

Local Bifurcation of Four Species Syn-Ecosymbiosis model

Azhar Abbas Majeed*
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

In this paper, the conditions of occurrence of the local bifurcation (such as saddlenode, transcritical and pitchfork) near each of the equilibrium points of a mathematical model consists from four-species Syn- Ecosymbiosis are established.

Keywords: equilibrium point, , bifurcation, sotomayor theorem

$$
\begin{aligned}
& \text { النفرع المحلي لنظام بيئي رباعي الاجناس } \\
& \text { ازهار عباس مجيد } \\
& \text { قسم الرياضيات - كلية العوم - جامعة بغداد - بغدا د - العراق } \\
& \text { في هذا البحث،شروط النتفرع المحلي (سدل-نود، نرانسكرنكل و بجفورك) بالقرب من كل نقطة من نقاط } \\
& \text { النوازن لنظام بيئي رباعي الاجناس وجدت. }
\end{aligned}
$$

1. Introduction:

Mathematical modeling is an important interdisciplinary activity which involves the study of some aspects of diverse disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bioeconomics, Genetics, Pharmacokinetics are some of those disciplines. This mathematical modeling has taken a lot of attentions in recent years and spread to all branches of life and drewing the attention of every one. Ecology relates to study of living beings in relation with their living styles. Research in the branch of theoretical ecology was initiated by Lotka [1] and by Volterra [2]. Since then many scientists and researchers gave a lot of time and interest to this branch of study, see for example Meyer [3], Cushing [4], Paul Colinvaux[5], Freedman [6], Kapur [7, 8].
Bifurcation analysis gives regimes in the parameter space with quantitatively different asymptotic dynamic behavior of the system. Bob W. Kooi [9] studied the numerical bifurcation analysis of dynamical systems with simple Lotka-Volterra models or more elaborated models with more biological detail. Remy and Christiane R. [10], studied the bifurcation analysis of a generalized gause model with prey harvesting and a generalized Holling response function of type III. Rami \& Raid[11] proposed and analyzed a prey-predator model with four Syniecological system with Holling type-II functional response, they obtained a set of sufficient and necessary condition which guarantee the lacal and global stability of this system.
In this paper however, we will established the conditions of the occurrence of local bifurcation of a mathematical model proposed by Rami \& Raid[11].

[^0]
2. Mathematical model:[11]

An ecological model of four species Syn-Ecosymbiosis, comprising of prey-predator, commensalisms and competition, model is proposed in [11].

$$
\begin{align*}
\frac{d N_{1}}{d T} & =r_{1} N_{1}\left(1-\frac{N_{1}}{k_{1}}\right)-\frac{a_{1} N_{1}}{b+N_{1}} N_{2}+c N_{1} N_{3} \\
\frac{d N_{2}}{d T} & =e \frac{a_{1} N_{1}}{b+N_{1}} N_{2}-d_{1} N_{2}-d_{2} N_{2}^{2} \\
\frac{d N_{3}}{d T} & =r_{2} N_{3}\left(1-\frac{N_{3}}{k_{2}}\right)-\alpha_{1} N_{3} N_{4} \tag{2.1}\\
\frac{d N_{4}}{d T} & =r_{3} N_{4}\left(1-\frac{N_{4}}{k_{3}}\right)-\alpha_{2} N_{3} N_{4}
\end{align*}
$$

where $0<e<1$ represents the conversion rate.
This model consists of a prey (for example, Anemone) whose population density at time T denoted by N_{1}, the predator (for example, Butterfly fish) whose population density at time T denoted by N_{2}, the host (for example, Hermit crabs) whose population density at time T denoted by N_{3}, and the host's competitor species (for example, other type of Hermit crabs) whose population density at time T denoted by N_{4}. Moreover all the parameters are assumed to be positive and described as given in [11].
Now, for further simplification of the system (2), the following dimensionless variables are used in[11].

$$
\begin{aligned}
& t=r_{1} T, x=\frac{N_{1}}{k_{1}}, y=\frac{N_{2}}{k_{1}}, z=\frac{c N_{3}}{r_{1}}, w=\frac{\alpha_{1} N_{4}}{r_{1}}, u_{1}=\frac{a_{1}}{r_{1}} \\
& u_{2}=\frac{b}{k_{1}}, u_{3}=\frac{d_{1}}{r_{1}}, u_{4}=\frac{d_{2} k_{1}}{r_{1}}, u_{5}=\frac{r_{2}}{r_{1}} \\
& u_{6}=\frac{r_{1}}{c k_{2}}, u_{7}=\frac{r_{3}}{r_{1}}, u_{8}=\frac{r_{1}}{\alpha_{1} k_{3}}, u_{9}=\frac{\alpha_{2}}{c}
\end{aligned}
$$

Thus, system (2) can be turned into the following dimensionless form:

$$
\begin{align*}
& \frac{d x}{d t}=x\left[(1-x)-\frac{u_{1} y}{u_{2}+x}+z\right]=x f_{1}(x, y, z, w) \\
& \frac{d y}{d t}=y\left[\frac{e u_{1} x}{u_{2}+x}-u_{3}-u_{4} y\right]=y f_{2}(x, y, z, w) \\
& \frac{d z}{d t}=z\left[u_{5}\left(1-u_{6} z\right)-w\right]=z f_{3}(x, y, z, w) \tag{2.2}\\
& \frac{d w}{d t}=w\left[u_{7}\left(1-u_{8} w\right)-u_{9} z\right]=w f_{4}(x, y, z, w)
\end{align*}
$$

with $x(0) \geq 0, y(0) \geq 0, z(0) \geq 0$ and $w(0) \geq 0$. It is observed that the number of parameters have been reduced from fourteen in the system (2.1) to ten in the system (2.2). Obviously the interaction functions of the system (2.2) are continuous and have continuous partial derivatives on the following positive four dimensional space:
$R_{+}^{4}=\left\{(x, y, z, w) \in R^{4}: x(0) \geq 0, y(0) \geq 0, z(0) \geq 0, w(0) \geq 0\right\}$. Therefore these functions are Lipschitzian on R_{+}^{4}, and hence the solution of the system (2.2) exists and is unique. Further, in the following theorem, the boundedness of the solution of the system (2.2) in R_{+}^{4} is established by [11].

