Iraqi Journal of Science, 2019, Vol. 60, No.11, pp: 2468-2472 DOI: 10.24996/ijs.2019.60.11.17

ISSN: 0067-2904

I-Nearly Prime Submodules

Adwia J. Abdul-AlKalik¹, Nuhad S. Al-Mothafar²

¹Republic of Iraq, Ministry of Education, Directorate General of Education In Diyala ²Department of Mathematics, College of Science, University of Baghdad, Iraq

Received: 7/4/ 2019 Accepted: 18/ 6/2019

Abstract:

Let R be a commutative ring with identity, and I a fixed ideal of R and M be an unitary R-module. In this paper we introduce and study the concept of I-nearly prime submodules as genrealizations of nearly prime and we investigate some properties of this class of submodules. Also, some characterizations of I-nearly prime submodules will be given.

Keywords: Prime submodules, nearly prime submodules, I-prime submodules.

المقاسبات الجزئية الاولية تقريبا من النمط– ا عدوية جاسم عبد الخالق¹، نهاد سالم المظفر² ¹المديرية العامة لتربية ديالي، وزارة التربية، العراق ²قسم الرياضيات، كلية العلوم، جامعة بغداد، العراق

الخلاصة

لتكن R حلقة ابدالية ذات عنصرمحايد، وليكن I مثالي من R ، M مقاسا احاديا معرفا على الحلقة R. قدمنا ودرسنا في هذا البحث المفهوم :المقاسات الجزئية الاولية تقريبا من النمط-I كاعمام للمقاسات الجزئية الاولية تقريبا . لقد درسنا واعطينا بعض خواص ومميزات هذا النوع من المقاسات الجزئية.

Introduction

Throughout, R represents an associative ring with nonzero identity and I a fixed ideal of R. A proper submodule N of M is called a prime submodule if whenever $r \in R$ and $x \in M$ with $rx \in N$ implies that $r \in [N:M]$ or $x \in N$, [1]. One of generalization of this concept was studied as nearly prime, [2]. A proper submodule N of M is called nearly prime submodule if whenever $r \in$ $R, x \in M$ and $rx \in N$ implies that either $x \in N + J(M)$ or $r \in [N + J(M): M]$. Previous work [3] and [4] introduced the notions I- prime and I- primary submodules. A proper submodule N of M is called I- prime submodule of M if $rx \in N - IN$ for all $r \in R$, $x \in M$ implies that either $r \in [N:M]$ or $x \in N$. A proper submodule N of M is called I- primary submodule of M if $rx \in N - IN$ for all $r \in R$, $x \in M$ implies that either $r \in \sqrt{[N:M]}$ or $x \in N$. In this paper, we define and study *I*- nearly prime submodules which are generalizations of prime submodules and nearly prime submodules to *I*-nearly prime submodules. A proper submodule N of M is called I-nearly prime submodule if $rx \in N$ – IN for all $r \in R$, $x \in M$ implies that either $r \in [N + J(M): M]$ or $x \in N + J(M)$, where J(M) is the intersection of all maximal submodule of M. Here is a brief summary of the paper. In Theorem 1.4 we show that N is I-nearly prime submodule in M if and only if for any ideal I of R and submodule K of M such that $JK \subseteq N - IN$, we have $K \subseteq N + I(M)$ or $I \subseteq [N + I(M): M]$. In Proposition 1.6 we show that if N is an I- nearly prime in M and $[N:M]N \not\subseteq IN$, then N is a nearly prime in M. In Theorem 1.8 we show that if N is a submodule of an R -module M then the following statements are

^{*}Email: adwiaj@yahoo.com

equivalent: (1) N is an *I*-nearly prime in M. (2) For $r \in R \setminus [N + J(M):M]$, $[N:r] = [N + J(M)] \cup [IN:r]$. (3) For $r \in R \setminus [N + J(M):M]$, [N:r] = N + J(M) or [N:r] = [IN:r]. **1** Main result

1. Main result

Definition 1.1: A proper submodule *N* of an *R*-moadule *M* is called *I*-nearly prime submodule if and only if whenever $r \in R$, $x \in M$ and $rx \in N - IN$ implies that either $x \in N + J(M)$ or $r \in [N + J(M): M]$, where *I* is an ideal of *R* and J(M) is the Jacobson radical of M.

