
Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx
 DOI: 10.24996/ijs.2024.65.10.39

*Email: samarqassir@uomustansiriyah.edu.iq

Developing a Graphical Domain-Specific Modeling Language for Efficient

Lightweight Block Cipher Schemas Configuration: LWBCLang

Samar Amil Qassir1*, Methaq Talib Gaata1, Ahmed T. Sadiq2, Imad Fakhri Taha3

1Department of Computer Science, College of Science, Mustansiriyah University, Baghdad, Iraq
2Department of Computer Science, University of Technology-Iraq, Baghdad, Iraq

3Department of Computer Science, College of Science, Düzce University, Düzce, Turkey

Received: 24/5/2023 Accepted: 1/9/2023 Published: xx

Abstract

 The lightweight block cipher is an encryption technique with negligible

computational overhead. Despite its advantages, it faces a substantial challenge.

Correct handwriting of the script code for the cipher scheme is a challenge for

programmers. In this research, we suggest a new graphical domain-specific modeling

language to make it easier for both non-technical users and domain specialists to

implement lightweight block cipher schemes. The proposed language, called

LWBCLang, is a modular and extensible language that offers graphical components

for constructing three essential types of inner block cipher structures. Seven different

methods of keystream generation and all the tests of the NIST suite with performance

analysis are provided. In the context of its meta-model, LWBCLang's abstract and

concrete syntaxes are specified. LWBCLang has been implemented as an internal

DSML with Python as the host language. The evaluation of LWBCLang is based on

qualitative analysis to demonstrate the language's effectiveness and efficiency. Further

benefits of this proposed language are evaluated and discussed in depth in this

research.

Keywords: Cipher Structure, Domain Specific Modeling Language, Symmetric

cipher, Lightweight Block Cipher, Meta-Model.

 :خفيفة الوزن الكتلةلخوارزميات تشفير بتكوين نماذج لغة نمذجة رسومية خاصةتطوير
LWBCLang

 سمر اميل يوسف1* , ميثاق طالب 1, احمد طارق 2, عماد فخري طه 3

 الحاسوب, كلية العلوم, الجامعة المستنصرية, بغداد, العراق علوم سمق 1
 2 قسم علوم الحاسوب, كلية العلوم, الجامعة التكنلوجية, بغداد, العراق

 تركيا , دوزجي جامعة دوزجي,, لعلوما كلية , الحاسوب علوم قسم 3

 الخلاصة
، إلا العديدة ضئيل. على الرغم من مزاياه تشفير الكتلة خفيف الوزن هو تقنية تشفير ذات عبء حسابي

 واجه تحديًا كبيرًا. تمثل الكتابة اليدوية الصحيحة للكود النصي لنظام التشفير تحديًا للمبرمجين. ي هأن

 ISSN: 0067-2904

mailto:samarqassir@uomustansiriyah.edu.iq

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

لتسهيل الأمر على المستخدمين غير ة نمذجة رسومية جديدة خاصة بمجال التشفيرفي هذا البحث ، نقترح لغ
المسماة ، المقترحة اللغة الوزن. خفيفة الكتلة تشفير مخططات لتنفيذ المجال في والمتخصصين التقنيين

LWBCLang الثلاثة الأساسية من هياكل الانواع ، هي لغة معيارية وقابلة للتوسيع توفر مكونات رسومية لبناء
مع NISTتشفير الكتلة الداخلية. يتم توفير سبع طرق مختلفة لتوليد تدفق المفاتيح وجميع اختبارات مجموعة

المجرد والملموس. LWBCLangالخاص به ، تم تحديد بناء جمل meta-modelتحليل الأداء. في سياق
على LWBCLangكلغة مضيفة. يعتمد تقييم Pythonداخليًا مع DSMLباعتباره LWBCLang تطويرتم

التحليل النوعي لإثبات فعالية اللغة وكفاءتها. يتم تقييم الفوائد الإضافية لهذه اللغة المقترحة ومناقشتها بعمق في
 هذا البحث.

1. Introduction

 An encryption technique called the lightweight cipher (LWC) offers anonymity for particular

purposes. This cipher type was created for applications with a high rate of growth and heavy

reliance on low-resource hardware like smartcards, the internet of things (IoT), the wireless

body area network (WBAN), and wireless sensor networks (WSN) [1, 2]. Applications often

share private or sensitive data; therefore, ensuring a sufficient level of data security is a vital

necessity. According to the historical order shown in Figure 1, this cipher method is categorized

as belonging to one group of cipher types [3].

Figure 1: The Cipher Taxonomy [3]

 The classification of ciphers may use more than one of the categorization methods stated

above; for instance, the cipher may be symmetric, block-processing, or lightweight block cipher

(LWBC) [3]. There are three fundamental categories of LWBC based on their internal

structures: substitution-permutation networks (SPN), general-feistel networks (GFN), and add-

rotate-XOR (ARX). The SPN is a type of product cipher that, at each round, combines the

permutation layer with the substitution layer for the diffusion process. In each round of the GFN

cipher structure, the input state is split into two equal parts (the ui and vi branches). The round

function is applied to one half of the input state, which is then processed with the other half of

the data (the target) using logic gates before the two parts are switched. ARXs use modular

addition, rotation, and logic operation XOR without using S-boxes. They produce compact and

fast implementations for software and hardware implementations [4–6]. In this research, we

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

chose the KLEN [7] family, which is based on SPN structure, the GOST [8] family, which is

based on GFN [9], and the SPECK [10] family, which is based on ARX structure, as case studies

for the LWBC domain to implement in the proposed language. The LWBC can be implemented

using either hardware or software. Writing practical and effective cipher programs presents

obstacles (software issues) to software implementation utilizing GPPLs.

