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Abstract 

In this paper, the conditions of occurrence of the local bifurcation (such as saddle-

node, transcritical and pitchfork) near each of the equilibrium points  of a 

mathematical model consists from four-species Syn- Ecosymbiosis are established. 
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لنظام بيئي رباعي الاجناسالتفرع المحلي   
 

* دازهار عباس مجي  
العراق  -بغدا د  -جامعة بغداد  -كلية العلوم  -قسم الرياضيات   

 
 الخلاصة: 

نود, ترانسكرتكل و بجفورك( بالقرب من كل نقطة من نقاط -)سدل شروط التفرع المحليفي هذا البحث,   
 .جدتلنظام بيئي رباعي الاجناس و  التوازن

 
1. Introduction: 

    Mathematical modeling is an important interdisciplinary activity which involves the study of some 

aspects of diverse disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bio-

economics, Genetics, Pharmacokinetics are some of those disciplines. This mathematical modeling has 

taken a lot of attentions in recent years and spread to all branches of life and drewing the attention of 

every one. Ecology relates to study of living beings in relation with their living styles. Research in the 

branch of theoretical ecology was initiated by Lotka [1] and by Volterra [2]. Since then many 

scientists and researchers gave a lot of time and interest to this branch of study, see for example Meyer 

[3], Cushing [4], Paul Colinvaux[5], Freedman [6], Kapur [7, 8].  

Bifurcation analysis gives regimes in the parameter space with quantitatively different asymptotic 

dynamic behavior of the system. Bob W. Kooi [9] studied the numerical bifurcation analysis of 

dynamical systems with simple Lotka-Volterra models or more elaborated models with more 

biological detail. Remy and Christiane R. [10 ], studied the bifurcation analysis of a generalized gause  

model with prey harvesting and a generalized Holling response function of type III. Rami & Raid[11] 

proposed and analyzed a prey-predator model with four Syniecological system with Holling type-II 

functional response, they obtained a set of sufficient and necessary condition which guarantee the lacal 

and global stability of this system. 

In this paper however, we will established the conditions of the occurrence of  local bifurcation of a 

mathematical model proposed by Rami & Raid[11]. 
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2. Mathematical model:[11] 

    An ecological model of four species Syn-Ecosymbiosis, comprising of prey-predator, 

commensalisms and competition, model is proposed in [11] . 
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where 10  e  represents the conversion rate. 

This model consists of a prey   (for example, Anemone) whose population density at time T  denoted 

by 1N , the predator (for example, Butterfly fish) whose population density at time T  denoted by 

2N , the host (for example, Hermit crabs) whose population density at time T   denoted by 3N , and 

the host's competitor species (for example, other type of Hermit crabs) whose population density at 

time T  denoted by 4N .Moreover all the parameters are  assumed to be positive and described as 

given in [11]. 

Now, for further simplification of  the system (2), the following dimensionless variables are used 

in[11]. 
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Thus, system (2) can be turned into the following dimensionless form: 
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with 0)0(,0)0(,0)0(  zyx  and 0)0( w . It is observed that the number of parameters have 

been reduced from fourteen in the system (2.1) to ten in the system (2.2). Obviously the interaction 

functions of the system (2.2) are continuous and have continuous partial derivatives on the following 

positive four dimensional space:  
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  0)0(,0)0(,0)0(,0)0(:4),,,(4 wzyxRwzyxR . Therefore these functions are Lipschitzian on 4

R  , 

and hence the solution of the system (2.2) exists and is unique. Further, in the following theorem, the 

boundedness of the solution of the system (2.2) in 4
R  is established by [11]. 

 

Theorem 1: All the solutions of system (2.2) which initiate in 4
R  are uniformly bounded.  

3. Existence and stability analysis of system (2.2):[11] 

   The four-species Syn-Ecosymiois model given by system (2.2) has at most twelve equilibrium 

points, which are mentioned with their existence conditions in [11] as  in the following: 

The equilibrium points  0,0,0,00 E , which known as the washout point, and the single species 

points  0,0,0,11 E , 
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exists uniquely in 3. RInt  of spacexyw   if the following conditions are hold : 

2

1
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  where 1651  uus  and,  987652 uuuuus   

 

4- The stability analysis:[11] 

    In the following the stability analysis of all feasible equilibrium points of system (2.2), which is 

down by [11], is summarized in the following in order to study the bifurcation that depends on this 

results . 