For examples:1- Consider the ring of integers Z and the Z-module Z12. Take

I = 4Z as an ideal of Z and $N = (\overline{4})$ be a submodule of Z12 generated by

4. Then N is an I-nearly prime submodule of Z12 since N – IN = $(\overline{4}) - 4Z$. $(\overline{4}) =$

 $(\overline{4})-(\overline{4}) = \emptyset$. On the other side, N is not a prime submodule since $\overline{4} = 2.\overline{2} \in \mathbb{N}$ but not $\overline{2} \in \mathbb{N}$ nor $2 \in [N:\mathbb{Z}12]$.

2- Let N= $(\overline{0})$ is an I-nearly prime submodule of Z6 as a Z-module since if I = (0) is taken as an ideal of Z, then N-IN= $(\overline{0}) - (0)$. $(\overline{0}) = \emptyset$. On the other side, N is not a nearly prime submodule, see [2].

3- Consider the ring of integers Z and the Z-module Z40 and N = ($\overline{8}$). Take

I = [N:M]= 8Z as an ideal of Z, then [N:M]N=N. Then N is an I-nearly prime submodule of Z12 since $N - IN = (\overline{8}) - 8Z$. ($\overline{8}$) = \emptyset . On the other side, if I = (0) is taken as an ideal of Z, then [N:M]N=(0), then N is not an I-nearly prime submodule since $\overline{8} = 4.\overline{2} \in N$ but not $\overline{2} \in N$ nor $4 \in [N:Z12]$. **Proposition (1.2):**

1- If N is an I- nearly prime in M and K is a submodule of M with $J(M) \subseteq J(K)$, then N is an I-nearly prime submodule of K.

2- If $I_1 \subseteq I_2$. Then N is an I_1 - nearly prime implies N is I_2 - nearly prime.

Proof. (1): Suppose that $am \in N - IN$ where $a \in R$ and $m \in K$. Since N is an *I*-nearly prime submodule of M, so either $m \in N + J(M)$ or $a \in [N + J(M):M]$. But $J(M) \subseteq J(K)$, so either $m \in N + J(K)$ or $a \in [N + J(K):K]$. Therefore N is an *I*-nearly prime submodule of K.

(2): Let $m \in M$ and $m \in M$ with $am \in N - I_2N$. Since $I_1 \subseteq I_2$, $N - I_2N \subseteq N - I_1N$, then $am \in N - I_1N$. But N is an I_1 - nearly prime. So $a \in [N + J(M): M]$ or $m \in N + J(M)$. Thus N is an I_2 - nearly prime.

Proposition (1.3): Let N be a submodule of an R – module M.

1- If *N* is an *I*-nearly prime and $J(M) \subseteq N$, then *N* is an *I*-prime (and *I*-primary).

2- If N is a maximal an I- nearly prime submodule of a local R-module M, then N is an I-prime (and I-primary) in M.

3- If N is an *I*- nearly prime submodule of a semisimple *R*-module M, then N is an *I*-prime (and *I*-primary) in M.

Proof. (1). The proof is trivial.

(2). Suppose that $am \in N - IN$ where $a \in R, m \in M$. Since N is an *I*-nearly prime submodule of M, so either $m \in N + J(M)$ or $a \in [N + J(M): M]$. But M be a local and N is a maximal, so J(M) = N, [5]. So either $m \in N$ or $a \in [N:M]$. Therefore N is an *I*-prime (and *I*-primary) in M.

(3). Suppose that $am \in N - IN$ where $m \in M$ and $a \in R$. Because N is an *I*-nearly prime submodule of M, so either $a \in [N + J(M):M]$ or $m \in N + J(M)$. But M be a semisimple an R-module, so J(M) = 0, [6]. So either $m \in N$ or $a \in [N:M]$. Hence N is an *I*-prime (and *I*-primary) in M.

The following theorem gives a useful characterization for an *I*-nearly prime submodules.

Theorem (1.4): Let N be a proper submodule of an R-module M. Then N is an I-nearly prime submodule in M if and only if for any ideal J of R and submodule K of M such that $JK \subseteq N - IN$, we have $K \subseteq N + J(M)$ or $J \subseteq [N + J(M): M]$.

Proof. Suppose that N is an *I*-nearly prime in M. Let $JK \subseteq N - IN$ for some ideal J of R and submodule K of M. If $J \not\subseteq [N + J(M): M]$ and $K \not\subseteq N + J(M)$, so there exists $r \in J \setminus [N + J(M): M]$ and $x \in K \setminus [N + J(M)]$ such that $rx \in N - IN$.