Theorem 1: All the solutions of system (2.2) which initiate in R_{+}^{4} are uniformly bounded.

3. Existence and stability analysis of system (2.2):[11]

The four-species Syn-Ecosymiois model given by system (2.2) has at most twelve equilibrium points, which are mentioned with their existence conditions in [11] as in the following:
The equilibrium points $E_{0}=(0,0,0,0)$, which known as the washout point, and the single species points $E_{1}=(1,0,0,0), E_{2}=\left(0,0, \frac{1}{u_{6}}, 0\right), E_{3}=\left(0,0,0, \frac{1}{u_{8}}\right)$ are always exists.
The first planar equilibrium point $E_{4}=(\hat{x}, \widehat{y}, 0,0)$ exists uniquely in Int. R_{+}^{2} (interior of R_{+}^{2})of $x y$ - plane if in addition to the condition $\widehat{x}<1$ at least one of the following conditions are satisfied:
$u_{2}>\frac{1}{2}$
$e u_{1}^{2}+u_{2}^{2} u_{4}<u_{1} u_{3}+2 u_{2} u_{4}$
The second planar equilibrium point

$$
\begin{equation*}
E_{5}=(0,0, \tilde{z}, \tilde{w}) \text { where } \tilde{w}=\frac{u_{5}\left(u_{6} u_{7}-u_{9}\right)}{u_{5} u_{6} u_{7} u_{8}-u_{9}} \text { and } \tilde{z}=\frac{u_{7}\left(u_{5} u_{8}-1\right)}{u_{5} u_{6} u_{7} u_{8}-u_{9}} \tag{2.4a}
\end{equation*}
$$

exists uniquely in the Int. R_{+}^{2} of $z W-$ plane provided that one set of the following conditions is satisfied:
$u_{5} u_{8}>1$ and $u_{6} u_{7}>u_{9}$
$u_{5} u_{8}<1$ and $u_{6} u_{7}<u_{9}$
The third planar equilibrium point $E_{6}=(\bar{x}, 0, \bar{z}, 0)=\left(\frac{u_{6}+1}{u_{6}}, 0, \frac{1}{u_{6}}, 0\right)$ always exists in Int. R_{+}^{2} of $X Z$ - plane .
The fourth planar equilibrium point $E_{7}=(\overline{\bar{x}}, 0,0, \overline{\bar{w}})=\left(1,0,0, \frac{1}{u_{8}}\right)$ always exists in Int. R_{+}^{2} of $x w$-plane.
Now, the first three species equilibrium point
$E_{8}=(\breve{x}, \breve{y}, \breve{z}, 0)$ where $\breve{y}=\frac{u_{6}\left[\left(u_{2}+\breve{x}\right)(1-\breve{x})\right]+\left(u_{2}+\breve{x}\right)}{u_{1} u_{6}}$ and $\bar{z}=\frac{1}{u_{6}}$
And $\breve{x}^{\bar{x}}$ is positive constant exists uniquely in $\operatorname{Int} . R_{+}^{3}$ of $x y z-s p a c e$ if the following conditions are satisfied:

$$
\begin{align*}
& 2 u_{2} u_{6}>u_{6}+1 \tag{2.5b}\\
& u_{6}\left(e u_{1}^{2}+u_{2}^{2} u_{4}\right)<u_{6}\left(u_{1} u_{3}+2 u_{2} u_{4}\right)+2 u_{2} u_{4} \tag{2.5c}\\
& u_{6}+1>u_{6} \breve{x} \tag{2.5d}
\end{align*}
$$

The second three species equilibrium point
$E_{9}=(\hat{x}, \hat{y}, 0, \hat{w})$ where $\hat{y}=\frac{(1-\hat{x})\left(u_{2}+\hat{x}\right)}{u_{1}}, \hat{w}=\frac{1}{u_{8}}$, and $0<\hat{x}<1$
exists uniquely in Int. R_{+}^{3} of $x y w-$ space if the following conditions are hold :
$u_{2}>\frac{1}{2}$
$e u_{1}^{2}+u_{2}^{2} u_{4}<u_{1} u_{3}+2 u_{2} u_{4}$
The third three species equilibrium point $E_{10}=\left(x^{\bullet}, 0, z^{\bullet}, w^{\bullet}\right)$ where

$$
\begin{equation*}
x^{\bullet}=\frac{u_{5} u_{6} u_{7} u_{8}-u_{9}+u_{7}\left(u_{5} u_{8}-1\right)}{u_{5} u_{6} u_{7} u_{8}-u_{9}}, z^{\bullet}=\tilde{z}, w^{\bullet}=\tilde{w} \tag{2.7}
\end{equation*}
$$

exists uniquely in the Int. R_{+}^{3} of $x z w$ - space if condition (2.4a) or (2.4b) is satisfied.
Finally the positive (coexistence) equilibrium point $E_{11}=\left(x^{*}, y^{*}, z^{*}, w^{*}\right)$ where $z^{*}=\tilde{z}, w^{*}=\tilde{w}$ (2.8a) , and

$$
\begin{equation*}
y=\frac{\left(u_{2}+x\right)\left[s_{2}(1-x)+u_{7} s_{1}\right]}{u_{1} s_{2}} \tag{2.8b}
\end{equation*}
$$

exists uniquely in Int. R_{+}^{4} if and only if the following condition is satisfied.
$0<x^{*}<\frac{s_{2}+u_{7} s_{1}}{s_{2}}$
where $s_{1}=u_{5} u_{6}-1$ and, $s_{2}=u_{5} u_{6} u_{7} u_{8}-u_{9}$

4- The stability analysis:[11]

