤدي الى     ينتمي الى      بحيث    ينتمي الى   ،  
هحا البحث لقج درسنا واعطينا بعض خواص ومميدات هحا النوع من المقاسات الجدئية .وبخهنا تحت شخوط 

 حا النوع من المقاسات الجدئية يكونان متكافئيين.هالاولية و شبه معينة ان المقاسات الجدئية 
 

Introduction 

     Throughout,   represents an associative ring with nonzero identity and   a fixed ideal of R and   

be a unitary  -module. The concept of semiprime submodules was introduced and studied in [1980], 

where a proper submodule   of   is called a semiprime submodule if for each          , 

k   with         implies that r     [1].Then, many generalizations of semiprime submodules 

were studied such as weakly semiprime submodules in [2], S-semiprime submodules in [3]and nearly 

semiprime submodules in [4].  

     In this paper, we extend the concept of semiprime submodules. Let  a fixed ideal of   A proper 

submodule   of   is called  -semiprime if whenever            with   x       implies that 

      We generalize some basic properties of prime and semiprime to  - semiprime submodules 

and give some characterizations of  - semiprime submodules. 
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1. Main result  

Definition (1.1):(i) Let   be an ideal of   and   an  –module. A proper submodule   of   is called 

a  -semiprime submodule of M, if                               implies that    . 

(ii)An ideal   is called  -semiprime ideal iff for every      and any ideal  , (        
   implies      . 

      Now, it is clear that every semiprime submodule   of   is an  -semiprime submodule of  . But 

the converse need not be true. For example, consider  -module        and    〈 ̅〉. Then if 

            〈 ̅〉      〈 ̅〉     〈 ̅〉. So   is an  -semiprime submodule of  . But   is not 

semiprime in  , since    .( ̅ ) =   ̅    , but   . ̅   . 

Propostion (1.2): 

1-Let    are two submodules of an –module   . If      and  is  -semiprime submodule of   

and then   is  -semiprime submodule of  .  

2- If        . Then if N is    - semiprime implies N is   - semi prime. 

3- If   is semiprime then   is  -semiprime. 

Proof: 1, 2 and 3 are trivial.       

The following theorem gives a useful characterization for  -semiprime submodules. 

Theorem(1.3): Let   a proper submodule of an  –module  . Then   is  -semiprime submodule 

in   if and only if for any ideal A of   and submodule   of   such that      – IN, we have 

    .  

Proof.Suppose that   is  -semi prime submodule of    and       –     for                    and 

submodule   of   . If A    ,so there exist     and a   such that ax    Now,         

  –    . We claim that       , because if       , we get a    which is a contradication. 

Thus       . Since       –    , there exists     such that           –    . This 

implies a     On the other hand                    –    . This implies a       ; 

that is ax+am   . But a   , so a    which is a contradication. Therefore       
Conversely suppoes that    m   – IN for a    and m   . Then       (m)    – IN. So by 

assumption, (a)     . Therefore am   . Thus   is an  -semiprime submodule of    
Corollary(1.4): Let   a proper submodule of an  –module  . Then   is  -semiprime submodule in 

  if and only if for any ideal A of   such that       – IN, we have     . 

Remark (1.5): If  -semiprime submodule of an R-module M, then it is not necessarily that         -

semi prime ideal, for example: If    〈 ̅〉 of the  - module   , then   is   -semiprime. But       = 

[〈 ̅〉          is not an  -semiprime ideal of   where         , since                 , but 

2   〈 ̅〉           
      Now, we give characterizations of  -semiprime submodule. But first, we need the following 

definitions. 

 [Recall that an  -module    is called a multiplication module if every submodule N of   has the 

form    for some ideal   of  , [5]. And an R-module   is called faithful if it has zero annihiilator,    

[6 ]. 

Theorem (1.6): Let   a proper submodule of a finitely generated faithful multiplaction –module   

with               . If  is  -semiprime submodule in   if and only if      is an  -semi prime 

ideal of  . 

Proof.  Supposethat   is  -semi prime submodule in  .Let    with                . 
Then      . If       . Then                  which is contradiction. Assume 

      . Then         . But   is  -semi prime submodule. So     , thus        . 
Hence      is an  -semi prime ideal of  . 

  Supposethat       is  -semi prime ideal. Let          such that       –    .  

                          and                 otherwise      =          
          . Thus                      . But       is an  -semi prime ideal, so 

             and implies that                Hence      , so      . Thus  is an 

 -semiprime submodule of  . 

Recall that a proper submodule N of   is called  - prime submodule if                        
      implies that either         or        [7]. Also a proper submodule   of   is called  -
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primary submodule if                               implies that 

either   √     or            And recall that an ideal   is called radical if   √ , [9]. 

By using these concepts we can give the following proposition.  

Proposition (1.7):Let   a proper submodule of an  –module    If   is  -prime then   is  -

semiprime. 