Note that, the symbols iziyix  ,,  and 
iw  represent the eigenvalues of  the Jacobian matrix 

11,...,2,1);( iEJ i  that describe the dynamics in the directionx  , directiony  , 

directionz   and directionw  respectively,    

A- The Jacobian matrix )( 0EJ of system (2.2) at the trivial equilibrium point )0,0,0,0(0 E  has 

the eigenvalues: 010 x  , 030  uy , 050  uz   and  070  uw , so 0E  is a 

saddle point. 

B-The eigenvalues of the  Jacobian matrix )( 1EJ  of system (2.2) at the first single species 
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C-The eigenvalues of the Jacobian matrix )( 2EJ  of system (2.2) at the second single species 
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D-The Jacobian matrix )( 3EJ of system (2.2) at the third single species equilibrium point 
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E-The Jacobian matrix )( 4EJ of system (2.2) at the first two species equilibrium point 
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Thus 4E  is unstable. 

F-The Jacobian matrix of system (2.2) at the second two species equilibrium point 
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 Therefore if the following conditions are satisfied 
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then, 8E  is  locally asymptotically stable in the 
4
R . However, it is a saddle point otherwise. 

J- The Jacobin matrix )( 9EJ of system (2.2) at the second three species equilibrium point 
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Therefore if the following conditions are satisfied: 
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So, 9E  is locally asymptotically stable in the 
4
R . However, it is a saddle point otherwise. 

K-The Jacobian matrix )( 10EJ  of system (2.2) at the third three species equilibrium point 
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then, 10E  is locally asymptotically stable in the
4
R . However, it is a saddle point otherwise. 

L-The Jacobian matrix )( 11EJ of system (2.2) at the positive equilibrium point 
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Hence, 
11E  is locally asymptotically stable in the. However, it is a saddle point otherwise. 

 

5.The local Bifurcation. 

    In this section an investigation for dynamical behavior of system (2.2) under the effect of varying 

one parameter at each time is carried out. The occurrence of local bifurcation in the neighborhood of 

the equilibrium point of system (2.2) are studied in the following theorem. 
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Theorem 5:Assume that 1x
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xuyxeuyxu
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xuy
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 , then the 

equilibrium point 4E  transforms into nonhyperpolic equilibrium point and  if the condition 

1
)( 2

2

1 
xu

yu




                                     (2.17a), and  

     
11

21

b

b
e 



                                           (2.17b) ,  

where 
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xb 
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2
2
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)(
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yuue
b 



 are hold then system (2.2) possesses a saddle-node 

bifurcation, violate condition(2.17b) and if the condition  

  ).17.2(22121111
2
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1
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where ,12
2

1
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 holds then system (2.2) possesses a transcritical bifurcation ,finally, if condition 

(2.17c) reverses and the condition  

wheredMM ),17.2(,21   
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holds, then system (2.2) experience a   pitch-fork bifurcation at 4E where .11 uu


  . 

Proof: According to the Jacobian matrix of system (2.2) at  4E  that is given by   )4(EJ it is easy to 

verify that as   11
uu


 , the )1,4( uEJ


has the following eigenvalues: 

 .074054

0404,044





uwanduz

yorxeithersoyx





 

We will take 104 1
uuatx


  . 

Let Tv )4,3,2,1( 


 be the eigenvector of )1,4( uEJ


 corresponding to the eigenvalue of  

04 x Then it is easy to check that 
T

b

b
v )0,0,1,1(

21

11 






 ,where 1


 represents any nonzero real value. 

Also, let Thhhhy )4,3,2,1(


 represents the eigenvector of  )1,4( uETJ


that corresponding to the 

eigenvalue 04 x  Straight forward calculation shows that  

Th
u

b
h

b

b
hy )0,1,1,1(

5

13

21

11










 , where  1h


 represents any nonzero real number. 

Now, since 
TffffFandTwzyxXwhereT

xu

exy
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yx
uXuF

u

F
)4,3,2,1(),,,(,]0,0,,[),(

1 22
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 

T
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uEuF

u

F
]0,0,,[)1,4(

1 22
1















and the following is obtained: 
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Also, since ,0
)()(

)()()1(
])1,4([

2
22112

112

2
22112
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1










xubb
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xubb

bebxhxububb
vuEuDFTy 






 

 

by condition(2.17b), here, .
,

)1,(),4(1
1141 uuEX

uXuF
X

uEuDF 





  

Then system (2.2) possesses a saddle-node bifurcation in view of sotomayor theorem. 

Now, violate condition (2.17b) gives that  0])1,4([
1

vuEuDFTy


. Moreover, we have  
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 by condition (2.17c). Here,  .
,

)1,()1,1(1
2

114 uuEX
uXDJuEuFD 




 Then by sotomayor theorem, system (2.2) 

possesses a transcritical bifurcation but not pitch-fork bifurcation near 4E  where  11 uu


 .However, 

violate condition (2.17c) gives that 0)],)(1,4(2[
1

vvuEuFDTy


, and hence further computation shows 

021)],,)(1,4(3[
1

 MMvvvuEuFDTy


by condition (2.17d). 