 In our previous work [11], we defined a graphical DSML "SCLang" that significantly

increases the flexibility, expressiveness, and ease of stream cipher schema design and

implementation. The first version of our DSML was for both beginner and expert programmers.

It shows in a diagram how to put together the main parts of the stream cipher schema: six

different ways to make a keystream that can be used in a hybrid way (one or multiple levels),

four logic gates, and fifteen tests from the NIST suite that make it easier to do a statistical

analysis of encrypted results. The abstract syntax of SCLang consists of five packages, along

with its restrictions based on domain concepts. For the concrete syntax, meaningful icons for

meta-elements were chosen in addition to the static type used to define the semantics. The

proposed SCLang makes it easier to generate a random sequence and test it by providing a

higher level of abstraction, generating the random sequence automatically, improving the

performance of the cipher schema (in both design and implementation), and making things run

more smoothly by making mistakes less likely.

 The contribution of this research is to design and implement LWBCLang, a graphical

DSML for the LWBC domain. It hides the details of coding and provides a high level of

abstraction when configuring the cipher schema. By providing the main components of the

LWBC domain with seven different keystream generation methods that can be used for seed

random key generation, the language provides the programmer with the ability to construct

cipher schemas in a flexible manner. In addition, provide the statistical and performance tests

for results analysis. In short, LWBCLang provides flexible and automatic transformation of

plaintext into the corresponding ciphertext using graphical components.

 The remaining portions of this research are structured as follows: Highlighted in Section 2

are the DSLs and DSMLs. In Section 3, some relevant DSML work is introduced. The

architecture of the proposed LWBCLang is described in Section 4. Section 5 discusses

implementation specifics and presents some implemented examples. The evaluation of the

proposed language is described in Section 6, and finally, Section 7 offers concluding

observations and enumerates the key components of the language that has been delivered.

2. Domain Specific Language

 DSLs are software languages that offer the abstractions needed to describe a system or

model whose expressiveness is restricted to a narrowly specified area. When compared to

GPPLs in their field of application, they provide significant improvements in expressiveness

and usability [12, 13]. As a result, DSLs have grown in popularity as a new area of study in the

field of software engineering (SE) and as a key component of several software development

methodologies, including generative programming (GP), product lines (PL), software factories

(SF), and model-driven engineering (MDE). More methods than GPPLs may be used to develop

DSLs; they could develop as external or internal languages [14, 15]. The mapping process

between the abstract and concrete syntax of the DSLs can be either textual or graphical. As with

the DSEL for embedded language, the DSML for modeling, and the DSVL for visualization,

the specific functionalities that the DSLs highlight are also primarily related to the intended

domains for which they were developed. Similar to traditional GPPLs, DSLs are expressed

using the three implementation concerns of abstract syntax, concrete syntax, and semantics, as

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

explained in Figure 2. The set of language concepts relevant to a DSL's domain, as well as the

relationships between them, are defined by the language's abstract syntax [15, 16]. This abstract

syntax is translated into a collection of (textual or graphic) symbols by its concrete syntax,

which programmers use to build programs and models. The language editor enables

programmers to write programs or configure models (schemas) via the graphical notations

outlined by the concrete syntax. Additionally, each of a DSL's linguistic constructions has a

distinct meaning according to the language's semantics. In more specific terms, static semantics

limits the categories of valid programs and models, whereas dynamic semantics provides the

criteria by which they are assessed during execution [17]. When compared to the conventional

software development process, which employs GPPLs such as Java or C++, empirical research

has demonstrated that productivity rises with DSL usage [15].

Figure 2: DSL definition [16]

 A programmer who uses a general-purpose programming language (GPPL) is able to create

a program in any field for a wide range of application domains. But each GPPL has its

difficulties; some of them are sensitive to space, small, or capital letters [16]. A program's

design is a genuine difficulty; even a small program can require the naming of many things like

variables, procedures, functions, classes, objects, etc. Thus, if the programmer is a beginner, he

needs to first learn the syntax of that GPPL before trying to write the code, debug all bugs, and

implement the program. In comparison to GPPLs, DSLs provide various benefits for expressing

a particular domain. One benefit is that it offers greater abstractions for the target domain,

increasing output and improving the standard of the development process. The presented

LWBCLang language alleviates the programming complexity of the GPPLs through the use of

simplified interfaces; it provides interactive visualizations; and the user-friendly, common

interactive GUI with drag-and-drop capability allows for fruitful and interactive use for creating

and implementing a wide range of domain schemas.

3. Related Work

 Some studies that have developed and used DSML as a remedy for specific problems in

application domains are discussed [17–19]. To express language learning processes, Sebastián

et al. [20] provided a graphical notation for a domain-specific language. It explains how this

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

notation lets programmers talk about workflow, presentation, content, media, and activity

models by following a meta-model that specifies the abstract syntax of the domain-specific

language to reflect how language learning activities work. In order to create model-based

applications, this notation is implemented as a component of an integrated development

environment. The approach used to analyze this proposal employs the cognitive aspects of

notational systems. The reflexive model editor is inferior to the suggested visual diagram editor

in terms of user experience. In comparison to the conventional reflexive tree notation used by

many model-based development frameworks, the suggested graphical notation is more intuitive

and simple to maintain visually for the generation and maintenance of workflow models and

presentation/activity models.

