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Abstract

Let R be a commutative ring with identity and I a fixed ideal of R and M be an
unitary R-module.We say that a proper submodule N of M is I-semi prime
submodule if a € R, xe M with a?x € N — IN implies that a x € N. In this paper,
we investigate some properties of this class of submodules. Also, some
characterizations of I-semiprime submodules will be given, and we show that under
some assumptions I-semiprime submodules and semiprime submodules are
coincided.

Keywords: Prime submodules, weakly semiprime submodules, semiprime
submodules, I-semiprime submodules.
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Introduction

Throughout, R represents an associative ring with nonzero identity and / a fixed ideal of R and M
be a unitary R-module. The concept of semiprime submodules was introduced and studied in [1980],
where a proper submodule N of M is called a semiprime submodule if for each r € R, x €M,
keZ, with r*x e N implies that rx eN,[1].Then, many generalizations of semiprime submodules
were studied such as weakly semiprime submodules in [2], S-semiprime submodules in [3]and nearly
semiprime submodules in [4].

In this paper, we extend the concept of semiprime submodules. Let/ a fixed ideal of R.A proper
submodule N of M is called I-semiprime if whenever ae R, x € M with a?xe N — IN implies that
ax € N. We generalize some basic properties of prime and semiprime to /- semiprime submodules
and give some characterizations of /- semiprime submodules.
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1. Main result

Definition (1.1):(i) Let  be an ideal of R and M an R—module. A proper submodule N of M is called
a I-semiprime submodule of M, if a?x e N — IN forall a e R,xe M impliesthat € N .

(ii)An ideal A is called I-semiprime ideal iff for every aeR and any ideal I, ( a®) S A—
IA implies (a) € A.

Now, it is clear that every semiprime submodule N of M is an I-semiprime submodule of M. But
the converse need not be true. For example, consider Z-module M = Z,, and N = (8). Then if
I =[N:M]N = [(8):Z,4]¢8) = (8). So N is an I-semiprime submodule of M. But N is not
semiprime in M, since 22 .(2)= 8 N ,but 2.2 ¢ N.

Propostion (1.2):

1-Let N, Kare two submodules of anR—module M . If N < K and Nis I-semiprime submodule of M
and then N is I-semiprime submodule of K.

2-1f I, € I,.Thenif Nis I, - semiprime implies N is I,- semi prime.

3- If N is semiprime then N is I-semiprime.

Proof: 1, 2 and 3 are trivial.

The following theorem gives a useful characterization for I-semiprime submodules.

Theorem(1.3): Let N a proper submodule of an R—module M. Then N is I-semiprime submodule
in M if and only if for any ideal A of R and submodule K of M such that A2K < N— IN, we have
AK € N.

Proof.Suppose that N is I-semi prime submodule of M, and A2K € N - IN for A is an ideal of R and
submodule K of M . If AK ¢ N,so there exist x € K and a € Asuch that ax ¢ N.Now, a’x € a’K C
N - IN. We claim that a?x € IN, because if a?x & IN, we get ax € N which is a contradication.
Thus a?x € IN. Since a®?K S N - IN, there exists m € K such that a?m € a?K € N - IN. This
implies am € N. On the other hand a?x + a?m = a?(x +m) € N - IN. This implies a(x + m) € N;
that is ax+am € N. Butam € N, so ax € N which is a contradication. Therefore AK € N.

Conversely suppoes that a?me N — IN for a€ Rand me€ M. Then (a? )(m) €N — IN. So by
assumption, (a)(m) € N. Therefore am € N. Thus N is an I-semiprime submodule of M.
Corollary(1.4): Let N a proper submodule of an R—module M. Then N is I-semiprime submodule in
M if and only if for any ideal A of R such that A2M < N — IN, we have AM € N.

Remark (1.5): If I-semiprime submodule of an R-module M, then it is not necessarily that [N: M] I-
semi prime ideal, for example: If N = (0) of the Z- module Z,, then N is I-semiprime. But [N: M] =
[(0): Z,] = 4Z is not an I-semiprime ideal of Z where I = [N: M], since 22 € [N: M] — I[N:M] , but
2¢ [(0):Z,] = 4Z.

Now, we give characterizations of I-semiprime submodule. But first, we need the following
definitions.