Therefore according to Sotomayor theorem, system (2.2) possesses a  pitch-fork bifurcation. 

but no transcritical nor pitch-fork bifurcation occurs in view of sotomayor theorem near 4E  where 

.11 uu


 . 

Theorem 6: Assume that condition (2.4b) or (2.4c) holds and the parameter 9
u passes through the 

value 87659
~

uuuuu  , then the equilibrium point 5E  transforms into nonhyperpolic equilibrium point 

and if 

 1~

~
65 

w

zuu
                                                (2.18)  

then system (2.2) possesses a saddle-node bifurcation but no transcritical bifurcation, , nor  pitch-fork 

bifurcation can occur. 

Proof: According to the Jacobian matrix of system (2.2) at  5E  that is given by   )5(EJ it is easy to 

verify that as   9
~

9 uu  , )9
~

,5( uEJ has the following eigenvalues: 
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Then either 0505  worz  .We will assume that 05 z . 

Let Tv )4
~

,3
~

,2
~
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(
~  be the eigenvector of )9

~
,5( uEJ  corresponding to the eigenvalue of  

.05 z Then it is easy to check that 
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b
v )3

~
~

~

,3
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33   ,where ,0
~
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~
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~

 zbzuub and 3
~
  

represents any nonzero real value. Also, let Thhhhy )4
~

,3
~

,2
~

,1
~

(
~
 represents the eigenvector of  

)9
~

,5( uETJ that corresponding to the eigenvalue 05 z  Straight forward calculation shows that  

Th
b

b
hy )3

~
~

~

,3
~

,0,0(
~
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33 , where  3
~
h  represents any nonzero real number. 

Now, since 
TffffFandTwzyxXwhereTwzuXuF

u

F
)4,3,2,1(),,,(,],0,0,0[),(

9
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 

TzwuEuF
u

F
]

~~
,0,0,0[)

~
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and the following is obtained: 
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By condition (2.18) .Thus system (2.2) at 5E  possesses a saddle-node but does  not experience any 

transcritical or pitch-for bifurcation in view of sotomayor theorem. 

 

Theorem 7: If the parameter 9u passes through the value 769 uuu  , then the equilibrium point  

transforms into nonhyperpolic equilibrium point and system (2.2) does not experience any saddle-node 

,transcritical and pitch-fork bifurcation at 6E  where .99 uu   

Proof: According to the Jacobian matrix of system (2.2) at  6E  that is given by   )6(EJ it is easy to 

verify that as   .99 uu  , the )9,6( uEJ has the following eigenvalues: 
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Let 

Tv )4,3,2,1(  be the eigenvector of )9,6( uEJ  corresponding to the eigenvalue of  .0
6


w

 Then it 

is easy to check that 
T

b

b

bb

bb
v )4,4,0,4

33

34
(

33

34

11

13   ,where 
6

1
34,0533,013,011 u

bubxbxb  and 

4  represents any nonzero real value. Also, let Thhhhy )4,3,2,1( represents the eigenvector of  

)9,6( uETJ that corresponding to the eigenvalue .0
6


w

  Straight forward calculation shows that 

Thy )4,0,0,,0( , where  4h  represents any nonzero real number. 

Now, since  
TffffFandTwzyxXwhereTwzuXuF

u

F
)4,3,2,1(),,,(,],0,0,0[)9,(

9
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 

,]0,0,0,0[),6(
9

99

TuEuF
u
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and the following is obtained: 

.0)0,0,0,0)(4,0,0,0()]6,6([
9

 ThuEuFTy Thus system (2.2) at 6E  does not experience any saddle-node 

bifurcation in view of sotomayor theorem. Also, since  

.0)0,0,0,0)(4,0,0,0(])3,1([
3

 ThvuEuDFTy Here, .
,

)9,()9,6(
99699 uuEX

uXuF
X

uEuDF



 Thus again  by 

sotomayor theorem, system (2.2) does not possesses any transcritical bifurcation and pitch-fork 

bifurcation near 6E  where  .99 uu   

Theorem 8: If the parameter 5u passes through the value 
8

1
5 u

u  , then the equilibrium point 7E  

transforms into nonhyperpolic equilibrium point and if 

 87659 uuuuu                                       (2.19)  

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor  pitch-fork 

bifurcation can occur. 