By assuming that N is an *I*-nearly prime submodule in M, either $x \in N + J(M)$ or $r \in [N + J(M): M]$ which is a contradiction. Hence $J \subseteq [N + J(M): M]$ or $K \subseteq N + J(M)$.

Conversely suppose that $rm \in N - IN$ where $r \in R, m \in M$. So (r)(m) = (rm)

 $\subseteq N - IN$. So, either $(r) \subseteq [N + J(M): M]$ or $(m) \subseteq N + J(M)$. Therefore $r \in [N + J(M): M]$ or $m \in N + J(M)$. Thus N is an *I*-nearly prime submodule of M.

Let R be a ring. A subset S of R is called multiplicatively closed subset if $1 \in S$ and $ab \in S$, $\forall a, b \in S, [7]$.

Let R_s be the set of all fractional r/s where $r \in R$ and $s \in S$ and M_s be the set of all fractional x/s where $x \in M$ and $s \in S$. For x_1 , $x_2 \in M$ and s_1 , $s_2 \in S$, $x_1/s_1 = x_2/s_2$ if and only if there exists $t \in S$ such that $t (s_1 x_1 - s_2 x_2) = 0$.

So, we can make M_s into R_s -module by setting x/s + y/t = (tx + sy)/st and r/t. x/s = rx/ts) for every $x, y \in M$ and $s, t \in S$, $r \in R$. And M_s is the module of fractions. If N is a submodule of M, so $N_s = \{n/s; n \in N, s \in S\}$ is a submodule of M_{S_s} [7].

The quotient and localization of prime submodules are again prime submodules. But in case of *I*-nearly prime submodules, we give a condition under which the quotient and localization become true. **Proposition (1.5)**: Suppose that N is an *I*-nearly prime in M.

1) If $N_S \neq M_S$ and $(IN)s \subseteq IsNs$. Then N_S is an I_S -nearly prime submodule of an R_S -module M_S . 2) If $K \subseteq N$ and N/K + J(M/K) = N + J(M)/K, then N/K is an *I*-nearly prime in M/K.

Proof (1): For all $r/s \in R_S$ and $x/t \in M_S$, let $r/s.x/t = rx/st \in N_S - IsNs \subseteq N_S - (IN)s = (N - IN)s$. Then rx/st = m/u for $m \in N - IN$ and $u \in S$. So for some $v \in S$, $vurx = vstm \in N - IN$. As N is an I-nearly prime submodule, so either $vur \in [N + J(M): M]$ or $x \in N + J(M)$. So $ruv/suv = r/s \in [N + J(M): M]_S = [N_S + J(M_S): M_S]$ or $\frac{x}{t} \in [N + J(M)]_S = N_S + J(M_S)$ by [8]. Hence N_S is an I_S -nearly prime in M_S .

(2): Suppose that $m \in M$ and $a \in R$ with $a(m + K) = am + K \in N/K - I(N/K)$.

Then $am + K \in [N - IN]/K$. So $am \in N - IN$. Since N is an *I*-nearly prime submodule of M, so either $m \in N + J(M)$ or $a \in [N + J(M): M]$. Therefore $m + K \in N/K + J(M/K)$ or $a \in [N/K + J(M/K): M/K]$. Therefore N/K is an *I*-nearly prime in M/K.

Proposition (1.6): If *N* is an *I*- nearly prime in *M* and $[N:M]N \not\subseteq IN$, then *N* is a nearly prime in *M*. **Proof:** We show that *N* is a nearly prime. Suppose that $am \in N$ where $m \in M, a \in R$.

If $am \notin IN$, then N, I- nearly prime gives $m \in N + J(M)$ or $a \in [N + J(M): M]$. So assume that $am \in IN$. First suppose that $aN \notin IN$, say $an \notin IN$ where $n \in N$. Then $a(m+n) \in N - IN$, so $a \in [N + J(M): M]$ or $(m+n) \in N + J(M)$. Hence $a \in [N + J(M): M]$ or $m \in N + J(M)$. Now, if $m[N:M] \notin IN$. So $\exists b \in [N:M]$ such that $mb \notin IN$. So $(a+b)m \in N$. Therefore $m \in N + J(M)$ or $(a+b) \in [N + J(M):M]$. Then $m \in N + J(M)$ or $a \in [N + J(M):M]$. Suppose that $m[N:M] \subseteq IN$. Since $[N:M]N \notin IN$, there exists $r \in [N:M]$, $x \in N$ with $rx \notin IN$. Then $(a+r) (m + x) \in N - IN$. Then $(a+r) \in [N + J(M):M]$ or $(m+x) \in N + J(M)$. Hence $a \in [N + J(M):M]$ or $m \in N + J(M)$. So N be a nearly prime in M.