 Sadik and Geylani [21] proposed a new DSML called DSML4DT for device trees (DTs).

DTs include node specifications as well as descriptions of the devices and peripherals located

inside an embedded system. The development of DT models using the DSML4DT language

enabled designers to visually design and build embedded systems based on DT. DSML4DT’s

meta-model was made up of more than 70 meta-entities and their connections. Based on

DSML4DT model validation rules built on the Sirius platform with the help of Acceleo Query

Language (AQL), the environment was given automatic constraint checks and static semantic

restrictions.

 Model-driven (MD) concepts and DSMLs were used in research by Vjetica et al. [22] to

introduce a framework for the formal description and automated execution of manufacturing

processes. In this manner, manufacturing process models serve as the primary management

tools. In this study, the production process modeling space was examined, and a DSML was

developed that may be used to build production process models appropriate for automatic code

generation. The resulting code is used to automate manufacturing operations on the shop floor

or in a simulation. The language may be used to indicate potential faults that could arise while

the process is running, as well as error handling and remedial actions. The DSML was assessed

by several user groups.

 Graphical Invasive Language (GIRL) was introduced by Marzina et al. [23]. GIRL is a DSL

based on set theory used to express the structural invariants of software requirements. The

purpose of the proposed language's design is to provide a straightforward visual language based

on set notation where demand limitations can be automatically analyzed. The Meta-Object

Facility (MOF) meta_model, consisting of items such as an integer, an operation, and their

connections, provides the GIRL abstract syntax. The alloy analyzer can assess the consistency

of the structural requirement using translational semantics without user input. This translational

technique offers the advantages of formal analysis by enabling the early discovery of

discrepancies in the requirement definitions. Ten volunteer software engineers participated in

empirical research to evaluate GIRL and its automated analysis. Participants did not report any

issues utilizing entities or relationships as a consequence. However, the automated analysis

enabled them to spot errors, and nine out of ten, they accurately defined all requirements.

 Ana et al. [24] suggested a graphical DSML to help domain specialists retrieve event logs

from ERP systems. In particular, domain experts are able to conceptually locate where instances

and events are stored inside a database. Following automated validation, these conceptual

models are converted into SQL code. This modeling language was designed to address

complicated conditions when using ERP systems. The modeling language's applicability was

demonstrated via a case study with actual data to show that the language contained the

necessary components. These constructs make it possible for domain specialists to focus on

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

modeling data during the log extraction stage without learning how to program, which

simplifies the querying of process data.

4. The proposed LWBCLang

 The LWBCLang is thoroughly defined in this section and its subsections. The first step is to

define abstract syntax using a meta-model that is based on LWBC domain concepts and the

rules that control them during the encryption and decryption procedures. Second, expressive

icons are chosen to represent the notions in the LWBC domain, which defines the concrete

syntax. In order to warn the programmer and handle any missing or incorrect connections that

may have occurred during the building of the cipher schema, the semantics are finally defined.

All of these definitions work together to create a valid LWBCLang’s meta_model, which is

then implemented as an internal graphical DSML that takes advantage of Python's strengths

(the host language) and functions as a graphical editor. Figure 3 explains the definition steps of

this proposed LWBCLang language.

Figure 3: Definition steps of the LWBCLang language

 In the proposed LWBCLang language, we provide the following contributions based on

utilizing DSML:

1- A new graphical DSML for the LWBC domain is proposed that significantly increases the

flexibility, expressiveness, and ease of constructing LWBC schemas.

2- The proposed LWBCLang has graphical building blocks for three families in the LWBC

domain: the KLEIN, GOST, and SPECK families for the SPN, GFN, and ARX types of inner

cipher structures.

3- The proposed LWBCLang has seven different keystream generation methods (Geffe,

Random Shuffled, Linear Feedback Shift Register (LFSR), Non-Linear Feedback Shift Register

(NLFSRF), Non-Linear Feedback Shift Register (NLFSRG), Salsa20_based, and A5/1_based)

that can be used to create seed keys for LWBC schemas. More information about these methods

can be found in [25].

4- The proposed LWBCLang includes all of the tests in the NIST suite. The details of these

tests are shown in [25] as graphical parts to make statistical analysis of encrypted results easier.

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

5- The proposed LWBCLang provides performance analysis that computes encryption time,

decryption time, number of encrypted blocks, entropy, and throughput.

 The proposed language provides the programmer with a user-friendly interactive interface

that consists of two sides: the left is the component side, and the right is the workspace side.

The component side consists of seven sections. Each section represents one package in the

proposed meta-model and contains a number of meta-elements (components) that represent the

concepts of the LWBC domain. These seven sections are explained as follows:

1- CommonComponents consists of nine components (Plaintext, Ciphertext, Split, Combined,

left part, right part, ToBlock, key size, and Number of rounds).

2- GFN consists of three components (Rounds, Key generation, and Decryption).

3- SPN consists of four components (ToState, Rounds, Key generation, and Decryption).

4- ARX consists of three components (Rounds, Key generation, and Decryption).

5- Performance consists of two components (Analyzer and a Performance tester).