[Recall that an R-module M is called a multiplication module if every submodule N of M has the
form IM for some ideal I of R, [5]. And an R-module M is called faithful if it has zero annihiilator,
61

Theorem (1.6): Let N a proper submodule of a finitely generated faithful multiplactionR—module M
with I[N: M] = [IN: M]. IfN is I-semiprime submodule in M if and only if[N: M] is an I-semi prime
ideal of R.

Proof.=)Supposethat N is I-semi prime submodule in M.Let a € Rwith a? € [N: M] — I[N: M].
Then a?M C N. If a?M S IN. Then a? € [IN:M] = I[N:M] which is contradiction. Assume
a’?M & IN. Then a?M € N — IN. But N is I-semi prime submodule. So aM € N, thus a € [N: M].
Hence [N: M]is an I-semi prime ideal of R.

&)Supposethat [N:M] is I-semi prime ideal. Let a € R,m € M,such that a?m € N - IN.
a?[Rm:M] = [ a® Rm:M] € [N: M] and a?[Rm:M] & I[N: M] otherwise a? Rm=a?[Rm: MM <
I[N:M]M = IN. Thus a?[Rm:M] € [N:M] — I[N:M]. But [N:M] is an I-semi prime ideal, so
a[Rm: M] < [N: M]and implies that [aRm: M] < [N: M]. Hence aRm S N, so am € N. ThusN is an
I-semiprime submodule of M.

Recall that a proper submodule N of M is called I- prime submodule if rxe N —IN forallr € R,
x € M implies that eitherr € [N:M]orx € N, [7]. Also a proper submodule N of M is called I-
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primary submodule if rx e N—IN forallr € R, x € M implies that

either r € \/[N: M]or x N, [8]. And recall that an ideal I is called radical if I = /1, [9].

By using these concepts we can give the following proposition.

Proposition (1.7):Let N a proper submodule of an R—module M.If N is I-prime then N is I-
semiprime.

Proof: Let N is I-prime submodule of an R-module M, Assume that a?m € N — IN, where a €
R,m € M. Since a’?m = a(am) € N — IN and N is I-prime submodule of M, then either am € N or
a € [N: M]. In any case, we have am € N. Therefore N is I- semi prime submodule of M.
Proposition(1.8):Let N a proper submodule of an R—module Msuch that [N: M] is radical ideal . If N
is I-primary submodule in M, then Nis an I-prime (and hence I-semi prime) submodule of M.
Proof:Let N is I-primary submodule and [N: M] is radical ideal . Assume that a?m € N — IN, where

a € R,m € M, suppose m & N.Since N is [-primary submodule of M and m ¢ N, then a € \/[N: M].
But [N: M] is radical, so a € [N: M] .Therefore N is I- prime (and hence I-semi prime)submodule of
M.
From proposition (1.8) we get the following:
Corollary (1.9):Let N a proper submodule of an R—module M such that [N: M] is semi prime ideal of
R. If N is I-primary submodule in M, then N is an I- prime (and hence I-semiprime) submodule of M.
Propostion (7.10): Let M be an R—module. Let N be an I- semiprime submodule M. If (r+
[N:M])2N & IN forall r € R — [N: M], then N is a semiprime submodule M.
Proof: Suppose that (r + [N:M])?N & IN, we show that N is a semiprime. Leta € Randm €
M such that a?me N. If a?m ¢ IN, then N,I- semiprime gives am € N. So assume that a?meIN.
First suppose that a?N & IN, say a?n ¢ INwhere ne N.Then a?(m +n)eN — IN,so a(m +n) €
N. Hence am € N. So we can assume thata?N < IN. Next, suppose that(a + b)?m & IN for
some b € [N: M]. Therefore (a + b)>me N — IN and so (a + b)yme N. Hence am € N. So we can
assume that(a + [N:M])>m € IN. Since (a+ [N:M])*>m & IN there exists r € [N:M]and
Xe N with (a + r)%2x ¢ IN Then (a +r)?(m + x)e N — IN. So(a+r)(m+x) € N.
Henceam € N.So N is a semiprime submodule M.
Propostion (1.11): Let M be an R—-module. Let N be an I- semiprime submodule M. If (r)?N & IN
for somer € [N: M], then N is a semiprime submodule M.
Proof: Leta € R and m € Msuch thata?me N. Suppose a?N < IN. If a?m ¢ IN, then a?me N — IN,
and Nis anI- semiprime gives am € N. Suppose that r?m ¢ IN. Therefore (a+r)> m= (a® +
r®)m e N—INand hence (a+r)m € N. So am € N. Now, we can assume that r?m € IN. But
(r)2N & IN, so there exists xe N such that r>x & IN. Then (a+r)*> (m +x)= (a® +r®)(m+x) e N —
IN and hence (a+r)(m+x) € N. Soam € N. Then N is a semiprime submodule M.