Corollary (1.7): If N is an 0- nearly prime in M and $[N:M]N \neq 0$. Then N is a nearly prime in M. In what follows we give some charactrizations for an *I*-nearly prime.

Theorem (1.8): Suppose that N is a submodule of an R –module M. Then the following statements are equivalent:

(1) N is an I-nearly prime in M.

(2) For $r \in R \setminus [N + J(M): M]$, $[N:r] = [N + J(M)] \cup [IN:r]$.

(3) For $r \in R \setminus [N + J(M): M]$, [N:r] = N + J(M) or [N:r] = [IN:r].

Proof: (1) \rightarrow (2): Suppose that N is an *I*-nearly prime submodule of M such that $r \notin [N + J(M): M]$. Let $m \in [N:r]$. So $rm \in N$. If $rm \notin IN$, then $m \in N + J(M)$.

Because N is an *I*-nearly prime submodule in M. If $rm \in IN$, so $m \in [IN:r]$. Hence $[N:r] \subseteq [N + J(M)] \cup [IN:r]$. Now since $IN \subseteq N$, the other inclusion is hold.

(2) \rightarrow (3): Because [N:r] is a submodule of M, so it is clear.

 $(3) \rightarrow (1)$: Suppose that $rm \in N - IN$ where $r \in R, m \in M$. If $r \notin [N + J(M): M]$, so either [N:r] = N + J(M) or [N:r] = [IN:r]. Since $rm \notin IN$, so $m \notin [IN:r]$. But $rm \in N$, so $m \in [N:r]$. Then [N:r] = N + J(M). Therefore $m \in N + J(M)$. Thus N is an I-nearly prime submodule of M.

Proposition (1.9): Suppose that M_1 be an R_1 -module and M_2 be an R_2 -module. Then we have :

(1) If N_1 is an I_1 - nearly prime submodule of M_1 such that $IN_1 \times M_2 \subseteq I(N_1 \times M_2)$ and $J(M_1) \times M_2 \subseteq J(M_1 \times M_2)$, then $N_1 \times M_2$ is an *I*- nearly prime in $M_1 \times M_2$.

(2): If N_2 is an I_2 - nearly prime in M_2 such that $IN_2 \times M_1 \subseteq I(N_2 \times M_1)$ and $J(M_2) \times M_1 \subseteq J(M_2 \times M_1)$, then $M_1 \times N_2$ is an *I*- nearly prime in $M_1 \times M_2$.

Proof: (1): Suppose that $(a, b) \in R_1 \times R_2$ and $(m_1, m_2) \in M$ with $(a, b)(m_1, m_2) = (am_1, bm_2) \in N_1 \times M_2 - I(N_1 \times M_2)$, and $N_1 \times M_2 - I(N_1 \times M_2) \subseteq N_1 \times M_2 - IN_1 \times M_2 = (N_1 - IN_1) \times M_2$. We have $am_1 \in N_1 - IN_1$ but N_1 is an I_1 - nearly prime in M_1 . So $a \in [N_1 + J(M_1): M_1]$ or $m_1 \in N_1 + J(M_1)$. So $(a, b) \in [N_1 + J(M_1): M_1] \times R_2 = [(N_1 + J(M_1)) \times M_2 :_{R_1 \times R_1} M_1 \times M_2] = [N_1 \times M_2 + J(M_1) \times M_2 :_{R_1 \times R_1} M_1 \times M_2] \subseteq [N_1 \times M_2 + J(M_1) \times M_2 :_{R_1 \times R_1} M_1 \times M_2] \subseteq [N_1 \times M_2 + J(M_1 \times M_2) :_{R_1 \times R_1} M_1 \times M_2]$ or $(m_1, m_2) \in [N_1 + J(M_1)] \times M_2 = N_1 \times M_2 + J(M_1) \times M_2 \subseteq N_1 \times M_2 + J(M_1 \times M_2)$. Hence $N_1 \times M_2$ is an I- nearly prime submodule of $M_1 \times M_2$.

