Abdul-AlKalik and Al-Mothafar Iraqi Journal of Science, 2019, Vol. 60, No.11, pp: 2468-2472
DOI: 10.24996/ijs.2019.60.11.17

R —

fragi
Journal of

K .
NCIENCE

e
ISSN: 0067-2904

I-Nearly Prime Submodules

Adwia J. Abdul-AlKalik', Nuhad S. Al-Mothafar?
'Republic of Irag, Ministry of Education, Directorate General of Education In Diyala
“Department of Mathematics, College of Science, University of Baghdad, Iraq

Received: 7/4/ 2019 Accepted: 18/ 6/2019
Abstract:

Let R be a commutative ring with identity, and I a fixed ideal of R and M be an
unitary R-module. In this paper we introduce and study the concept of I-nearly
prime submodules as genrealizations of nearly prime and we investigate some
properties of this class of submodules. Also, some characterizations of I-nearly
prime submodules will be given.
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Introduction
Throughout, R represents an associative ring with nonzero identity and I a fixed ideal of R. A
proper submodule N of M is called a prime submodule if whenever re R and x e M with
rx € N implies that re [N: M] or x € N, [1]. One of generalization of this concept was studied as
nearly prime, [2]. A proper submodule N of M is called nearly prime submodule if whenever r €
R,x € M and rx € N implies that either x € N + J(M) or r € [N + J(M): M]. Previuos work [3] and
[4] introduced the notions I- prime and I- primary submodules. A proper submodule N of M is called

I- prime submodule of M if rx e N — IN forallre R, x € M implies that eitherr € [N: M] orx € N.
A proper submodule N of M is called I- primary submodule of M ifrx e N—INforallre R, x e M

implies that eitherr € \/[N:M]orx e N. In this paper, we define and study I- nearly prime
submodules which are generalizations of prime submodules and nearly prime submodules to I- nearly
prime submodules. A proper submodule N of M is called I-nearly prime submodule if rx e N —
INforallre R, x € M implies that eitherr € [N +J(M):M]orx e N + J(M), where J(M) is the
intersection of all maximal submodule of M. Here is a brief summary of the paper. In Theorem 1.4 we
show that N is I-nearly prime submodule in M if and only if for any ideal J of R and submodule K of
M such that JK € N — IN, we have K& N + J(M) or J & [N + J(M): M]. In Proposition 1.6 we show
that if N is an I- nearly prime in M and [N: M]N & IN, then N is a nearly prime in M. In Theorem
1.8 we show that if N is a submodule of an R —module M then the following statements are
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equivalent: (1) N is an I-nearly prime in M.(2) For r € R\[N +J(M):M],[N:r] =[N +J(M)] U
[IN:7].(3) For r € R\[N +J(M):M], [N:r] = N+ J(M)or[N:r] =[IN:r].

1. Main result

Definition 1.1: A proper submodule N of an R-moadule M is called I-nearly prime submodule if and
only if whenever reR, x€ M and rx € N—IN implies that either x e N+J(M)or r €
[N + J(M): M], where I is an ideal of R and J(M) is the Jacobson radical of M.

For examples:1- Consider the ring of integers Z and the Z-module Z12. Take

| = 4Z as an ideal of Z and N = (4) be a submodule of Z12 generated by

4. Then N is an I-nearly prime submodule of Z12 since N — IN = (4) — 4Z. (4) =

(4)—(4) = @. On the other side, N is not a prime submodule since 4 = 2.2 € N but not 2 € N nor 2€
[N:z121].

2- Let N= (0) is an I-nearly prime submodule of Z6 as a Z-module since if I = (0) is taken as an ideal
of Z, then N-IN= (0) - (0). (0) = @ . On the other side, N is not a nearly prime submodule, see [2].

3- Consider the ring of integers Z and the Z-module Z40 and N = (8). Take

| = [N:M]= 8Z as an ideal of Z, then [N:M]N=N . Then N is an I-nearly prime submodule of Z12 since
N — IN = (8) — 8Z. (8) = @. On the other side, if I = (0) is taken as an ideal of Z, then [N:M]N=(0),
then N is not an I-nearly prime submodule since 8 = 4.2 € N but not 2 € N nor 4€ [N:Z12] .
Proposition (1. 2):

1- If N is an I- nearly prime in M and K is a submodule of M with J(M) < J(K) , then N is an I-
nearly prime submodule of K.