Recall that a proper submodule N of M is called an irreducible submodule if for each K, L be two
submodules of M such that L n K = N, then either L= N or K= N,[ 1].
Theorem (1.12):Let N be an irreducible submodule of an R—module M.Then N is an I- prime if and
only if I-semiprime submodule of M.
Proof:=)Supposethat N is I-semi prime irreducible submodule in M. Assume that N is not I- prime,
so there exists a € R;a € [N:M] andm € M; m ¢ N such that am € N — IN. Sincea & [N: M], so
there exists x € M such that ax ¢ N. Claim that L n K = N where K = N + (ax), L = N + (m).
Now, letb eL NnK,sob € N + (ax), and b € N + (im), therefore there exists n, w € Nand r, s € R
such that stisfiey b= w+ sax= n +rm, then sax=n-w+ rm and so sa®x = an-aw+ram. Therefore
sa’x € N —IN. But N is I-semi prime, then saxe Nand so b= sax+ n € N. Thus, L NK C
N and it is clear that N € L n K . Therefore the claim L n K = N is true. But N an irreducible , so
which is contradiction. Therefore N is an I- prime submodule of M.
<) : It follows direct by (1.7).
Theorem (1.13): Let N a proper submodule of a faithful multiplaction R—module M and A be a
finitely generated faithful multiplaction ideal of R. Then N is I-semiprime submodule in AM if and
only if [N: A] is an I-semi prime in M.
Proof. =)Supposethat N is I-semiprime submodule in AM. Leta € R andm € Msuch
thata?me[N: A] — I[N:A] . Then a?Am SN —IN. If a?Am ¢ IN, so by [8, lemma 2.15]
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a’*me [IN: A] = I[N: A] which a contradication. Since N is I-semiprime in AM, then aAm < Nand
so ame[N: A]. Hence [N: A] is an I-semi prime in M

&)Suppose that [N: A] is I-semiprime submodule in M . Let J be an ideal of R, and K be a submodule
of AM such that J2K < N —IN. Then J?[K:A] < [J?K:A] < [N: A]. Moreover, if J?[K:A] €
I[N:A], by [8], lemma 2.15] J?K =[J?[AK:A]] =J?[K:AJACI[N:A]JA = AN which is a
contradiction. Hence J2[K:A] € [N:A] —I[N:A]. Since [N:A] is an I-semi prime in M, so
JIK:A] < [N:A] which impliesthat [JK:A] € [N: A]. Thus JK € Nand therefore N is I-semiprime
submodule in AM.

[Recall that a subset S of a ring R is called multiplicatively closed subset of R if 1 € Sand ab € S for
every a,b € S. We known that a proper ideal P of R is prime if and only if R—Pis a
multiplicatively closed subset of R,[10].]

[Now, let M be an R—module and S be a multiplicatively closed subset of R and let R be the set of all
fractionalr/swhere r € R and s € S and M, be the set of all farctional x/s where x € M and s € S.
For x;, x, € Mand s; ,5, €S, x1/s; = x,/s, if and only if there exists t €S such that
t (51 x1-S2 x3) =0.]

[So, we can make M, in to R,—module by setting x/s +y/t = (tx+sy) /st andr /t . x /s =
rx / ts) foreveryx,y € Mands,t €S, r € R. And M is the module of fractions. ]

[Recall that if N is a submodule of an R—module M and S be a multiplicatively closed subset of R so
Ny = {n/s:n € N, s € S} be asubmodule of the R,— module M , see [10].]

The quotient and localization of prime submodules are again prime submodules. But in case of I-
semiprime submodules. We give a condition under which the quotient and localization becomes true
as we see in the following theorem.

Theorem(1.14): Let M be an R-module. Let N be an I-semi prime submodule of M.