The proof of (2) is similar to proof (1).

Proposition (1.10): Let I_1 and I_2 be ideals of R_1 and R_2 , respectively, with $I = I_1 \times I_2$.

1. $N_1 \times N_2$ is an *I*-nearly prime in $M_1 \times M_2$ where $I_i N_i = N_i$ for i = 1, 2.

2. If N_1 is a prime in M_1 , then $N_1 \times M_2$ is an *I*-nearly prime in $M_1 \times M_2$.

3. If N_1 is an I_1 - nearly prime in M_1 with $I_2M_2 = M_2$, then $N_1 \times M_2$ is an *I*-nearly prime in $M_1 \times M_2$.

4. If N_2 is a prime in M_2 , then $M_1 \times N_2$ is an *I*-nearly prime in $M_1 \times M_2$.

5. If N_2 is an I_2 - nearly prime in M_2 with $I_1M_1 = M_1$, then $M_1 \times N_2$.

Proof (1): Since $I_1N_1 = N_1$ and $I_2N_2 = N_2$. Then $I_1N_1 \times I_2N_2 = (I_1 \times I_2)(N_1 \times N_2) = I(N_1 \times N_2) = N_1 \times N_2$. So $N_1 \times N_2 - I(N_1 \times N_2) = \emptyset$. Thus there is nothing to prove.

2. Let N_1 is a prime in M_1 . Then $N_1 \times M_2$ is a prime in $M_1 \times M_2$, [9] and hence *I*- nearly prime in $M_1 \times M_2$.

3. Let N_1 is an I_1 - nearly prime in M_1 and $I_2M_2 = M_2$. Suppose that $(r_1, r_2) \in R$ and $(m_1, m_2) \in M$ with $(r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2) \in N_1 \times M_2 - I(N_1 \times M_2) = N_1 \times M_2 - (I_1 \times I_2)(N_1 \times M_2) = (N_1 \times M_2 - (I_1N_1 \times I_2M_2) = (N_1 \times M_2 - (I_1N_1 \times M_2) = (N_1 - IN_1) \times M_2$. Then $r_1m_1 \in N_1 - IN_1$ and N_1 is an I_1 - nearly prime submodule of M_1 , so $r_1 \in [N_1 + J(M_1): M_1]$ or $m_1 \in N_1 + J(M_1)$.

Therefore $(r_1, r_2) \in [N_1 + J(M_1): M_1] \times R_2 = [(N_1 + J(M_1)) \times M_2 :_{R_1 \times R_1} M_1 \times M_2] = [N_1 \times M_2 + J(M_1) \times M_2 :_{R_1 \times R_1} M_1 \times M_2] \subseteq [N_1 \times M_2 + J(M_1 \times M_2) :_{R_1 \times R_1} M_1 \times M_2] \text{ or } (m_1, m_2) \in [N_1 + J(M_1) \times M_2 :_{R_1 \times R_1} M_1 \times M_2]$

 $J(M_1)$] × $M_2 = N_1 \times M_2 + J(M_1) \times M_2 \subseteq N_1 \times M_2 + J(M_1 \times M_2)$. So $N_1 \times M_2$ is an *I*-nearly prime in $M_1 \times M_2$.

The proofs of (4) and (5) are similar to parts (2), (3), respectively.

Proposition(1.11): Let *M* be an *R*-module and let *N* be a proper submodule of *M* such that N/IN + J(M/IN) = N + J(M)/IN. Then *N* is an *I*-nearly prime in *M* if and only if N/IN is 0-nearly prime in M/IN.

Proof: Let *N* be an *I*-nearly prime in *M*. Suppose that $0 \neq ax + IN = a(x + IN) \in N/IN$ in *M/IN* where $a \in R, x \in M$. Then $ax \in N - IN$. Since *N* is an *I*-nearly prime submodule of *M*, so either $x \in N + J(M)$ or $a \in [N + J(M): M] = [[N + J(M)]/IN : M/IN]$. Therefore $x + IN \in [N + J(M)]/IN = N/IN + J(M/IN)$ or $a \in [N/IN + J(M/IN): M/IN]$. Hence *N/IN* is 0- nearly prime in *M/IN*.