In the following the stability analysis of all feasible equilibrium points of system (2.2), which is down by [11], is summarized in the following in order to study the bifurcation that depends on this results.
Note that, the symbols $\lambda_{i x}, \lambda_{i y}, \lambda_{i z}$ and $\lambda_{i w}$ represent the eigenvalues of the Jacobian matrix $J\left(E_{i}\right) ; i=1,2, \ldots, 11$ that describe the dynamics in the x-direction, y-direction, z-direction and w-direction respectively,
A- The Jacobian matrix $J\left(E_{0}\right)$ of system (2.2) at the trivial equilibrium point $E_{0}=(0,0,0,0)$ has the eigenvalues: $\lambda_{0 x}=1>0, \lambda_{0 y}=-u_{3}<0, \lambda_{0 z}=u_{5}>0$ and $\lambda_{0 w}=u_{7}>0$, so E_{0} is a saddle point.
B-The eigenvalues of the Jacobian matrix $J\left(E_{1}\right)$ of system (2.2) at the first single species equilibrium point $E_{1}=(1,0,0,0)$ are:
$\lambda_{1 x}=1>0, \lambda_{1 y}=\frac{e u_{1}}{u_{2}+1}-u_{3}, \lambda_{1 z}=u_{5}>0$ and $\lambda_{1 w}=u_{7}>0$, accordingly E_{1} is a saddle point.
C-The eigenvalues of the Jacobian matrix $J\left(E_{2}\right)$ of system (2.2) at the second single species equilibrium point $E_{2}=\left(0,0, \frac{1}{u_{6}}, 0\right)$ are:
$\lambda_{2 x}=1+\frac{1}{u_{6}}>0, \lambda_{2 y}=-u_{3}<0 \quad \lambda_{2 z}=-u_{5}<0$ and $\lambda_{2 w}=u_{7}-\frac{u_{9}}{u_{6}}$, thus E_{2} is a saddle point.
D-The Jacobian matrix $J\left(E_{3}\right)$ of system (2.2) at the third single species equilibrium point $E_{3}=\left(0,0,0, \frac{1}{u_{8}}\right)$ has the following eigenvalues:
$\lambda_{3 x}=1>0, \lambda_{3 y}=-u_{3}<0, \lambda_{3 z}=u_{5}-\frac{1}{u_{8}}$ and $\lambda_{3 w}=-u_{7}<0$, then E_{3} is a saddle point.
E-The Jacobian matrix $J\left(E_{4}\right)$ of system (2.2) at the first two species equilibrium point $E_{4}=(\hat{x}, \widehat{y}, 0,0)$ has the following eigenvalues:
$\lambda_{4 x}=-\frac{A_{1}}{2}+\frac{1}{2} \sqrt{A_{1}^{2}-4 A_{2}}$, and $\lambda_{4 y}=-\frac{A_{1}}{2}-\frac{1}{2} \sqrt{A_{1}^{2}-4 A_{2}}$
$\lambda_{4 z}=u_{5}>0$, and $\lambda_{4 w}=u_{7}>0$
where
$A_{1}=\hat{x}-\frac{u_{1} \hat{x} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}+u_{4} \hat{y}$, and $A_{2}=u_{4} \hat{x} \hat{y}\left(1-\frac{u_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}\right)+\frac{e u_{1}{ }^{2} u_{2} \hat{x} \hat{y}}{\left(u_{2}+\hat{x}\right)^{3}}$
Thus E_{4} is unstable.
F-The Jacobian matrix of system (2.2) at the second two species equilibrium point $E_{5}=(0,0, \tilde{z}, \tilde{w})=\left(0,0, \frac{u_{7}\left(u_{5} u_{8}-1\right)}{u_{5} u_{6} u_{7} u_{8}-u_{9}}, \frac{u_{5}\left(u_{6} u_{7}-u_{9}\right)}{u_{5} u_{6} u_{7} u_{8}-u_{9}}\right)$ has one positive eigenvalues given by:
$\lambda_{5 x}=1+\tilde{z}>0, \lambda_{5 y}=-u_{3}<0$. Thus E_{5} is saddle unstable.
G-The eigenvalues of the Jacobian matrix $J\left(E_{6}\right)$ of system (2.2) at the third two species equilibrium point $E_{6}=(\bar{x}, 0, \bar{z}, 0)=\left(\frac{u_{6}+1}{u_{6}}, 0, \frac{1}{u_{6}}, 0\right)$ are:
$\lambda_{6 x}=-\bar{x}<0, \lambda_{6 y}=\frac{e u_{1}+e u_{1} u_{6}-u_{2} u_{3} u_{6}-u_{3}-u_{3} u_{6}}{u_{2} u_{6}+u_{6}+1}$,
$\lambda_{6 z}=-u_{5}<0$ and $\lambda_{6 w}=\frac{u_{6} u_{7}-u_{9}}{u_{6}}$
Therefore, if the following conditions hold
$e u_{1}\left(1+u_{6}\right)<u_{3}\left(u_{2} u_{6}+u_{6}+1\right)$
$u_{6} u_{7}<u_{9}$
Then E_{6} is locally asymptotically stable. However, it is a saddle point otherwise.
H-The eigenvalues of Jacobian matrix $J\left(E_{7}\right)$ of system (2.2) at the forth two species equilibrium point $E_{7}=\left(1,0,0, \frac{1}{u_{8}}\right)$ are:

$$
\lambda_{7 x}=-1<0, \quad \lambda_{7 y}=\frac{e u_{1}-u_{3}\left(u_{2}+1\right)}{u_{2}+1}, \lambda_{7 z}=\frac{u_{5} u_{8}-1}{u_{8}} \text { and } \lambda_{7 w}=-u_{7}<0 .
$$

Therefore, if the following conditions hold

$$
\begin{align*}
& e u_{1}<u_{3}\left(u_{2}+1\right) \tag{2.10a}\\
& u_{5} u_{8}<1 \tag{2.10b}
\end{align*}
$$