6- SeedKeyMethods has seven parts: Geffe, linear feedback shift register (LFSR), random

shuffled, A5/1_based, non-linear feedback shift register Fibonacci (NLFSRF), non-linear

feedback shift register Galois (NLFSRG), and Salsa20_based.

7- Test consists of all NIST tests.

i.Abstract syntax of LWBCLang

 The identification of the domain concepts and their relations provides the basis for

constructing a DSML. These concepts, their relations, and the constraints that go along with

them are proposed using a meta-model. To express a language's abstract syntax, a meta-model

is created using the Unified Modeling Language (UML) package diagram. The LWBCLang

meta-model is built using the notions of the LWBC domain. Figure 4 shows that the meta-

model is split into eight packages. Each package has a number of related meta-elements that

represent all LWBC domain concepts and their connections for the three families (KLEIN,

GOST, and SPECK) and the three different types of inner cipher structures (SPN, GFN, and

ARX). The first package, GraphicalEnvironment, of the proposed language defines every

element of the implementation of the graphical environment. These graphics are built using

outside libraries (PyQt5, Matplotlib, and Orange Canavas). The next seven packages’ specifics

are provided in Tables (1-4).

Figure 4: Meta-model of LWBCLang

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

Table 1: Description of meta-elements in the CommonComponents package

Meta-element Side link
Number

of links
Accept Produce

Plaintext

Left

- -

-

bitList

bitLength

 Right
Can be linked to ToBlock meta-

element
Many

Details

It is the main meta-element, the root of every LWBC schema will be start by

this component. It accepts plain text by manually or through load file of these

types (*.doc, *.pdf, *.txt).

Ciphertext

Left

Can be linked to Rounds meta-

element in ARX, GFN and SPN

packages

One

bitList

bitList

bitLength

Right

Can be linked to any meta-

element in NIST tests package
Many

 Details

It is the meta-element used for every LWBC schema as final component, it

used to display and save the result of LWBC schema, as one of these file types

(*.doc, *.pdf, *.txt).

ToBlock

Left

Can be linked to the plaintext

class in the

CommonComponents package.

One

bitList blocks

Right

Can be linked to the ToState in

the SPN package, Split class in

the GFN package, and

Into4Parts in the ARX package.

One

Details
It is the second class (constituent) that is used for the LWBC schemas; it is

used by all GFN, SPN, and ARX packages.

Split

Left

Can be linked to ToBlock One

bitList
Two

bitLists
Right

Can be linked to LeftPart,

RightPart, Rounds in ARX and

GFN

Two

Details This meta-element is used by ARX and GFN packages.

Combined

Left

Can be linked to LeftPart,

RightPart
Two

bitList
Two

bitLists
Right Can be linked to Ciphertext One

Details This meta-element is used by ARX and GFN packages.

LeftPart,

RightPart

Left

Can be linked to split meta-

element
One

bitList bitList

Right

Can be linked to Rounds in

ARX and

GFN

One

Details This meta-element is used by ARX and GFN packages.

KeySize

Left

- -

- no_k

Right

Can be linked to any meta-

element in Seed Key Method

meta-element

One

Details
This meta-element is used by GFN, SPN, ARX packages, it used to determine

the key size of LWBC schema.

NumberRoun

ds

Left

- -

- no_r

Right

Can be linked to Rounds,

KeyGen, and Decrypted meta-

elements IN GFN

Three

Details
This meta-element is used by GFN package, it used to determine the rounds

number of LWBC schema.

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

Table 2: Description of meta-elements in the GFN package

Meta-element Side link
Number

of links
Accept Produce

Rounds

Left

Can be linked to Left Part,

RightPart, NumberRounds, meta-

elements in CommonComponents

package and KeyGen meta-

element in GFN package.

Many bitLists (Left

and Right),

no_r,

subkey_r

bitLists (Left

and Right),

Per_Infor

Right

Can be linked to LeftPart and

RightPart meta-elements in

CommonComponents package

Two

Details
This meta-element is used by GFN LWBC schema. It is performing the

encryption process.

Decrypted

Left

Can be linked to KeyGen, Rounds

meta-elements in GFN and

NumberRounds meta-element in

CommonComponents package,

Performance meta-element in

Performance package.

Many

bitList, no_r,

subkey_r

bitList,

Per_Infor

Right

Can be linked to performance

meta-element in performance

package

Two

Details
This meta-element is used by GFN FWBC schema. It is performing the decryption

process.

KeyGen

Left

Can be linked to any meta-

element in SeedKeyMethods

package

One

bitList, no_r subkey_r

Right

Can be linked to Rounds,

Decrypted in GFN package,

NumberRounds in

CommonComponents package

Three

Details
This meta-element is used by GFN LWBC schemas. It is generated the subkeys

for encryption/ decryption processes.

Table 3: Description of Meta-Elements in the SPN Package

Meta-element Side link
Number

of links
Accept Produce

ToState

Left

Can be linked to ToBlock meta-

element in in CommonComponents

package

One

bitList stateList

Right
Can be linked to Rounds meta-

element
One

Details
It is the first meta-element used for SPN LWBC schema to transfer bitList into

matrix form.

Rounds

Left

Can be linked to ToState and

KeyGene meta-elements
Two

stateList,

subkey_r

CiphstateList,

Per_Infor
Right

Can be linked to Decrypted meta-

element and Ciphertext meta-

element in CommonComponents

package, Performance meta-element

in Performance package

Two

Details
This meta-element is used by SPN LWBC schema. It is performing the

encryption process.