Proof: According to the Jacobian matrix of system (2.2) at  7E  that is given by   )7(EJ it is easy to 

verify that as   55 uu  , the )5,7( uEJ  has the following eigenvalues: 
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Let Tv )4,3,2,1(   be the eigenvector of )5,7( uEJ   corresponding to the eigenvalue of  

.0
7


z

 Then it is easy to check that 
T

b

b

b

b
v )3,3,0,3(

44

43

11

13  








 ,where 

,0744,043,0113
8

9  ub
u

u
bb and 3  represents any nonzero real value. Also, 

let Thhhhy )4,3,2,1(  represents the eigenvector of  )5,7( uETJ  that corresponding to the eigenvalue 

.0
7


z

  Straight forward calculation shows that  

Thy )0,3,0,0(  , where  3h  represents any nonzero real number. 

Now, since  
TffffFandTwzyxXwhereTzuzuXuF

u

F
)4,3,2,1(),,,(,]0),61(,0,0[)5,(

5
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 

TuEuF
u

F
]0,0,0,0[)5,7(

5
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and the following is obtained: 

.0)0,0,0,0)(0,3,0,0()]5,7([
5

 ThuEuFTy Thus system (2.2) at 2E  does not experience any saddle-node 

bifurcation in view of sotomayor theorem. Also, since  

.033)0,3,0,0)(0,3,0,0(])5,7([
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Moreover, we have ,03
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by condition (2.19). Here, .
,

)5,()5,7(2

5575 uuEX
uXDJuEuFD


 Then by sotomayor theorem, system 

(2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near 2E  

where 77 uu  .However, violate condition (2.19) gives that .0)],)(5,7(2[
5

 vvuEuFDTy , and hence 

further computation shows 

.0)0,0,
)1(

3
3

2,1)12(3
3

)(0,3,0,0()],,)(5,7(3[
3

2

21
3

11

3
13

3
11

3
13

5













 T

u

ueu

b

b
uu

b

b
hvvvuEuFDTy 

 

Therefore according to Sotomayor theorem, there is no  pitch-fork bifurcation. 

 

Theorem 9:Assume that conditions (2.5a),(2.5b) and (2.5c) hold and the parameter 9
u passes through 

the value 769 uuu 


, then the equilibrium point 8E  transforms into nonhyperpolic equilibrium point 

and 

 if 
8

1
5 u

u                                                   (2.20)  

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor  pitch-fork 

bifurcation can occur. 

Proof: According to the Jacobian matrix of system (2.2) at  8E  that is given by   )8(EJ it is easy to 

verify that as   99 uu


 , the )9,8( uEJ


has the following eigenvalues: 
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Let Tv )4,3,2,1( 


 be the eigenvector of )9,8( uEJ


 corresponding to the eigenvalue of  

.0
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w

 Then it is easy to check that 
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and 4


 represents any nonzero real value. Also, let Thhhhy )4,3,2,1(


 represents the eigenvector of  

)9,8( uETJ


that corresponding to the eigenvalue .0
8


w

  Straight forward calculation shows that 

Thy )4,0,0,0(


 , where  4h


 represents any nonzero real number. 

Now, since  
TffffFandTwzyxXwhereTwzuXuF

u

F
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 
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and the following is obtained: 

.0)0,0,0,0)(4,0,0,0()]9,8([
9

 ThuEuFTy


Thus system (2.2) at 2E  does not experience any saddle-node 

bifurcation in view of sotomayor theorem . Also, since  
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  by condition (2.20). 
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 Then by sotomayor theorem, system (2.2) possesses a 

transcritical bifurcation but not pitch-fork bifurcation near 8E  where 99 uu


 .However, violate 

condition (2.20) gives that  
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, and hence further computation shows 
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Therefore according to Sotomayor theorem, there is no  pitch-fork bifurcation. 

 

Theorem 10:Assume that conditions (2.6b)-(2.6c) are hold and the parameter 5
u passes through the 

value , then the equilibrium point 9E  transforms into nonhyperpolic equilibrium point and if 

 769 uuu                                                (2.21)  
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then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor  pitch-fork 

bifurcation can occur. 

Proof: According to the Jacobian matrix of system (2.2) at  9E  that is given by   )9(EJ it is easy to 

verify that as   5ˆ5 uu  , the )5ˆ,9( uEJ has the following eigenvalues: 
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 and 3̂  represents any nonzero real value. Also, let Thhhhy )4
ˆ,3

ˆ,2
ˆ,1

ˆ(ˆ  represents the eigenvector of  

)5ˆ,9( uETJ that corresponding to the eigenvalue .0
9


z

  Straight forward calculation shows that 

Thy )0,3
ˆ,0,0(ˆ  , where  3ĥ  represents any nonzero real number. 