Then E_{7} is locally asymptotically stable. However, it is a saddle point otherwise.
I- The Jacobian matrix $J\left(E_{8}\right)$ of system (2.2) at the first three species equilibrium point $E_{8}=(\breve{x}, \breve{y}, \breve{z}, 0)=\left(\breve{x}, \breve{y}, \frac{1}{u_{6}}, 0\right)$ has the following eigenvalues:

$$
\lambda_{8 x}=-\frac{\breve{A}_{1}}{2}+\frac{1}{2} \sqrt{\breve{A}_{1}^{2}-4 \breve{A}_{2}} \text {, and } \lambda_{8 y}=-\frac{\breve{A}_{1}}{2}-\frac{1}{2} \sqrt{\breve{A}_{1}^{2}-4 \breve{A}_{2}}
$$

$\lambda_{8 z}=-u_{5}<0$ and $\lambda_{8 w}=\frac{u_{6} u_{7}-u_{9}}{u_{6}}$.
Where, $\quad \breve{A}_{1}=-\breve{x}\left(-1+\frac{u_{1} \breve{y}}{\left(u_{2}+\breve{x}\right)^{2}}\right)+u_{4} \breve{y}$, and $\breve{A}_{2}=u_{4} \breve{x} \breve{y}\left(1-\frac{u_{1} \breve{y}}{\left(u_{2}+\breve{x}\right)^{2}}\right)+\frac{e u_{1}^{2} u_{2} \breve{x} \breve{y}}{\left(u_{2}+\breve{x}\right)^{3}}$
Therefore if the following conditions are satisfied
$\frac{u_{1} \breve{y}}{\left(u_{2}+\breve{x}\right)^{2}}<1$
$u_{6} u_{7}<u_{9}$
then, E_{8} is locally asymptotically stable in the R_{+}^{4}. However, it is a saddle point otherwise.
J- The Jacobin matrix $J\left(E_{9}\right)$ of system (2.2) at the second three species equilibrium point $E_{9}=(\hat{x}, \hat{y}, 0, \hat{w})=\left(\hat{x}, \hat{y}, 0, \frac{1}{u_{9}}\right)$ has the following eigenvalues:
$\lambda_{9 x}=-\frac{B_{1}}{2}+\frac{1}{2} \sqrt{B_{1}^{2}-4 B_{2}}, \lambda_{9 y}=-\frac{B_{1}}{2}-\frac{1}{2} \sqrt{B_{1}^{2}-4 B_{2}}$
$\lambda_{9 z}=\frac{u_{5} u_{8}-1}{u_{8}}$ and $\lambda_{9 w}=-u_{7}<0$
where
$B_{1}=-\hat{x}\left(-1+\frac{u_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}\right)+u_{4} \hat{y}$, and $B_{2}=u_{4} \hat{x} \hat{y}\left(1-\frac{u_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}\right)+\frac{e u_{1}^{2} u_{2} \hat{x} \hat{y}}{\left(u_{2}+\hat{x}\right)^{3}}$
Therefore if the following conditions are satisfied:
$\frac{u_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}<1$
$u_{5} u_{8}<1$
So, E_{9} is locally asymptotically stable in the R_{+}^{4}. However, it is a saddle point otherwise.
K-The Jacobian matrix $J\left(E_{10}\right)$ of system (2.2) at the third three species equilibrium point $E_{10}=\left(x^{\bullet}, 0, z^{\bullet}, w^{\bullet}\right)$ has the following eigenvalues:
$\lambda_{10 z}=-\frac{B_{1}^{\bullet}}{2}+\frac{1}{2} \sqrt{B_{1}^{\boldsymbol{0}^{2}}-4 B_{2}^{\bullet}}$, and $\lambda_{10 w}=-\frac{B_{1}^{\bullet}}{2}-\frac{1}{2} \sqrt{B_{1}^{\boldsymbol{\bullet}^{2}}-4 B_{2}^{\bullet}}$
$\lambda_{10 x}=-x^{\bullet}<0$, and $\quad \lambda_{10 y}=\frac{e u_{1} x^{\bullet}-u_{3}\left(u_{2}+x^{\bullet}\right)}{u_{2}+x^{\bullet}}$
where

$$
\begin{equation*}
B_{1}^{\bullet}=u_{5} u_{6} z^{\bullet}+u_{7} u_{8} w^{\bullet}, \text { and } B_{2}^{\bullet}=\left(u_{5} u_{6} u_{7} u_{8}-u_{9}\right) z^{\bullet} w^{\bullet} \tag{2.13a}
\end{equation*}
$$

Thus if the following conditions are satisfied
$u_{5} u_{6} u_{7} u_{8}>u_{9}$
$e u_{1} x^{\bullet}<u_{3}\left(u_{2}+x^{\bullet}\right)$
then, E_{10} is locally asymptotically stable in the R_{+}^{4}. However, it is a saddle point otherwise.
L-The Jacobian matrix $J\left(E_{11}\right)$ of system (2.2) at the positive equilibrium point $E_{11}=\left(x^{*}, y^{*}, z^{*}, w^{*}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{11}=-\frac{R_{1}}{2}+\frac{1}{2} \sqrt{R_{1}^{2}-4 R_{2}}, \lambda_{1 y}=-\frac{R_{1}}{2}-\frac{1}{2} \sqrt{R_{1}^{2}-4 R_{2}} \\
& \lambda_{11 z}=-\frac{R_{3}}{2}+\frac{1}{2} \sqrt{R_{3}^{2}-4 R_{4}}, \text { and } \lambda_{11 w}=-\frac{R_{3}}{2}-\frac{1}{2} \sqrt{R_{3}^{2}-4 R_{4}}
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{1}=-x^{*}\left(-1+\frac{u_{1} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}\right)+u_{4} y^{*}, R_{2}=u_{4} x^{*} y^{*}\left(1-\frac{u_{1} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}\right)+\frac{e u_{1}^{2} u_{2} x^{*} y^{*}}{\left(u_{2}+x^{*}\right)^{3}}, \\
& R_{3}=u_{5} u_{6} z^{*}+u_{7} u_{8} w^{*}, \text { and } R_{4}=\left(u_{5} u_{6} u_{7} u_{8}-u_{9}\right) z^{*} w^{*}
\end{aligned}
$$

Thus if the following conditions are satisfied.

$$
\begin{equation*}
\frac{u_{1} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}<1 \tag{2.14a}
\end{equation*}
$$

Hence, E_{11} is locally asymptotically stable in the. However, it is a saddle point otherwise.