Decrypted
Left

Can be linked Rounds, KeyGene

meta-elements and Performance

meta-element in Performance

package

Three

Ciphstate

List,

subkey_r

stateList,

Per_Infor

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

Right

Can be linked to performance

meta-element in performance

package

Two

Details
This meta-element is used by SPN LWBC schema. It is performing the

decryption process.

KeyGene

Left

Can be linked to any meta-element

in SeedKeyMethods package
One

bitList,

no_r
subkey_r

Right

Can be linked to Rounds and

Decrypted meta-elements in SPN

package

Two

Details
This meta-element is used by SPN LWBC schema. It is generated the subkeys

for encryption/ decryption processes.

Table 4: Description of Meta-Elements in the ARX Package

Meta-element Side link
Number

of links
Accept Produce

Rounds

Left

Can be linked to Left Part, RightPart

meta-elements in

CommonComponents package and

KeyGen meta-element in ARX

package.

Many

Two

bitLists,

subkey_r

CiphbitList,

Per_Infor

Right

Can be linked to ARX_Decrypted

meta-element and Ciphertext meta-

element in CommonComponents

package, Performance meta-element in

Performance package.

Two

Details
This meta-element is used by ARX LWBC schema. It is performing the

encryption process.

Decrypted

Left

Can be linked to Rounds and KeyGene

meta-elements
Two

CiphbitList,

subkey_r,

bitLists,

Per_Infor

 Right
Can be linked to performance meta-

element.
Two

Details
This meta-element is used by ARX LWBC schema. It is performing the

decryption process.

KeyGene

Left

Can be linked to any meta-element in

SeedKeyMethods package.
One

bitList, no_r subkey_r

Right

Can be linked to Rounds and

Decrypted meta-elements in ARX

package.

Two

Details
This meta-element is used by ARX LWBC schema. It is generated the subkeys

for encryption/ decryption processes.

 The test package in the meta-model of LWBCLang consists of fifteen meta-elements that

represent NIST tests implemented according to their details in [25]. This package is used

through directed association relations by the ciphertext meta-element in the

CommonComponents package; each meta-element of this package accepts bitList from the

ciphertext meta-element through its left-side link, then performs its computation and displays

the randomness analysis result.

 The SeedKeyMethods package in the meta-model of LWBCLang consists of seven meta-

elements, according to their details in [25]. This package is used by the KeySize meta-element

in the CommonComponents package and the KeyGene meta-element in the SPN, GFN, and

ARX packages through directed association relations. It gets (bitList and bitLen) from the

KeySize meta-element through its left-side link, does its computation, and sends the

randomness sequence result to KeyGene through its right-side link.

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

The last package in the meta-model of LWBCLang is Performance, which consists of two meta-

elements (Analyzer and Performance Tester). The analyzer meta-element used through

(directed association relation) by any meta-element in the SeedKeyMethods package accepts

(bitList and bitLen) from the seed key through its left-side link, then performs its computation

(periodicity, balance property, run length property, and autocorrelation) and displays the

analysis result. For the performance tester, it is accepting (bitList) from the decrypted meta-

element through its left-side link, then performing its computation (encryption time, decryption

time, number of encrypted blocks, entropy, and throughput), and displaying the analysis results.

ii. Concrete Syntax of LWBCLang

 The definition of “abstract syntax” includes both the ideas that the language represents and

the connections between those ideas. Unlike the description of concrete syntax, it gives a

mapping between meta-elements and their (graphical or textual) representations. This section

covers concrete syntax, which is considered the second design goal, and provides a graphical

representation of the proposed LWBCLang. We chose a graphical notation since it can more

fully and easily depict a variety of relationships. Table 5 displays these graphical icons that are

used for concrete syntax in the language utilized.

Table 5: Some graphical icons of LWBCLang

Concept Component Concept Component Concept Component

Plaintext

Performance

LeftPart

Ciphertext

Test

RightPart

Decrypted

Analyzer

keystream

ToBlock

Rounds

ToState

Combined

Split

KeyGen

iii. Semantics of LWBCLang

 For the provided meta-model and its accompanying meta-elements and links, static semantics

are used in the proposed LWBCLang. This method is known as a “restriction check,” and it is

used on models (schemas) that may be defined by LWBCLang to stop users from constructing

the LWBC schema in the workspace incorrectly. When two components are not connected

correctly or are missing from a schema during building, the language reaction is either to display

an error message or to reset the workspace to the previous step. The information is provided for

each one of these restriction checks as follows:

1- Restriction for meta-element numbers. This restriction was put in place to limit the number

of components used to construct the LWBC schema. Programmers who attempt to utilize

several plaintext components in the same LWBC schema will receive an error notice stating

that each LWBC schema should contain a single plaintext.

2- Restriction for meta-element relations: for the described meta-model, further types of

restrictions are offered for the relationships between the elements. Each connection between

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

two components in the LWBC schema has a name, and if a link is neglected to be linked

between two components, a notification stating the link is missing will be displayed. This

constraint regulates the relationship between components.

3- Restriction on the number of meta-element relationships. One more control is applied to the

number of relationships among the components in the meta-model based on one-to-one, many-

to-one, and one-to-many relationships. One ciphertext component is utilized for each LWBC

schema, although the same plaintext component can be used for many LWBC schemas.