Now, since  
TffffFandTwzyxXwhereTzuzuXuF

u

F
)4,3,2,1(),,,(,]0),61(,0,0[),(
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 

TuEuF
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and the following is obtained: 

.0)0,0,0,0)(0,3
ˆ,0,0()]5ˆ,9([ˆ

5
 ThuEuFTy  

Thus system (2.2) at 9E  does not experience any saddle-node bifurcation in view of sotomayor 

theorem. Also, since .03
ˆ

3
ˆ)0,3

ˆ,0,0)(0,3
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 by condition (2.21). 

Here,  .ˆ,
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 Then by sotomayor theorem, system (2.2) possesses a 

transcritical bifurcation but not pitch-fork bifurcation near 9E  where 5ˆ5 uu  .However, violate 

condition (2.21) gives that 0)]ˆ,ˆ)(5ˆ,9(2[ˆ
5

vvuEuFDTy , and hence further computation shows 

.0)0,0,2,1)(0,3
ˆ,0,0()]ˆ,ˆ,ˆ)(5ˆ,9(3[ˆ
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Therefore according to Sotomayor theorem, there is no  pitch-fork bifurcation. 

 

Theorem 11:Assume that conditions (2.4b) or (2.4c) holds and the parameter 3u passes through the 

value 




xu

xeu
u

2

1
3 where 

x given in (2.7), then the equilibrium point 10E  transforms into 

nonhyperpolic equilibrium point and system (2.2) possesses transcritical bifurcation, but no saddle-

node bifurcation, nor  pitch-fork bifurcation can occur at 10E where 33
 uu  .  

Proof: According to the Jacobian matrix of system (2.2) at  10E  that is given by   )10(EJ it is easy to 

verify that as   33
 uu , the )3,10( uEJ has the following eigenvalues: 
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Let Tv )4,3,2,1(   be the eigenvector of )3,10( uEJ  corresponding to the eigenvalue of  
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 Then it is easy to check that 
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b
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and 2
  represents any nonzero real value. Also, let Thhhhy )4,3,2,1(  represents the eigenvector of  

)3,10( uETJ that corresponding to the eigenvalue .0
10


y

  Straight forward calculation shows that  

Thy )0,0,2,0(  , where  
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h  represents any nonzero real number. 

Now, since 
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u

F
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 
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3
3





and the following is obtained: 

.0)0,0,0,0)(0,2,0,0()]3,10([
3

 ThuEuFTy  

Thus system (2.2) at 10E  does not experience any saddle-node bifurcation in view of sotomayor 

theorem. Also, since .022)0,0,2,0)(0,2,0,0(])3,10([
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  hThvuEuDFTy  

here, .
,
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331033
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uEuDF Moreover, we have  
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Here, .
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uuEX

uXDJuEuFD Then by sotomayor theorem, system (2.2) possesses a 

transcritical bifurcation but not pitch-fork bifurcation near 10E  where 33
 uu . 

 

Theorem 12:Assume that ),,,(11
 wzyxE  exist and the parameter 9u passes through the value 

87659 uuuuu  then the equilibrium point 11E  transforms into nonhyperpolic equilibrium point and if  

 zuuw 65                                   (2.22)  

where z and w are given in (2.7a) and (2.7b), then system (2.2) possesses a  saddle-node bifurcation, 

but not transcritical bifurcation nor pitch-fork bifurcation can occur at 11E where 
 99 uu  .  

Proof: According to the Jacobian matrix of system (2.2) at  11E  that is given by   )11(EJ it is easy to 

verify that as   
 99 uu , the )9,11( uEJ has the following eigenvalues: 
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Let Tv )4,3,2,1(   be the eigenvector of )9,11( uEJ  corresponding to the eigenvalue of  
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 Then it is easy to check that  
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and 

3  represents any nonzero real value. Also, let Thhhhy )4,3,2,1(  represents the eigenvector of  

)9,11( uETJ that corresponding to the eigenvalue .0
11


z

  Straight forward calculation shows that  
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,  

where andwuubwub ,08744,0943 
 


3h  represents any nonzero real number. 

Now, since 
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With 4,3,2,1; iif represent the right hand side of system (2.2). Then we get 

TzwuEuF
u

F
],0,0,0[)9,11(

9
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and the following is obtained: 

.03)]9,11([
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  zuuwvuEuDFTy by condition 

(2.22) .Here, .
,

)9,()9,11(
991199





uuEX
uXuF

X
uEuDF Then by sotomayor theorem, system (2.2) possesses 

a saddle-node bifurcation but not transcritical bifurcation nor pitch-fork bifurcation can occur at 

11E where  
 99 uu . 
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