5.The local Bifurcation.

In this section an investigation for dynamical behavior of system (2.2) under the effect of varying one parameter at each time is carried out. The occurrence of local bifurcation in the neighborhood of the equilibrium point of system (2.2) are studied in the following theorem.

Theorem 2: If the parameter u_{3} passes through the value $u_{3}^{\circ}=\frac{e u_{1}}{1+u_{2}}$, then the equilibrium point E_{1} transforms into nonhyperpolic equilibrium point and if

$$
\begin{equation*}
u_{1}+2 u\left(1+u_{2}\right)^{2} \neq 1 \tag{2.15}
\end{equation*}
$$

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation.However violate condition (2.15) gives pitch-fork bifurcation.
Proof: According to the Jacobian matrix of system (2.2) at E_{1} that is given by $J\left(E_{1}\right)$ it is easy to verify that as $u_{3}=u_{3}^{\circ}$, the $J\left(E_{1}, \bar{u}_{3}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{1 x}=1>0, \quad \lambda_{1 y}=0 \\
& \lambda_{1 z}=u_{5}>0 \quad \text { and } \quad \lambda_{1 w}=u_{7}>0 .
\end{aligned}
$$

Let $v^{\circ}=\left(\theta_{1}^{\circ}, \theta_{2}^{\circ}, \theta_{3}^{\circ}, \theta_{4}^{\circ}\right)^{T}$ be the eigenvector of $J\left(E_{1}, u_{3}^{\circ}\right)$ corresponding to the eigenvalue of $\lambda_{1 y}=0$. Then it is easy to check that $v^{\circ}=\left(-\frac{b_{12}^{\circ}}{b_{11}^{\circ}} \theta_{2}^{\circ}, \theta_{2}^{\circ}, 0,0\right)^{T}$, where $b_{11}^{\circ}=-1<0, b_{12}^{\circ}=-\frac{u_{1}}{1+u_{2}}$, and θ_{2}° represents any nonzero real value. Also, let $y^{\circ}=\left(h_{1}^{\circ}, h_{2}^{\circ}, h_{3}^{\circ}, h_{4}^{\circ}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{1}, u_{3}^{\circ}\right)$ that corresponding to the eigenvalue $\lambda_{1 y}=0$. Straight forward calculation shows that $y^{\circ}=\left(0, h_{2}^{\circ}, 0,0\right)^{T}$, where h_{2}° represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{3}}=F_{u_{3}}\left(X, u_{3}\right)=[0,-y, 0,0]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{3}}=F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right)=[0,0,0,0]^{T}$, and the following is obtained:
$y^{\circ T}\left[F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right)\right]=\left(0, h_{2}^{\circ}, 0,0\right)(0,0,0,0)^{T}=0$. Thus system (2.2) at E_{1} does not experience any saddle-node bifurcation in view of sotomayor theorem [12]. Also, since

$$
y^{\circ T}\left[D F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right) v^{\circ}\right]=\left(0, h_{2}^{\circ}, 0,0\right)\left(0, \theta_{2}^{\circ}, 0,0\right)^{T}=h_{2}^{\circ} \theta_{2}^{\circ} \neq 0 \text {. here, } D F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right)=\left.\frac{\partial}{\partial X} F_{u_{3}}\left(X, u_{3}\right)\right|_{X=E_{1}, u_{3}=u_{3}^{\circ} .} .
$$

Moreover, we have $y^{\circ T}\left[D^{2} F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right)\left(v^{\circ}, v^{\circ}\right)\right]=\frac{b_{12}^{\circ}}{b_{11}^{\circ}} \theta_{2}^{\circ 2}\left[-1+u_{1}+2 u_{4}\left(1+u_{2}\right)^{2}\right] \neq 0$. by condition (2.15).Here, $D^{2} F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right)=\left.D J\left(X, u_{3}\right)\right|_{X=E_{1}, u_{3}=u_{3}^{\circ} \text {. Then by sotomayor theorem, system (2.2) possesses a }}$ transcritical bifurcation but not pitch-fork bifurcation near E_{1} where $u_{3}=u_{3}^{\circ}$.
However, violate condition (2.15) gives that $y^{\circ T}\left[D^{2} F_{u_{3}}\left(E_{1}, u_{3}^{\circ}\right)\left(v^{\circ}, v^{\circ}\right)\right]=0$, and hence further computation shows $y^{\circ T}\left[D^{3} F_{u_{3}}\left(E E_{1}, u_{3}^{\circ}\right)\left(v^{\circ}, v^{\circ}, v^{\circ}\right)\right]=-\frac{\overline{b_{12}} e u_{1} u_{2}}{\overline{b_{11}}\left(1+u_{2}\right)^{3}} \bar{\theta}_{2}^{3} \overline{h_{2}} \neq 0$. Therefore according to Sotomayor theorem, system (2.2) possesses a pitch-fork bifurcation.