Proof: Let   is  -prime submodule of an R-module M, Assume that            where   
       Since                and   is  -prime submodule of  , then either      or 

         In any case, we have     . Therefore   is  - semi prime submodule of  . 

Proposition(1.8):Let   a proper submodule of an  –module  such that       is radical ideal   If   

is  -primary submodule in  , then  is an  -prime (and hence  -semi prime) submodule of  . 

Proof:Let   is  -primary submodule and       is radical ideal . Assume that            where 

         suppose m    Since   is  -primary submodule of   and m   , then   √       
But       is radical, so         .Therefore   is  - prime (and hence  -semi prime)submodule of 

 .     

From proposition (1.8) we get the following:  

Corollary (1.9):Let   a proper submodule of an  –module   such that       is semi prime ideal of 

   If   is  -primary submodule in  , then   is an  - prime (and hence  -semiprime) submodule of  . 

Propostion (1.10): Let   be an  –module. Let   be an  - semiprime submodule    If     
             for all          , then   is a semiprime submodule    
Proof: Suppose that                , we show that   is a semiprime. Let          
  such that       . If         then  , - semiprime gives      . So assume that        . 

First suppose that          say       where n   .Then                so a      
  . Hence am   . So we can assume that       . Next, suppose that           for 

some        . Therefore               and so          . Hence       . So we can 

assume that              . Since                there exists r       and  

x    with             Then                  . So              .  

Hence        . So   is a semiprime submodule    
Propostion (1.11): Let   be an  –module. Let   be an  - semiprime submodule    If            

for some         then   is a semiprime submodule    
Proof: Let            such that       .  Suppose        . If         then            
and   is an  - semiprime gives      . Suppose that        . Therefore (a+r)

2
 m= (   

            and hence (a+r)m    . So      . Now, we can assume that         . But 

           so there exists x    such that        . Then (a+r)
2
 (m +x)= (                 

   and hence (a+r)(m+x)    . So        Then   is a semiprime submodule    
    Recall that a proper submodule N of   is called an irreducible submodule if for each K , L be two 

submodules of  M such that L       then either L= N or K= N,[ 1]. 

Theorem (1.12):Let   be an irreducible submodule of an  –module   Then   is an  - prime  if and 

only if   -semiprime submodule of  . 

Proof:  Supposethat   is  -semi prime irreducible submodule in  . Assume that   is  not  - prime, 

so there exists                         such that a      . Since         so 

there exists    M such that     . Claim that L      where                       
Now, let b   L   , so b           and b          therefore there exists n, w   and r, s    

such that stisfiey b= w+ sax= n +rm, then sax=n-w+ rm and so s    = an-aw+ram. Therefore 

s        . But   is  -semi prime, then sax  and so b= sax+ n   . Thus, L    
                          L    . Therefore the claim L      is true. But   an irreducible , so 

which is contradiction. Therefore   is an  - prime submodule of M. 

   : It follows direct by (1.7). 

Theorem (1.13): Let   a proper submodule of a  faithful multiplaction  –module   and A be a 

finitely generated faithful multiplaction ideal of R. Then    is  -semiprime submodule in    if and 

only if       is an  -semi prime in M. 

Proof.   Supposethat   is  -semiprime submodule in A . Let           such 

that                 . Then           . If          so by [8, lemma 2.15] 
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                   which a contradication. Since   is  -semiprime in A , then a     and 

so a       . Hence       is an  -semi prime in M 

  Suppose that       is  -semiprime submodule in   . Let J be an ideal of R, and K be a submodule 

of AM such that             Then                         Moreover, if            
      , by [8], lemma 2.15]   K =                            = AN which is a 

contradiction. Hence                      . Since       is an  -semi prime in M, so 

J             which impliesthat [JK:A]       . Thus JK   and therefore   is  -semiprime 

submodule in     
[Recall that a subset   of a ring   is called multiplicatively closed subset of   if     and       for 

every       . We known that a proper ideal   of   is prime if and only if      is a 

multiplicatively closed subset of  ,[    ] 
[Now, let   be an  –module and   be a multiplicatively closed subset of   and let    be the set of all  

fractional  ⁄ where      and     and    be the set of all farctional   ⁄  where     and    . 

For     ,     and     ,    ,     ⁄       ⁄  if and only if there exists     such that 

                    ] 
 [So, we can make     in to   –module by setting               ⁄⁄      and ⁄         ⁄   
   ⁄      for every       and           . And    is the module of fractions. ] 

[Recall that if   is a submodule of an  –module   and   be a multiplicatively closed subset of   so 

    {            ⁄ } be a submodule of the   – module    , see  10].] 

The quotient and localization of prime submodules are again prime submodules. But in case of I- 

semiprime submodules. We give a condition under which the quotient and localization becomes true 

as we see in the following  theorem. 

Theorem(1.14): Let   be an  -module. Let   be an  -semi prime submodule of  . 