2-1fI; €I, . Then Nis an I; - nearly prime implies N is I,- nearly prime.

Proof. (1): Suppose that am € N — IN where a € R and m € K. Since N is an [-nearly prime
submodule of M, so either me€ N +J(M) ora € [N +J(M): M]. But J(M) < J(K), so either
m € N+ J(K) ora € [N + J(K): K] .Therefore N is an I- nearly prime submodule of K.

(2): LetmeMand me M witham € N—IL,N. Sincel; €I,, N—I,L,NS N —I;N ,then am €
N —L;N. But N is an I, - nearly prime. So a € [N +J(M): M] or m € N 4+ J(M). Thus N is an I,-
nearly prime.

Proposition (1.3): Let N be a submodule of an R — module M.

1- If N is an I-nearly prime and /(M) < N, then N is an I-prime (and I-primary) .

2- If N is a maximal an I- nearly prime submodule of a local R-module M, then N is an I-prime (and
[-primary) in M.

3- If N is an I- nearly prime submodule of a semisimple R-module M, then N is an I-prime (and I-
primary) in M.

Proof. (1).The proof is trivial.

(2). Suppose that am € N — IN where a € R,m € M. Since N is an [-nearly prime submodule of
M, so either m € N+ J(M)ora € [N + J(M): M] . But M be a local and N is a maximal, so J(M) =
N, [5]. So either m € N ora € [N: M] .Therefore N is an I-prime (and I-primary) in M.

(3). Suppose that am € N —IN where me M and a € R. Because N is an I-nearly prime
submodule of M, so either a € [N + J(M): M] orm € N + J(M). But M be a semisimple an R—
module, so J(M) = 0,[6]. So either m € N ora € [N: M]. Hence N is an I-prime (and I-primary) in
M

The following theorem gives a useful characterization for an I-nearly prime submodules.

Theorem (1.4): Let N be a proper submodule of an R—module M. Then N is an I-nearly prime
submodule in M if and only if for any ideal J of R and submodule K of M such that JK € N — IN, we
have K& N+ J(M)orJ & [N + J(M): M]."

Proof. Suppose that N is an I-nearly prime in M. Let JK € N —IN for some ideal J of R and
submodule K of M . If J €[N +J(M):M]andK &€ N + J(M), so there exists re J\[N +
J(M): M] and x € K\[N + J(M)] such that rx € N — IN.

By assuming that N is an I-nearly prime submodule in M, either x € N + J(M) orr € [N + J(M): M]
which is a contradiction. Hence J S [N + J(M):M] or K & N + J(M).

Conversely supposse that rm € N - IN wherer € R,m € M. So (r)(m) = (rm)

G N - IN. So, either (r) S [N +J(M):M] or (m) & N + J(M) . Therefore r € [N + J(M): M] or
m € N + J(M). Thus N is an I-nearly prime submodule of M.
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Let R be aring . A subset S of R is called multiplicatively closed subset if 1€ S and ab € S,
Vab €S,][7].

Let R, be the set of all fractional r/s where r € R and s € § and M, be the set of all farctional
x/s where x e M and s € S. For x; , x, € M and s, ,s, € S, x1/51 = x,/5s, if and only if there
exists t € S such that t (s; x;—5s, x5) = 0.

So, we can make M into R;—module by setting x/s + y/t = (tx+sy) /st andr /t . x /s =
rx /ts) forevery x,y € M and s,t €S, r € R. And M, is the module of fractions. If N is a
submodule of M, so Ng = {n/s;n € N, s € S} is a submodule of Mg [7].

The quotient and localization of prime submodules are again prime submodules. But in case of I-
nearly prime submodules, we give a condition under which the quotient and localization become true.
Proposition (1.5): Suppose that N is an I-nearly prime in M.

1) If Ny # Mg and (IN)s cIsNs. Then Ng is an I -nearly prime submodule of an R¢—module Mj.
2)IfKcNand N/K+J(M/K) =N +J(M)/ K, then N/K is an I-nearly prime in M/K .