Theorem 3: If the parameter u_{7} passes through the value $\underline{u}_{7}=\frac{u_{9}}{u_{6}}$, then the equilibrium point E_{2} transforms into nonhyperpolic equilibrium point and if
$u_{8} \neq \frac{u_{5}\left(1-u_{9}\right)}{2 u_{9}}$
then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at E_{2} that is given by $J\left(E_{2}\right)$ it is easy to verify that as $u_{7}=\underline{u_{7}}$, the $J\left(E_{2}, \underline{u_{7}}\right)$ has the following eigenvalues:

$$
\lambda_{2 x}=1+\frac{1}{u_{6}}>0, \lambda_{2 y}=-u_{3}<0, \lambda_{2 z}=-u_{5}<0 \text { and } \lambda_{2 w}=0 .
$$

Let $\underline{v}=\left(\underline{\theta_{1}}, \underline{\theta_{2}}, \underline{\theta_{3}}, \underline{\theta_{4}}\right)^{T}$ be the eigenvector of $J\left(E_{2}, \underline{u_{7}}\right)$ corresponding to the eigenvalue of $\lambda_{2 w}=0$. Then it is easy to check that $\underline{v}=\left(0,0,-\frac{\underline{b}_{34}}{\underline{b_{33}}} \underline{\theta_{4}}, \underline{\theta_{4}}\right)^{T}$, where $\underline{b_{33}}=-u_{5}<0, \underline{b_{34}}=-\frac{1}{u_{6}}<0$, and $\underline{\theta_{4}}$ represents any nonzero real value. Also, let $\underline{y}=\left(\underline{h_{1}}, \underline{h_{2}}, \underline{h_{3}}, \underline{h_{4}}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{2}, \underline{u_{7}}\right)$ that corresponding to the eigenvalue $\lambda_{2 w}=0$. Straight forward calculation shows that $\underline{y}=\left(0,0,0, \underline{h}_{4}\right)^{T}$, where $\underline{h_{4}}$ represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{7}}=F_{u_{7}}\left(X, u_{7}\right)=\left[0,0,0, w\left(1-u_{8} w\right)^{T}\right.$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{7}}=F_{u_{7}}\left(E_{2}, \underline{u_{7}}\right)=[0,0,0,0]^{T}$ and the following is obtained:
$\underline{y}^{T}\left[F_{u_{7}}\left(E_{2}, \underline{u_{7}}\right)\right]=\left(0,0,0, \underline{h}_{4}\right)(0,0,0,0)^{T}=0$. Thus system (2.2) at E_{2} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since
$\underline{y}^{T}\left[D F_{u_{7}}\left(E_{2}, \underline{u_{7}}\right) \underline{\underline{v}}\right]=\left(0,0,0, \underline{h_{4}}\right)\left(0,0,0, \underline{\theta_{4}}\right)^{T}=\underline{h_{4}} \underline{\theta_{4}} \neq 0$.
here, $D F_{u_{7}}\left(E_{2}, \underline{u_{7}}\right)=\left.\frac{\partial}{\partial X} F_{u_{7}}\left(X, u_{7}\right)\right|_{X=E_{2}, u_{7}=\underline{u_{7}}}$.
Moreover, we have
$\underline{y}^{T}\left[D^{2} F_{u_{7}}\left(E_{2}, \underline{u 7}\right)(\underline{v}, \underline{v})\right]=\underline{\theta_{4}}{ }^{2} \underline{h}_{4}\left[u_{5}\left(u_{9}-1\right)+2 u_{9} u_{8}\right] \neq 0$. by condition (2.16).
Here, $\quad D^{2} F_{u_{7}}\left(E_{7}, \underline{u_{7}}\right)=\left.D J\left(X, u_{7}\right)\right|_{X=E_{2}, u_{7}=u_{7}}$. Then by sotomayor theorem, system (2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near E_{2} where $u_{7}=u_{7}$.
However, violate condition (2.16) gives that $\underline{y}^{T}\left[D^{2} F_{u_{7}}\left(E_{2}, \underline{u}\right)(\underline{v}, \underline{v})\right]=0$, and hence further computation shows $\underline{y}^{T}\left[D^{3} F_{u_{7}}\left(E_{2}, \underline{u_{7}}\right)(\underline{v}, \underline{v}, \underline{v})\right]=\left(0,0,0, \underline{h_{4}}\right)(0,0,0,0)^{T}=0$. Therefore according to Sotomayor theorem, system (2.2) possesses a pitch-fork bifurcation.

Theorem 4: If the parameter u_{5} passes through the value $\overline{\overline{u_{5}}}=\frac{1}{u_{8}}$, then the equilibrium point E_{3} transforms into nonhyperpolic equilibrium point and system (2.2) not possesses any saddle-node bifurcation ,transcritical bifurcation, but no bifurcation, and no pitch-fork bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at E_{3} that is given by $J\left(E_{3}\right)$ it is easy to verify that as $u_{5}=\overline{\overline{u_{5}}}$, the $J\left(E_{3}, \overline{\overline{u_{5}}}\right)$ has the following eigenvalues:

$$
\lambda_{3 x}=1>0, \quad \lambda_{3 y}=-u_{3}<0, \lambda_{3 z}=0 \text { and } \lambda_{3 w}=-u_{7}<0
$$

Let $\overline{\bar{v}}=\left(\overline{\overline{\theta_{1}}}, \overline{\overline{\theta_{2}}}, \overline{\overline{\theta_{3}}}, \overline{\overline{\theta_{4}}}\right)^{T}$ be the eigenvector of $J\left(E_{3}, \overline{\overline{u_{5}}}\right)$ corresponding to the eigenvalue of $\lambda_{3 z}=0$. Then it is easy to check that $\overline{\bar{v}}=\left(0,0, \overline{\overline{\theta_{3}}},-\frac{\overline{\overline{b_{43}}}}{\overline{\overline{b_{44}}}} \overline{\overline{\theta_{3}}}\right)^{T}$, where $\overline{\overline{b_{43}}}=-\frac{u_{9}}{u_{8}}<0, \overline{\overline{b_{44}}}=-u_{7}<0$, and $\overline{\overline{\theta_{3}}}$ represents any nonzero real value. Also, let $\overline{\bar{y}}=\left(\overline{\overline{h_{1}},} \overline{\overline{h_{2}}}, \overline{\overline{h_{3}}}, \overline{\overline{h_{4}}}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{3}, \overline{u_{5}}\right)$ that corresponding to the eigenvalue $\lambda_{3 z}=0$. Straight forward calculation shows that $\overline{=}=\left(0,0, \overline{\overline{h_{3}}}, 0\right)^{T}$, where $\overline{\overline{h_{3}}}$ represents any nonzero real number.
Now, since

$$
\frac{\partial F}{\partial u_{5}}=F_{u_{5}}\left(X, u_{5}\right)=\left[0,0,\left(1-u_{6} z\right) z, 0\right]^{T}, \text { where } X=(x, y, z, w)^{T} \text { and } F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}
$$