Then: 

1) Suppose that  is a multiplicatively closed subset of   such that      and              Then 

   is an   -semiprime submodule of an   –module   . 

2) If       is a submodule of M, then     is an I-semiprime submodule of      
Proof.(1): For all        and       s, let                                       
           Then               for n       and u     So there exists     such that  

                          As   is   semiprime submodule, then                 
                  Hence    is an    -semiprime submodule of an   –module   . 

 (2):Let         such that                          . Then          
       So           Since   is  -semiprime  submodule of  , so     .Therefore   
          Hence    is  - nearly prime submodule of    . 

Theorem (1.15): Let   be an  -module. Let  and K be a submodules of   such that K    .  

Then   is  -semiprime  submodule of   if and only if     is an I-semiprime submodule of       
Proof:  ) It follows by part 2 of Theorem (1.14). 

   Let     is an I-semiprime submodule of     and assume that           where   
          . If                     , then          which is a contradication. So we 

have                     Thus a       N/K             is an I-semiprime. So 

     . Thus   is an  -semiprime submodule of  . 

Recall that asubmodule N of an R-module M is called 0-semiprime  if  for         with 0  

        implies that             
Propostion ( 1.16): Let   be an  -module     let   be a proper submodule of  . Then   is  -

semiprime in   if and only if      is  0-semiprime in      .   

Proof: Suppose that   is  -semiprime in   . Let         such that               
         in     .Then           Since   is   -semiprime  submodule of  , so      . 
Therefore             .  Hence      is  - semiprime submodule of       . 

Conversely suppose that (N )/IN is  -nearly prime in M/IN. Let         such that       
    So                 . But     is  -semiprime in      . Thus           
   Hence,       and is  -semiprime. 

 Proposition (1.17): Let       be two  -modules and         .If       is an  -semiprime 

submodule of         such that then   and   are  -semiprime in   ,    respectively.      
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Proof. Let             where          .Then                          . 

Since         is an  -semiprime, then a            and so         Hence    is  -

semiprime in   . 

similarly    is an  -semiprime in   .  

In what follows give some of charactrizations for I-semiprime submodules. 

Theorem (1.18): Let   be a proper submodule of  , then the following are equivalent: 

 (1)  is an  -semiprime submodule   
 (2) For                                     
 (3) For                                                 
Proof           Suppose that  is an  -semiprime submodule of  . Let                 . So 

      . If        , then      because  is an  -semiprime submodule in   If       , 

then              . Hence                             . Since     , so 

                               . Therefore                                 

           It is clear because      is a submodule of . 

          Let     and    such that          . Then              and    
          . Then by assumption,              Therefore     . Thus  is an -semiprime 

submodule of  . 

Proposition (1.19): Let   be a proper submodule of    If   is an  -semiprime submodule 

  √       √       or √             for all          

Proof  Suppose that   is an  -semiprime submodule of  . Let        and r  √      

 √      . So           for some n   . Since   is an  -semiprime submodule of  , sor  

      . Hence √       √            . Since     , so  √             

√      and hence  √       √            . Therefore √       √       or √      
       
Theorem ( 1. 20): 

     Let                       with                             be an  -module, 

where               .Then we have: 

(1)       is an   -semiprime submodule of    such that I       I(       then       is an I-

semiprime submodule of M  
(2)       is an   -semiprime submodule of    such that I      I(        then       is an I-

semiprime submodule of M  
Proof:Because the prove of (1) and (2) are similar, so we only prove (1). Hence suppose that    is an 

  -semiprime submodule of    and 

     let                                                              – 

I(      , and       – I(             – I       = (           We have 

           but   is   -semiprime submodule of     Then 

a                                    . Hence      is an -semiprime submodule 

of        
Proposition (1.21):Let                              (i=1,2) with        . Let  

        be ideals of           respectively with          Then all the following types are I- 

semiprime submodule of        
1.       where    is an    - semiprime submodule of    and      =    .  

2.       where    is an    - semiprime submodule of    and      =     .   

Proof.  

1. Suppose that    is an   - semiprime submodule of    and      =      Let ( ,   

)                 such that (  ,   )        (      
            –           

      –                                                           
       . Then             and   is   - semi prime submodule of     so a     . 

Therefore  (a, b)              . So     is an I-semiprime submodule of       
 2. The proof is similar to part (1). 
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Remark (1.22):Let           Let                      (i=1,2) with        . Let  

        be ideals of           respectively with          Then all the following types are I- 

semiprime submodule of        
1-       where    is a proper submodule of     with         for        
2-       where    is a prime submodule of     .  

3-        where    is a prime submodule of     .   

Proof. 1. Since      =     and       =    . Then            =         (       = I (         = 

      . So      - I (           . Thus there is nothing to prove.  

2. Let    be a prime submodule of    . Then       is a prime submodule of             and 

hence I- prime (I- semiprime) submodule of      by (1.6). 

3. The proof is similar to the part (2). 
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