4- Restriction on source and destination: This restriction, which controls the relationship's path,

identifies the relationship's origin and final destination. Control the relationship's direction to

specify the LWBC schema's beginning and conclusion. Before creating the relationship with

the plaintext component, the relationship between the (ToBlock) and (Rounds) components

cannot be formed. The LWBCLang response to an incorrect attempt is to refresh the workspace

and go back one step.

5- Restriction for association-direction relations: This restriction controls the association-

direction relationship defined in LWBCLang. Naturally, a meta-element in a meta-model uses

another meta-element in one direction. The (ToBlock) component uses the (plaintext)

component in one direction. For failed attempts, the LWBCLang response is to refresh the

workspace one step back.

5. LWBC Schemas Implementation Examples

 The parts that came before this one covered at great length the language's syntax and

semantics; this section explains the implementation details and shows examples that are

constructed by the proposed language.

 With Python as the host language and PyCharm acting as the integrated development

environment (IDE), the LWBCLang is created as an internal graphical DSML. The graphical

user interfaces were created using the libraries PyQt5, Matplotlib, and Orange Canavas GUI

templates. Using the Software Ideas Modeler tool, the LWBCLang meta-model was created.

Through the implemented examples, the LWBCLang's viability and utility in a practical

environment are demonstrated. We chose these three families since they are among the most

well-known LWBC domain algorithms: KLEIN, GOST, and SPECK. The encryption and

decryption schemes for the KLEIN LWBC, which is based on the SPN structure, and the GOST

cipher scheme, which is based on the GFN structure, are shown in Figures 5 and 6.

Figure 5: KLEIN LWBC encryption and decryption schema

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

Figure 6: The GOST LWBC encryption schema

6. Evaluation

 The assessment employed in this work attempts to evaluate and establish the extent of the

proposed language in accordance with the quality and performance standards of graphical

modeling languages. Five subjective criteria are employed for a qualitative study of the

definition in accordance with metrics [26], and these five criteria are graphical nature,

capabilities, ease of understanding, paradigm aid, and extensibility. For each of the

aforementioned indicators, further detailed metrics were required. In order to demonstrate what

the proposed language achieves, we presented the metrics tables from [26] and highlighted them

in light orange as follows:

i.Graphical Nature

The primary components of the ideal graphical language must all be naturally visible. The term

"visual" in this sense refers to charts, diagrams, and icons, as well as the skillful use of color

and spatial organization. As shown in Table 6, five distinct subjective measures that are more

practical can be inferred from the qualitative assessment. The outcomes of our proposed

language were as follows: the initial metric was mostly visual; diagrams with meaningful

symbols for the second metric; over the entire language for the third; useful use throughout for

the fourth; and useful use throughout for the last metric.

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

Table 6: Measures to evaluate the graphical nature [26]
Assess highest

score

 Lowest score

Graphics use completely

graphic, such

as iconic

mostly visual only a little

graphic with text

commentary

Text with visual

embellishments

completely

textual

Graphic used type Diagrams

with

meaningful

symbols

Icons and a

diagram that

are largely

meaningful

less important

symbols and

diagrams

Simple forms or

graphics

No images

Graphic use

Thoroughness

over the

entire

language

Generally

applicable to

most

semantics

Approximately

half of meanings

are applicable

Applied to only a

few meanings

No images

Utilizing space

effectively

Useful use

throughout

Useful in

several

aspects

Average

efficiency

a minimally

effective spatial

range

Arrangement

of space is

insufficient

Effectiveness of

color use

Useful use

throughout

Using color

effectively in

some

situations

using color to

make a

distinction

a minimal use of

color

No use of color

or improper use

of color

i.Capabilities

 The term “capabilities” refers to the language's broad applicability rather than its

confinement to a single sector of use. On the basis of the qualitative assessment, as explained

in Table 7, two metrics may be established. The outcomes of the proposed language were as

follows: the first metric (specific intent) and the second metric (a few domains).

Table 7: Measures to evaluate the capabilities [26]
Assess highest

score

 Lowest

score

Functioning

perfection

a general

purpose

capability

lacking some

capabilities

Several but not all

places are affected

Applicable to

several areas

specific

intent

Naturalness of

implementation

to all

domains

to most domains to many domains to several

domains

a few

domains

ii. Ease of Understood

 This measure refers to how easily programs written in the language may be understood. The

premise behind visual programming languages is that their graphical nature should make

programs easier to understand. If the language doesn't satisfy this need, all we'll be forced to do

is learn a new notation for writing programs, which won't solve the software issue. A graphical

DSML that is intended for a specific audience is more likely to be successful in boosting

understanding than text-based languages. The qualitative evaluation depends on five metrics,

which are described in Table 8. The outcomes of our proposed language were much easier than

comparison language for the first and much easier for the rest of the metrics.

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

Table 8: Measures to evaluate the ease of understanding [26]
Assess highest score Lowest score

Ease of

understood

 Much easier than

comparison

language

Moderately Moderately Moderately Much less than

comparison

language

Ease for

programmers

Much easier Moderately Moderately Moderately Much less

Simplicity for

non-technical

programmers

Much easier Moderately Moderately Moderately Much less

Expert user Much easier Moderately Moderately Moderately Much less

iii. Paradigm aid

 This measure indicates how well a language supports the programming paradigm for which

it is intended. Two metrics can be derived from the qualitative judgment, as explained in Table

9. The outcomes of our proposed language were (very limited) for the first metric and (support

for one paradigm) for the second metric.