With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{5}}=F_{u_{5}}\left(X, \overline{\overline{u_{5}}}\right)=[0,0,0,0]^{T}$ and the following is obtained:

$$
\underset{y}{=T}\left[F_{u_{5}}\left(E_{3}, \overline{u_{5}}\right)\right]=\left(0,0, \overline{\overline{h_{3}}}, 0\right)(0,0,0,0)^{T}=0 .
$$

Thus system (2.2) at E_{3} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since $\bar{y}^{T}\left[D F_{u_{5}}\left(E_{3}, \overline{u_{5}}\right) v\right]=\left(0,0, \overline{\overline{h_{3}}}, 0\right)(0,0,0,0)^{T}=0$.
here, $\quad D F_{u_{5}}\left(E_{3}, \overline{\overline{U_{5}}}\right)=\left.\frac{\partial}{\partial X} F_{u_{5}}\left(X, u_{5}\right)\right|_{X=E_{3}, u_{5}=\overline{U_{5}}}$. Thus system (2.2) at E_{3} does not experience any transcritical bifurcation and pitch-fork bifurcation occurs at E_{3} where $u_{5}=\overline{\overline{u_{5}}}$.

Theorem 5:Assume that $\hat{x}<1$ and at least one of conditions (2.3a) and (2.3b) are hold and the parameter u_{1} passes through the value $\hat{u}_{1}=\frac{\bar{y}\left(u_{2}+\hat{x}\right)}{2\left(e u_{2} \hat{x y}\right)}+\frac{\sqrt{\left(u_{2}+\hat{x}\right)^{2} \hat{y}^{2}-4\left(e u_{2} \hat{x} \hat{y}\right)\left(u_{2}+\hat{x}\right)^{3}}}{2\left(e u_{2} \hat{x} y\right)}$, then the equilibrium point E_{4} transforms into nonhyperpolic equilibrium point and if the condition

$$
\begin{align*}
& \frac{\hat{u}_{1} \hat{y}}{\left(u_{2}+\widehat{x}\right)^{2}}>1 \tag{2.17a}\\
& e \neq \frac{\hat{b}_{21}}{\widehat{b}_{11}} \tag{2.17b}
\end{align*}
$$

where $\hat{b}_{11}=\hat{x}\left(-1+\frac{\hat{u}_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}\right)$ and $\hat{b}_{21}=\left(\frac{e \hat{u}_{1} u_{2} \hat{y}}{\left(u_{2}+\bar{x}\right)^{2}}\right)$ are hold then system (2.2) possesses a saddle-node bifurcation, violate condition(2.17b) and if the condition

$$
\hat{\theta}_{1}^{2} \widehat{h}_{1}\left(u_{2}+\hat{x}\right) \hat{b}_{21}\left[\begin{array}{l}
2\left(u_{2}+\hat{x}\right)^{2}\left(\hat{b}_{12}^{2}+\widehat{b}_{11}^{2} u_{2}\right)+ \tag{2.17c}\\
\hat{b}_{1} 2_{1}\left(\hat{b}_{11}+\hat{b}_{21} \hat{b}_{1} u_{2}+\hat{b}_{11}\left(u_{2}+\hat{x}\right)\right)
\end{array}\right] \neq \hat{b}_{2} \widehat{b}_{12}^{2} \widehat{u}_{1} \hat{\theta}_{1} \hat{h}_{1} \hat{y}\left[\hat{\theta}_{1} u_{2}+\hat{\theta}_{1} \widehat{x}_{y}+2 u_{2}\right]
$$

where $\hat{b}_{12}=-\frac{\hat{u}_{1} \hat{x}}{u_{2}+\hat{x}}$, holds then system (2.2) possesses a transcritical bifurcation, finally, if condition (2.17c) reverses and the condition

$$
\begin{aligned}
& M_{1} \neq M_{2}, \\
& M_{1}=\frac{\hat{h}_{1} \widehat{u}_{1} \bar{\theta}_{1}^{2}}{\left(u_{2}+\hat{x}\right)^{3}}\left[2 \widehat{y} \widehat{\theta}_{1}+\frac{\hat{b}_{11}}{\widehat{b}_{12}}\left[2 \widehat{\theta}_{1}+\hat{\theta}_{1}\left(u_{2}+\hat{x}\right)+\frac{6 e u_{2} \hat{y}}{\left(u_{2}+\hat{x}\right)}+2 e u_{2}\right]\right] \text { and, } \\
& M_{2}=\frac{\hat{h}_{1} \widehat{b}_{11} \widehat{\theta}_{1}^{3} \widehat{u}_{1}}{\widehat{b}_{12}\left(u_{2}+\widehat{x}\right)^{3}}\left[\left(u_{2}+\hat{x}\right)+2 \frac{\hat{b}_{11} e u_{2}}{\widehat{b}_{21}}\right]
\end{aligned}
$$

holds, then system (2.2) experience a pitch-fork bifurcation at E_{4} where $u_{1}=\hat{u}_{1}$. .
Proof: According to the Jacobian matrix of system (2.2) at E_{4} that is given by $J\left(E_{4}\right)$ it is easy to verify that as $u_{1}=\hat{u}_{1}$, the $J\left(E_{4}, \hat{u}_{1}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{4 x} \cdot \lambda_{4 y}=0, \text { so either } \lambda_{4 x}=0 \text { or } \lambda_{4 y}=0 \\
& \lambda_{4 z}=u_{5}>0 \text { and } \lambda_{4 w}=u_{7>0}
\end{aligned}
$$