Then:

1) Suppose that Sis a multiplicatively closed subset of R such that Ng # Mgand (IN)scIsNs. Then
N; is anlg -semiprime submodule of an Rg¢—module Mg.

2) If K < N is a submodule of M, then N/K is an I-semiprime submodule of M /K.

Proof.(1): For alla/s € Rgand x/t € Ms, let(a/s)?.x/t = a®x/s*t € Ns —IsNs cNg — (IN)s =
(N —IN)s. Then a?x/s*t = n/u for neN —IN and u € S. So there exists v € S such that
vua? x = a® (vux) e N—IN. As N is I —semiprime submodule, then axvu € N.So axvu/
stvu = a/s.x/t € Ng. Hence N is an I -semiprime submodule of an R¢—module Mg.

(2):Leta € R, m € M suchthat a® (m + K) = a*m+ K € N/K — I(N/K). Then a’m+ K € [N —
IN]/K. So a®m € N — IN.Since N is I-semiprime submodule of M, so am € N.Therefoream +
K € N /K.HenceN/K is I- nearly prime submodule of M /K.

Theorem (1.15): Let M be an R-module. Let Nand K be a submodules of M such that K< IN.
Then N is I-semiprime submodule of M if and only if N/K is an I-semiprime submodule of M /K .
Proof: =) It follows by part 2 of Theorem (1.14).

&) Let N/K is an I-semiprime submodule of M/K and assume that a?m € N — IN, where a €
Randm €M . If a?(m+ K) € I(N/K) = IN/K, then a?m € IN, which is a contradication. So we
have a?(m + K) € N/K —I(N/K). Thus a (m + K) eN/K, because N/K is an I-semiprime. So
am € N. Thus Nis an I-semiprime submodule of M.

Recall that asubmodule N of an R-module M is called 0-semiprime if for r € R,x € M with 0+
r?x € N implies that rx € N, [2].

Propostion ( 1.16): Let M be an R-module and let N be a proper submodule of M. Then N is I-
semiprime in M if and only if N/IN is O-semiprime in M/IN .

Proof: Suppose that N is I-semiprime in M . Let a € R, x € M such that 0 # a?x + IN = a?(x +
IN) € N/IN in M/IN.Then a?x € N — IN. Since N is I-semiprime submodule of M, so ax € N .
Therefore a(x + IN) € N/IN. Hence N/IN is 0- semiprime submodule of M/IN .

Conversely suppose that (N )/IN is 0-nearly prime in M/IN. Let a € R, x € M such that a?x € N —
IN.So 0 # a?(x+IN) € N/IN . But N/INis O-semiprime in M/IN . Thus a(x +IN) € N/
IN.Hence, ax € N andNis 0-semiprime.

Proposition (1.17): Let M;, M,be two R-modules and M = M, @ M,.If N; @ N, is an I-semiprime
submodule of M = M; @ M,such that then N;and N,are I-semiprime in M, M, respectively.
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Proof. Let a?m, € N; — IN; where a € R,m; € M;.Then a?(my,0) € (N; ® N,) — I(N; ® N,).
Since (N; @ N,) is an I-semiprime, then a(m4,0) € N; @ N,and so am; € N;. Hence N; is I-
semiprime in M.

similarly N, is an I-semiprime in M,.

In what follows give some of charactrizations for I-semiprime submodules.

Theorem (1.18): Let N be a proper submodule of M, then the following are equivalent:

(1) Nis an I-semiprime submoduleM.

(2)Forr € R,[N:yy r?)] = [IN:p; (r®)] U [N:p (D].

(B)Forr € R, [N:yy )] = [IN:p; (r>)] or [Ny (r3)] = [Ny ()]

Proof: (1) — (2): Suppose that Nis an I-semiprime submodule of M. Letr € R,m € [N:y, (r?)]. So
r?m €N. Ifr?m & IN, thenrm € N,because Nis an I-semiprime submodule in M.Ifr?m € IN,
thenm € [IN:y, (r?)]. Hence [N:y (r?)] S [IN:yy )] U [N:p (r)]. Since INCSN, so
[IN:y (r®)] U [N:p (1] € [Ny (r®)] . Therefore [Nz, (r2)] = [IN:y (r3)] U [Ny ()]

(2) — (3): Itis clear because [N:r]is a submodule ofM.