Conversely, let N/IN is an 0-nearly prime in M/IN. Assume that $a \in R$, $x \in M$ with $ax \in N - IN$. So $0 \neq a(x + IN) = ax + IN \in N/IN$. But N/IN is an 0-nearly prime in M/IN. Thus $x + IN \in N/IN + J(M/IN) = [N + J(M)]/IN$ or $a \in [N/IN + J(M/IN): M/IN] = [[N + J(M)]/IN : M/IN]$ and so $x \in N + J(M)$ or $a \in [N + J(M): M]$. Hence N is an 0-nearly prime.

Theorem (1.12): If M is an R-module and I is an ideal of R, then the following statements are equivalent.

1- *IM* is an *I*-nearly prime submodule *M*;

2- For $x \in [M \setminus (IM + J(M))]$; $[IM : x] = [I(IM): x] \cup [IM + J(M): M]$;

3- For $x \in [M \setminus (IM + J(M))], [IM: x] = [I(IM): x]$ or [IM: x] = [IM + J(M): M].

4- If $JK \subseteq IM - I(IM)$, then $J \subseteq [IM + J(M): M]$ or $K \subseteq IM + J(M)$ for each an ideal J of R and submodule K of M.

Proof : (1) \rightarrow (2): Suppose that $x \in M - IM$, $r \in [IM: x]$. So $rx \in IM$. If $rx \notin I(IM)$, but *IM* is an *I* -nearly prime and $x \notin IM + J(M)$, so $r \in [IM + J(M): M]$. If $rx \in I(IM)$, so $r \in [I(IM): x]$. Thus, $[IM: x] \subsetneq [IM + J(M): M] \cup [IIM: x]$. On the other hand $I(IM) \subsetneq IM$, so $[I(IM): x] \cup [IM + J(M): M] \subsetneq [IM: x]$.

(2) \rightarrow (3): It follows directly by the fact that if an ideal is a union of two ideals, then it is equal to one of them.

 $(3) \rightarrow (4)$: Suppose that $JK \subseteq IM$. Let $J \not\subseteq [IM + J(M): M]$ and $K \not\subseteq IM + J(M)$. Ausseme that $x \in K$. If $x \notin IM + J(M)$. So $Jx \subseteq IM$ and hence $J \subseteq [IM: x]$. But $J \not\subseteq [IM + J(M): M]$, so $J \subseteq [IM: x] = [I(IM): x]$. Thus, $xJ \subseteq I(IM)$, so $KJ \subseteq I(IM)$. Suppose that $x \in IM$. Let $m \in K - IM$. Then $(x + m) \in K - IM$. So $(x + m)J \subseteq I(IM)$. Let $r \in J$. Then $x = (x + m)r - mr \in I(IM)$. So $xJ \subseteq I(IM)$. Thus $JK \subseteq I(IM)$. (4) \rightarrow (1): By theorem (1. 4).

Proposition (1.13):

1- Let N_1 and N_2 are two submodules of the *R*-0modules M_1, M_2 , respectively. If $N_1 \oplus N_2$ is an *I*-nearly prime and small submodule of $M = M_1 \oplus M_2$ such that $J(M_1 \oplus M_2) \subseteq [J(M_1) \oplus M_2]$ and $J(M_1 \oplus M_2) \subseteq [M_1 \oplus J(M_2)]$, then N_1 and N_2 are *I*-nearly prime in M_1, M_2 respectively.

2- Let N be a small submodule of an R-module M_1 and M_2 be any two modules with $J(M_1) \bigoplus M_2$ is small in M. If N is an *I*-nearly prime, then $N \bigoplus M_2$ is an *I*-nearly primes submodule of $M_1 \bigoplus M_2$.

Proof. (1). Let $am_1 \in N_1 - IN_1$ where $a \in R, m_1 \in M_1$. Then $a(m_1, 0) \in (N_1 \bigoplus N_2) - I(N_1 \bigoplus N_2)$. Since $(N_1 \bigoplus N_2)$ is an *I*-nearly prime and small, then either $(m_1, 0) \in (N_1 \bigoplus N_2) + J(M) = J(M_1 \bigoplus M_2) = J(M_1) \bigoplus J(M_2), [10]$ and so $m_1 \in J(M_1) \subseteq N_1 + J(M_1)$ or $a \in [(N_1 \bigoplus N_2) + J(M_1 \bigoplus M_2): M_1 \bigoplus M_2] = [J(M_1 \bigoplus M_2): M_1 \bigoplus M_2] \subseteq [J(M_1) \bigoplus M_2: M_1 \bigoplus M_2]$ and so $a \in [J(M_1): M_1] \subseteq [N_1 + J(M_1): M_1]$. It follows that either $m_1 \in N_1 + J(M_1)$ or $a \in [N_1 + J(M_1): M_1]$. Hence N_1 is an *I*-nearly prime in M_1 .