Proof (1): For all r/s € Rg and x/t € Ms, let r/s.x/t = rx/st € Ns—IsNs cNg — (IN)s =
(N—IN)s. Then rx/st= m/u for me N—IN and u €S. So for some v € S,vurx =
vstm e N —IN. As N is an [-nearly prime submodule, so either vur € [N +J(M): MJorx € N +
JM). So ruv/suv = r/s €[N+ ]J(M):M]g= [Ng+]J(Ms): Mg] or %e [N +J(M)]s = Ns +
J(Ms) by [8]. Hence Ng is an I -nearly prime in M.

(2): Supposethatm € M anda € Rwitha(m+ K) =am+ K € N/K —I(N/K).

Then am + K € [N —IN]/K. So am € N —IN. Since N is an I-nearly prime submodule of M, so
either me N+ J(M)ora € [N +J(M): M].Therefore m+K € N/K+J(M/K) ora€[N/K +
J(M/K): M/K]. Therefore N/K is an I- nearly prime in M /K.

Proposition (1.6): If N isan I- nearly primein M and [N: M|N & IN, then N is a nearly prime in M.
Proof: We show that N is a nearly prime. Suppose that am € N where m € M,a € R.

If am ¢ IN, then N, I- nearly prime gives m € N+ J(M) or a € [N + J(M): M]. So assume that
ame IN. First suppose that aN & IN, say an ¢ IN where ne N.-Then a(m+n)eN —IN,so a
E[N+JM):M]or (m+n) € N+ J(M). Hence a € [N +J(M):M] or m € N + J(M). Now, if
m[N:M] € IN.So 3 b € [N: M] such that mb ¢ IN. So (a+b)me N. Therefore m € N + J(M) or
(a+b) €E[N+]J(M):M]. Then m € N+J(M) ora € [N +J(M): M]. Suppose that m[N: M] <
IN. Since [N:M]N € IN, there exists r € [N:M], x e N withrx € IN. Then (a+7r)(m+
x)eN—IN.Then (a+7r) €[N+ ]J(M):M]or (m+x) € N+ J(M).Hencea € [N + J(M): M] or
m € N+ J(M). So N be a nearly prime in M.

Corollary (1.7): If N is an 0- nearly prime in M and [N: M]N = 0. Then N is a nearly prime in M.

In what follows we give some charactrizations for an I-nearly prime .

Theorem (1.8): Suppose that N is a submodule of an R —module M. Then the following statements
are equivalent:

(1) N is an I-nearly prime in M.

(2) Forr € R\[N +J(M): M],[N:r] = [N +J(M)] U [IN:7].

(3) For r € R\[N + J(M):M], [N:r] = N+ J(M)or[N:r] = [IN:7].

Proof: (1) — (2): Suppose that N is an I-nearly prime submodule of M such that r ¢ [N +
J(M):M].Letm € [N:r].Sorm € N.If rm & IN,thenm € N + J(M).

Because N is an I-nearly prime submodule in M. If rm € IN, som € [IN:r]. Hence [N:r] S [N +
J(M)] U [IN:r]. Now since IN & N, the other inclusion is hold.

(2) = (3): Because [N:r] is a submodule of M, so it is clear.

(3) = (1): Suppose that rme N —IN where r e R,m € M. If r € [N +J(M): M], so either
[N:r] = N+J(M)or [N:r] = [IN:r].Since rm&IN, so még][IN:r]. But rmeN, so
me[N:r].Then [N:r] =N+ J(M). Therefore me N + J(M). Thus N is an I-nearly prime
submodule of M.

Proposition (1.9): Suppose that M,be an R,-module and M, be an R,-module. Then we have :

(1) If Ny is an I;- nearly prime submodule of M; such that IN; x M, € I(N; X M,) and J(M;) X
M, € J(M; X M,), then N; X M, is an |- nearly prime in M; X M,.

(2): If N, is an I,- nearly prime in M, such that IN, x M; < I(N, x M;) and J (M) X M; €
J(M, x M;), then M; X N, is an I- nearly prime in M; X M,.
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Proof: (1): Suppose that (a,b) € R, X R, and (my,m,) € M with (a, b)(m,,m,) = (amy, bm,) €
Ny X M, - I(N; X M), and Ny X M, - [(N; X My) €N; X My, — IN; X My, = (N; —IN;) X M,. We
have am, € N; — IN; but N, is an I;- nearly prime in M;. So a€ [N; + J(M;): M;] or my € N; +
J(My). So (a,b) € [Ny +](My):M;] X R, = [(N1 +J(My)) X My :g xr, My X Mz] = [N1 X M, +
J (My) X My:g, xg, My X M, S [ Ny X My + J(My X M, )iR, xR, M1 X My]  or  (my,my) €[N, +
J(M)] X My =Ny X My + ] (My) X My € Ny X My, + J(My X M, ). Hence N; X M, is an I- nearly
prime submodule of M; X M,.