(3) » (1):Let r € Randm € Msuch thatr?meN —IN. Then m € [N:, (r?)] and m ¢
[IN:), (r®)]. Then by assumption, m € [N:y, (r)]. Thereforerme N. Thus Nis anl-semiprime
submodule of M.

Proposition (1.19): Let N be a proper submodule of M. IfN is an I-semiprime submodule

M,/[N:m] = \J[IN:m] or /[N:m] = [N:m], forallm € M — N.

Proof: Suppose that N is an I-semiprime submodule of M. Let m € M — N and re /[N:m] —
[IN:m]. So r™m € N — IN for some ne Z,. Since N is an I-semiprime submodule of M, sor €

[N:m]. Hence /[N:m]< /[IN:m]U[N:m]. Since INSN, s0 [IN:m]U[N:m] S

J[N:m]and hence /[N:m] = \/[IN:m] U [N:m]. Therefore \/[N:m] = /[IN:m] or \/[N:m] =
[N:m].
Theorem ( 1. 20):

LetR = Ry XRyand M = M; X M, with (1,7, )(my,my) = (mmy,,m,) be an R-module,
where r; € R;, m; € M;.Then we have:
(1) If Ny is an I;-semiprime submodule of M; such that IN; X M, < I(N; X M,),then N; X M, is an I-
semiprime submodule of M.
(2) If N, is an I,-semiprime submodule of M, such that IN, x M; SI(N, X M,), then M; X N, isan |-
semiprime submodule of M.
Proof:Because the prove of (1) and (2) are similar, so we only prove (1). Hence suppose that N; is an
I;-semiprime submodule of M; and

let (a,b) € Ry X Ryand (my,m,) € M with(a, b)?(m,,m,) = (a®m,, b*m,) € Ny x M, —
I(N; X My), and N; XM, — I(N; X My,) € N; XM, — IN; XM, = (N; —IN;) X M, We have

a’m, € N; — IN;but Nyis 1,-semiprime submodule of M. Then
am, € N;.This give (a,b) (my,m,) € Ny X M, . Hence N; X M,is anl-semiprime submodule
of My X M,.

Proposition (1.21):Let R = R; X R,,M; be an R; — module (i=1,2) with M = M; X M,. Let
I;and I,be ideals of Ryand R, respectively with I =1, x I,. Then all the following types are I-
semiprime submodule of M; X M,.

1. N; X M, where N; is an I;- semiprime submodule of M; and I, M, = M, .

2. M; X N, where N, isan I,- semiprime submodule of M, and ;M = M; .

Proof.

1. Suppose that N; is an [;- semiprime submodule of M; and IbM, = M,. Let (a,b
)E R and (my,m,) € M such that (a?,b? )(m;,m,) =(a’my,b?>m,) € Ny X My - I(N; X M,) =
Ny X My = (I3 X I3) (Ny X Mp) = (Ny X My — (Iy1Ny X [;M3) = (Ny X My — (I1Ny X M) = (Ny —
IN;) X M,. Thena?m,; € N; —IN; and Njis I;- semi prime submodule of M;, so am, € Nj.
Therefore (a, b) (my,m,) € N; X M,. SON; X M,is an I-semiprime submodule ofM; X M,.

2. The proof is similar to part (1).
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Remark (1.22):Let R =Ry X R,.Let M; be an R;,_module (i=1,2) with M = M; x M,. Let
I;and I,be ideals of R;and R, respectively with I =1, x I,. Then all the following types are I-
semiprime submodule of M; X M,.

1- N; X N, where N; is a proper submodule of M; with I;N; = N; fori = 1, 2.

2- N; X M, where N; is a prime submodule of M, .

3- M; X N, where N, is a prime submodule of M, .

Proof. 1. Since ;N; =N; and I,N, =N, .Then I;N; X ,bN, = (I; X I,) (N; X Ny) =1 (N; XN,)=
N; X Ny . S0 N; X N- 1 (N; X N, ) = @. Thus there is nothing to prove.

2. Let N; be a prime submodule of M; . Then N, X M, is a prime submodule of M; x M, [11] and
hence I- prime (I- semiprime) submodule ofM; x M, by (1.6).

3. The proof is similar to the part (2).
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