By a similar proof, N_2 is an *I*-nearly prime in M_2 .

(2). Let $a(m_1, m_2) \in (N \oplus M_2) - I(N \oplus M_2)$, where $a \in R, (m_1, m_2) \in M$. Then $am_1 \in N - IN$. Since N is an *I*-nearly prime and small in M_1 , then either $m_1 \in N + J(M_1) = J(M_1)$ or $a \in [N + J(M_1): M_1], [10]$. So that

If $m_1 \in N + J(M_1) = J(M_1)$, then $(m_1, m_2) \in J(M_1) \oplus M_2 \subseteq J(M_1 \oplus M_2) \subseteq N \oplus M_2 + J(M_1 \oplus M_2)$.

If $a \in [N + J(M_1): M_1]$ and since N is small in M_1 , then $a \in [J(M_1) \oplus M_2: M_1 \oplus M_2]$. But $J(M_1) \oplus M_2$ is small in M_2 , so $[J(M_1) \oplus M_2: M_1 \oplus M_2] \subseteq [J(M_1 \oplus M_2): M_1 \oplus M_2] \subseteq [N \oplus M_2 + J(M_1 \oplus M_2): M_1 \oplus M_2]$, so $N \oplus M_2$ is an *I*-nearly prime in $M_1 \oplus M_2$.

Corollary (1.14):

1-If $N_1 \oplus N_2$ is an *I*-nearly prime of a hollow module $M_1 \oplus M_2$ with $J(M_1 \oplus M_2) \subsetneq [J(M_1) \oplus M_2]$ and $J(M_1 \oplus M_2) \subsetneq [M_1 \oplus J(M_2)]$, then N_1 and N_2 are *I*-nearly primes in M_1 , M_2 respectively.

2- If is N an *I*-nearly prime submodule of a hollow *R*-module M_1 , M_2 is any module such that $M_1 \bigoplus M_2$ be a hollow *R*-module, then $N \bigoplus M_2$ is an *I*-nearly prime submodule of $M_1 \bigoplus M_2$.

Proof: (1): Since $M_1 \oplus M_2$ is a hollow, so all submodules are small, [11]. Therefore the result follows (1.13,1).

(2): Since M_1 and M_2 are hollow modules, so every submodule of them is small, [11]. Therefore the result follows (1.13,2).

References

- 1. Lu, C. 1984. Prime submodule of modules, Comment. Math., Univ. St Paul, 33(1): 61-69.
- 2. Abdul-Alkalik, A. J. 2017. Some Generalizations of prime submodules, Ph D. Thesis, University of Al-Mustansiriyah.
- 3. Akray, I. and Hussein, H. S. 2017. *I*-prime submodules, *Acta Mathematica Academiae Paedagogicae*, 33: 165-173.
- 4. Akray, I. and Hussein, H. S. 2016. I-primary submodules, Math. AC, 1(7).
- 5. Kasch, F. 1982. Modules and Rings, Academic Press, London.
- 6. Hirano, Y. and Mogani, I. 1986. On restricted anti-hopfian modules, *Math. J. Okayama University*, 28: 119-131.
- 7. 7.Larsen, M. D. and McCarlthy, P. J. 1971. *Multiplicative theory of ideals*, Academic Press. New York.
- 8. Atiyah, M. F. and MacDonald, I. G. 1969. Introduction to Commutative Algebra, Oxford University Press. New York.
- 9. Khaksari, A. 2011. φ -prime submodules. *International journal of algebra*, 5(29): 1443-1449.
- **10.** Hirano, Y. and Mogani, I. **1986**. On restricted anti-hopfian modules, *Math. J. Okayama University*, (28): 119-131.
- 11. Dung, N. V., Huynh D. V., Smith, P. F., and Wishbauer, R. 1994. *Extending modules*, Pitman Research Notes in Mathematics Series Longman Harlow.