The proof of (2) is similar to proof (1).

Proposition (1.10): Let I; and I, be ideals of R, and R, , respectively, with I = I; X I,.

1. N; X N, is an I-nearly prime in M; x M, where I;N; = N; fori =1, 2.

2.If Ny isaprime in My, then N; X M, is an [-nearly prime in M; X M, .

3. If Nj isan I - nearly prime in M; with I,M, = M, , then N; X M,is an I-nearly prime in M; X M, .
4. If N, isaprime in M,, then M; X N, is an I-nearly prime in M; X M, .

5. If Ny isan I, - nearly prime in M, with [;M; = M, ,then M; X N, .

Proof (1): Since I;N; =N; and I,N, =N, . Then I;N; X I,N, = (I; X I,)(N; X N;) = I(N; X N,) =
N; X N,. S0 N; X N, —I(N; X N,) = @. Thus there is nothing to prove.

2. Let N; isa prime in M; . Then N; X M, is a prime in M; X M, ,[9] and hence I- nearly prime in
M; X M,.

3. Let N; is an I, - nearly prime in M; and I,M, = M, . Suppose that (r;,7;,) € R and (my,m,) €
M with (ry, 1, )(my,my) =  (rymq,,my) € Ny X My — I(Ny X My) = Ny X My - (I; X I,) (Ny X
My) = (N; X My — (I{N; X L,My) = (N; X My, — (IL1N; X M) = (N; —IN;) X M,. Then ry,m, €
N; —IN; and N, is an I;- nearly prime submodule of M;, so r; € [N; +J(M;): M,] or m; € N; +
J(My).

Therefore (ry,7,) € [Ny +J(My): M1 X Ry = [(Ny +J(My)) X My ig xp, My X My| = [ Ny X M, +
J (M1) X My:g, xg, My X Mz] < [N1 X My + J(My X My ):g, xgr, M1 X Mz] or(my,my) € [Ny +
JM)] XMy =Ny XMy +] (M) X My €S Ny X My +J(My XMy ). So Ny XM, is an |- nearly
prime in My X M,.

The proofs of (4) and (5) are similar to parts (2), (3), respectively.

Proposition( 1.11): Let M be an R-module and let N be a proper submodule of M such that N/IN +
J(M/IN) =N+ J(M)/ IN. Then N is an I-nearly prime in M if and only if N/IN is 0-nearly prime
in M/IN .

Proof: Let N be an I-nearly prime in M . Suppose that 0 # ax + IN = a(x + IN) € N/IN in M/IN
where a € R,x € M. Then ax € N — IN.Since N is an I-nearly prime submodule of M, so either
x€EN+JM) ora€[N+JM):M]|=[[N +J(M)]/IN: M/IN]. Therefore x+IN €[N +
J(M)]/IN = N/IN + J(M/IN)ora € [N/IN +J(M/IN): M/IN]. Hence N/IN is 0- nearly prime in
M/IN .

Conversely, let N/IN is an 0-nearly prime in M/IN. Assume that a € R, x € M with ax € N —
IN.So 0 # a(x +IN) =ax+IN € N/IN . But N/IN is an O-nearly prime in M/IN . Thus x +
IN € N/IN + J(M/IN) = [N + J(M)]/IN or a € [N/IN + J(M/IN): M/IN]=[[N +
J(M)]/IN : M/IN]andsox € N + J(M)ora € [N + J(M): M]. Hence N is an 0-nearly prime.
Theorem (1.12): If M is an R-module and I is an ideal of R, then the following statements are
equivalent.

1- IM is an I-nearly prime submodule M;

2-For x € [M\(IM + J(M))]; [IM : x] = [I(UM):x] U [IM + J(M): M];

3-Forx € [M\(IM + J(M))], [IM:x] = [I(IM): x] or [IM:x] = [IM + J(M): M].