Table 9: Measures to evaluate the paradigm aid [26]
Assess highest score Lowest score

Support for a

paradigm

Strong Moderate Some support Weak very limited

domain of

support

all paradigms several

paradigms

some

paradigms

few

paradigms

one paradigm

iv. Extensibility

 This metric refers to the capacity of the language to write large and complex programs. The

inextensibility of modern software development processes, methodologies, and tools has been

one of the main problems in software engineering for the past 25 years. Four metrics can be

derived from the qualitative judgment, as explained in Table 10. The outcomes of our proposed

language were strong for all metrics.

Table 10: Measures to evaluate extensibility [26]
Assess highest score Lowest score

support for

modularity

Strong Moderate Some aid Weak Nothing at all

support for

abstraction

Strong Moderate Some aid Weak Nothing at all

Support for

information

concealing

Strong Moderate Some aid Weak Nothing at all

support for data

encapsulation

Strong Moderate Some aid Weak Nothing at all

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

The presented LWBCLang is a new DSML in a graphical manner for the LWBC domain. Table

11 presents a short comparison with the traditional GPPL that is used for software

implementation in the LWBC domain.

Table 11: Comparison between traditional and the DSML programming language
Programming

approach
Abstract syntax

Concrete

syntax

No. of

programs
Purpose Paradigm

Execution

method

Traditional

approach, the

GPPL like C#,

Python, Java

Grammar-based texture

One

program in

each file

General
Procedure/

OOP

Compiled/

Interpreted

Modern DSML

Approach
Grammar/Model

Texture/

Graphical

One/Many

Schema in

each file

Specific OOP
External/

Internal

7. Conclusions

 In this research, a new graphical DSML called LWBCLang has been developed for the

LWBC cipher domain and is intended for both non-technical users and domain experts. To this

purpose, a meta-model has been supplied as the domain's abstract syntax with reference to

LWBC concepts and their relations among one another. Also, the concrete syntax of the

language has been made available as graphical, meaningful icons. This lets programmers of

LWBC schemas make models in LWBCLang for the three basic types of inner cipher structures:

SPN, GFN, and ARX, as well as for the three families: KLEIN, GOST, and SPECK. It must be

noted that static semantic controls for LWBCLang, within the framework of a number of

restrictions, are taken into consideration for explaining the meaning of this new language. For

seed-key generation, seven distinct techniques were offered. Last but not least, three kinds of

cipher analysis were offered: a set of performance analyses, an analyzer for seed key generation,

and comprehensive NIST tests for statistical analysis. In addition to concealing implementation

details, flexibility, and a highly expressive graphical user interface with drag-and-drop

functionality, an evaluation based on implemented examples reveals a high level of

performance. Users have a straightforward and user-friendly method for creating and

implementing LWBC domain schemas using the proposed language.

8. Acknowledgements

 The work offered in this paper was supported by Mustansiriyah University

(www.uomustansiriyah.edu.iq), which is appreciatively acknowledged.

References

[1]

A. S. Jamil, R. A. Azeez, A. Al-Adhami, and N. F. Hassan, "Multibiometric System with

Runs Bits Permutation for Creating Cryptographic key Generation Technique,” Iraqi

Journal of Science, vol. 64, no. 1, pp. 452–468, Jan. 2023. Doi: 10.24996/ijs.2023.64.1.40.

[2] M. S. Fadhil, A. K. Farhan, and M. N. Fadhil, "A lightweight AES Algorithm

Implementation for Secure IoT Environment,” Iraqi Journal of Science, vol. 62, no. 8, pp.

2759–2770, Aug. 2021. Doi: 10.24996/ijs.2021.62.8.29.

[3] Qassir, Samar & Gaata, Methaq & Sadiq, Ahmed, "Modern and Lightweight Component-

based Symmetric Cipher Algorithms: A Review," Aro-The Scientific Journal of Koya

University, vol. 10, pp. 152-168, 2022. doi:0.14500/aro.11007.

[4] W. Chen, L. Li, Y. Guo, and Y. Huang, "SAND-2: An optimized implementation of

lightweight block cipher," Integration, vol. 91, pp. 23–34, Jul. 2023, Doi:

10.1016/j.vlsi.2023.02.013

https://doi.org/10.24996/ijs.2023.64.1.40

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

[5] A. D. Dwivedi and G. Srivastava, "Security analysis of lightweight IoT encryption

algorithms: SIMON and SIMECK," Internet of Things, vol. 21, p. 100677, Jan. 2023, Doi:

10.1016/j.iot.2022.100677.

[6] M. M. Hoobi, "Strong Triple Data Encryption Standard Algorithm using Nth Degree

Truncated Polynomial Ring Unit, " Iraqi Journal of Science, vol. 58, no. 3C, pp. 1760–1771,

Nov. 2021.

[7] P. Singh, B. Agrawal, Rahul Kumar Chaurasiya, and B. Acharya, "Low-area and high-speed

hardware architectures of KLEIN lightweight block cipher for image encryption," Journal

of Electronic Imaging, vol. 32, no. 01, Jan. 2023, Doi: 10.1117/1.jei.32.1.013012.

[8] H. Najm, H. K. Hoomod, and R. Hassan, “A New WoT Cryptography Algorithm Based on

GOST and Novel 5d Chaotic System,” Int. J. Interact. Mob. Technol., vol. 15, no. 02, pp.

184–199, Jan. 2021.

[9] W. Yihan and L. Yongzhen, "Improved Design of DES Algorithm Based on Symmetric

Encryption Algorithm," in 2021 IEEE International Conference on Power Electronics,

Computer Applications (ICPECA), Shenyang, China, 2021, pp. 220-223, Doi:

10.1109/ICPECA51329.2021.9362619.

[10] G. Avoine and J. Hernandez-Castro, Eds., "Security of Ubiquitous Computing Systems,”

Springer Nature, 2021. Doi: 10.1007/978-3-030-10591-4.

[11] Samar Amil Qassir, Methaq Talib Gaata, and A. T. Sadiq, “SCLang: Graphical Domain-

Specific Modeling Language for Stream Cipher,” Cybernetics and Information

Technologies, vol. 23, no. 2, pp. 54–71, Jun. 2023, Doi: doi:10.2478/cait-2023-0013.

[12] W. I. Yaseen and M. F. Hassan, "Construction of Atmospheric Earth Modeling Using C++

Language,” Iraqi Journal of Science, vol. 64, no. 5, pp. 2601–2613, May 2023.

[13] W. Chen, Q. Yang, Z. Jiang, J. Xing, Q. Zhao, Q. Zhou, and D. Han, "Touch: A Textual

Programming Language for Developing APPs of Insect Intelligent Building,” Hindawi

Scientific Programming, vol. 2020, pp. 1–26, Sep. 2020, Doi: 10.1155/2020/8887588.

[14] V. KK Nair, T. Rayner, S. Siyambalapitiya, and B. Biedermann, “Domain-general cognitive

control and domain-specific language control in bilingual aphasia: A systematic quantitative

literature review,” Journal of Neurolinguistics, vol. 60, p. 101021, Nov. 2021,

doi:10.1016/j.jneuroling.2021.101021.

[15] L. Shen, X. Chen, R. Liu, H. Wang, and G. Ji, "Domain-Specific Language Techniques for

Visual Computing: A Comprehensive Study,” Archives of Computational Methods in

Engineering, vol. 28, no. 4, pp. 3113–3134, Oct. 2020, Doi: 10.1007/s11831-020-09492-4.

[16] C.-Y. Tsai, “Improving students’ understanding of basic programming concepts through

visual programming language: The role of self-efficacy,” Computers in Human Behavior,

vol. 95, pp. 224–232, Jun. 2019.

[17] D. Méndez-Acuña, J. Galindo, T. Degueule, Benoit Combemale, and B. Baudry,

"Leveraging Software Product Lines Engineering in the development of external DSLs: A

systematic literature review,” Computer Languages, Systems & Structures, vol. 46, pp. 206–

235, Nov. 2016. Doi: 10.1016/j.cl.2016.09.004.

[18] S. Arslan and G. Kardas, "DSML4DT: A domain-specific modeling language for device tree

software,” Computers in Industry, vol. 115, p. 103179, Feb. 2020. Doi:

10.1016/j.compind.2019.103179.

[19] N. Nikolov, Y. D. Dessalk, A. Q. Khan, A. Soylu, M. Matskin, A. H. Payberah, and Roman

"Conceptualization and scalable execution of big data workflows using domain-specific

languages and software containers,” Internet of Things, vol. 16, p. 100440, Aug. 2021. Doi:

10.1016/j.iot.2021.100440.

[20] G. Sebastián, R. Tesoriero, and J. A. Gallud, "A domain specific language notation for a

language learning activity generation tool," Multimed Tools Appl, vol. 80, pp. 36275–36304,

Sep. 2021.

[21] S. Arslan and G. Kardas, “DSML4DT: A domain-specific modeling language for device tree

software,” Computers in Industry, vol. 115, p. 103179, Feb. 2020.

[22] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, and I. Luković, “Multi-level

production process modeling language,” Journal of Computer Languages, vol. 66, p.

101053, Oct. 2021.

https://doi.org/10.1007/s11831-020-09492-4
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.compind.2019.103179
https://doi.org/10.1016/j.iot.2021.100440

Qassir et al. Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx

[23] M. Vidal, T. Massoni, and F. Ramalho, “A domain-specific language for verifying software

requirement constraints,” Science of Computer Programming, vol. 197, p. 102509, Oct.

2020.

[24] A. Pajić Simović, S. Babarogić, O. Pantelić, and S. Krstović, "Towards a Domain-Specific

Modeling Language for Extracting Event Logs from ERP Systems,” Applied Sciences, vol.

11, no. 12, p. 5476, Jun. 2021, Doi: 10.3390/app11125476.

[25] B. A. Hameedi, A. A. Hattab, and M. M.Laftah, "A Pseudo-Random Number Generator

Based on New Hybrid LFSR and LCG Algorithm,” Iraqi Journal of Science, vol. 63, no. 5,

pp. 2230–2242, May 2022.

[26] J. D. KIPER, E. HOWARD, and C. AMES, "Criteria for Evaluation of Visual Programming

Languages,” Journal of Visual Languages & Computing, vol. 8, no. 2, pp. 175–192, Apr.

1997, Doi: 10.1006/jvlc.1996.0034.

https://doi.org/10.3390/app11125476