4-If JK S IM — I(IM), then ] € [IM + J(M): M] or K € IM + J(M) for each an ideal J of R and
submodule K of M.

Proof : (1) — (2): Suppose thatx e M — IM, r € [IM:x]. Sorx € IM.If rx ¢ I(IM),butIM isan [
-nearly prime and x € IM + J(M),sor € [IM + J(M): M]. If rx € I(IM), sor € [I(IM): x]. Thus,
[IM:x] S [IM+]J(M):M]U]J[IIM : x]. On the other hand I[(IM) S IM, so [I(IM):x]U [IM +
JM): M| & [IM: x].

(2) = (3): It follows directly by the fact that if an ideal is a union of two ideals, then it is equal to one
of them.
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(3)— (4): Suppose that JK < IM. Let ] € [IM + J(M): M] and K € IM + J(M). Ausssme that x €
K. Ifx¢IM+J(M).So Jx & IM and hence ] & [IM:x]. But ] € [IM + J(M): M],s0 ] € [IM: x] =
[I(IM):x]. Thus, xJ & I(IM), so K] & I(IM). Suppose that x € IM. Let m € K — IM. Then (x +
m) € K —IM. So (x + m)] S I(IM). Let r € . Then x = (x + m)r - mr € I(IM). So x] & [(IM).
Thus JK < I(IM). (4) — (1): By theorem (1. 4).

Proposition (1.13):

1- Let N; and N, are two submodules of the R-Omodules M,M, ,respectively. If N; @ N, is an I-

nearly prime and small submodule of M = M; @ M, such that J(M; & M, ) c[J(M,) & M, ] and

J(M®M, ) < [M; & J(M, )], then N;and N, are I- nearly prime in M;, M, respectively.

2- Let N be a small submodule of an R-module M; and M, be any two modules with J(M;) @ M, is

small in M. If N is an I-nearly prime, then N @ M, is an I-nearly primes submodule of M; @ M,.

Proof. (1). Let am; € N; — IN; where a € R,m; € M;.Then a(m4,0) € (N; @ N,) — [(N; @ N,).

Since (N; @ N,) is an I-nearly prime and small, then either (m,,0) € (N; @ N,) +J(M) = J(M; D

My) = J(M;) @J(M),[10]and so m; € J(M;) S Ny+J(M;) or a €[(Ny DN,)+](M; D

My): My @ Mp]= [J(My @ My ): My @ M,] < [J(My) @ My: My @ My]and so a € [J(My): My]

C [N; +J(M;): M;]. It follows that either m; € N; + J(M;) or a € [N; + J(M,): M;]. Hence Nj; is

an I-nearly prime in M;.

By a similar proof, N, is an I-nearly prime in M,.

(2). Let a (my,m,) € (N® M) — I(N @ M;),where a € R,(m,,m,) € M. Then am; € N — IN.

Since N is an I-nearly prime and small in M, then either m; e N +J(M;) = J(M,)or a €

[N + J(M,): M;],[10]. So that

Ifm, € N +J(M;) =](My), then (my,m;) €J(M) @ M,cJ(My D M) ND M+ J(M; ©

M,).

If a € [N +J(M;): M;] and since N is small in M;, then a € [J(M;) @& M, : M; @ M,]. But J(M,) D

M, is small in My, so [J(My) @ My: My @ Myl [J(My @ M) : My @ Mp] < [N @ M, + (M, D

M,) : M; @ M,], so N @ M, isan I-nearly prime in M; @ M,.

Corollary (1.14):

1-If N; @ N, is an I-nearly prime of a hollow module M; @ M, with J(M; & M,) & [J(M,) D

M,landJ(M; @ M,) & [M; & J(M,)], then N; and N, are I-nearly primes in M, , M, respectively.

2- If is N an I-nearly prime submodule of a hollow R-module M;, M, is any module such that

M; @ M, be a hollow R-module, then N @ M, is an I-nearly prime submodule of M; @ M,.

Proof: (1): Since M; @ M, is a hollow , so all submodules are small , [11]. Therefore the result

follows (1.13,1).

(2): Since M; and M, are hollow modules, so every submodule of them is small, [11]. Therefore the

result follows (1.13,2).
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