We will take $\lambda_{4 x}=0$ at $u_{1}=\hat{u}_{1}$.
Let $\hat{v}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}\right)^{T}$ be the eigenvector of $J\left(E_{4}, \hat{u}_{1}\right)$ corresponding to the eigenvalue of $\lambda_{4 x}=0$ Then it is easy to check that $\hat{v}=\left(\hat{\theta}_{1},-\frac{\hat{b}_{11}}{\hat{b}_{21}} \hat{\theta}_{1}, 0,0\right)^{T}$,where $\hat{\theta}_{1}$ represents any nonzero real value. Also, let $\hat{y}=\left(\hat{h}_{1}, \hat{h}_{2}, \hat{h}_{3}, \hat{h}_{4}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{4}, \hat{u}_{1}\right)$ that corresponding to the eigenvalue $\lambda_{4 x}=0$ Straight forward calculation shows that $\hat{y}=\left(\hat{h}_{1},-\frac{\hat{b}_{11}}{\hat{b}_{21}} \hat{h}_{1},-\frac{\hat{b}_{13}}{u_{5}} \hat{h}_{1}, 0\right)^{T}$, where \hat{h}_{1} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{1}}=F_{u_{1}}\left(X, u_{1}\right)=\left[-\frac{y x}{u_{2}+x}, \frac{e x y}{u_{2}+x}, 0,0\right]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{1}}=F_{u_{1}}\left(E_{4}, \hat{u}_{1}\right)=\left[-\frac{\hat{x} \hat{y}}{u_{2}+\hat{x}}, \frac{e \hat{x} \hat{y}}{u_{2}+\hat{x}}, 0,0\right]^{T}$ and the following is obtained:
$\bar{y}^{T}\left[F_{u_{1}}\left(E_{4}, \hat{u}_{1}\right)\right]=\left(\hat{h}_{1},-\frac{\hat{b}_{11}}{\hat{b}_{21}} \hat{h}_{1},-\frac{\hat{b}_{13}}{u_{5}} \hat{h}_{1}, 0\right)\left(-\frac{\hat{x y}}{u_{2}+\hat{x}}, \frac{e x \hat{y}}{u_{2}+\hat{x}}, 0,0\right)^{T}=\frac{\hat{x y}}{u_{2}+\hat{x}} \hat{h}_{1}\left[-1-\frac{\hat{b}_{11}}{\hat{b}_{21}} e\right] \neq 0$.

Also, since $\hat{y}^{T}\left[D F_{u_{1}}\left(E_{4}, \hat{u}_{1}\right) \hat{v}\right]=\frac{\widehat{b}_{12} \widehat{b}_{21}\left(-u_{2}-1\right)+\widehat{b}_{11}\left(u_{2}+\hat{x}\right) \hat{\theta}_{1} \widehat{h} \hat{x}\left(\widehat{b}_{21}+e \widehat{b}_{11}\right)}{\widehat{b}_{12} \widehat{b}_{21}\left(u_{2}+\hat{x}\right)^{2}}+\frac{u_{2} \widehat{y} \widehat{\theta}_{1} \widehat{h}_{1}}{\widehat{b}_{12} \widehat{b}_{21}\left(u_{2}+\hat{x}\right)^{2}} \neq 0$, by condition(2.17 b$)$, here, $D F_{u 1}\left(E_{4}, \hat{u}\right)=\left.\frac{\partial}{\partial X} F_{u_{1}}\left(X, u_{1}\right)\right|_{X=E_{4}, u_{1}=\hat{u}_{1}}$.
Then system (2.2) possesses a saddle-node bifurcation in view of sotomayor theorem.
Now, violate condition (2.17b) gives that $\hat{y}^{T}\left[D F_{u_{1}}\left(E_{4}, \hat{u}_{1}\right) \hat{v}\right]=0$. Moreover, we have

$$
\begin{aligned}
\hat{y}^{T}\left[D^{2} F_{u_{1}}\left(E_{4}, \hat{u}_{1}\right)(\hat{v}, \hat{v})\right] & =-\hat{\theta}_{1}^{2} \widehat{h}_{1}\left(u_{2}+\hat{x}\right) \hat{b}_{21}\left[\begin{array}{l}
2\left(u_{2}+\hat{x}^{2}\left(\widehat{b}_{12}^{2}+\hat{b}_{11}^{2} u_{2}\right)+\right. \\
\hat{b}_{12} \hat{u}_{1}\left(\hat{b}_{11}+\hat{b}_{2} \hat{b}_{1} 1 u_{2}+\hat{b}_{11}\left(u_{2}+\hat{x}\right)\right)
\end{array}\right]+\hat{b}_{2} \hat{b}_{12}^{2} \hat{u}_{1} \hat{\theta}_{1} \hat{h}_{1} \hat{y}\left[\hat{\theta}_{1} u_{2}+\hat{\theta}_{1} \hat{x} \hat{y}+2 u_{2}\right] \\
& \neq 0
\end{aligned}
$$

by condition (2.17c). Here, $\quad D^{2} F_{u 1}\left(E_{1}, \hat{u}_{1}\right)=\left.D J\left(X, u_{1}\right)\right|_{X=E_{4}, u_{1}=\hat{u}_{1}}$. Then by sotomayor theorem, system (2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near E_{4} where $u_{1}=\hat{u}_{1}$. However, violate condition (2.17c) gives that $\hat{y}^{T}\left[D^{2} F_{u_{1}}\left(E_{4}, \hat{u} 1\right)(\hat{v}, \hat{v})\right]=0$, and hence further computation shows $\hat{y}^{T}\left[D^{3} F_{u_{1}}\left(E_{4}, \hat{v_{1}}\right)(\hat{v}, \hat{v}, \hat{v})\right]=-M_{1}+M_{2} \neq 0$ by condition (2.17d).
Therefore according to Sotomayor theorem, system (2.2) possesses a pitch-fork bifurcation. but no transcritical nor pitch-fork bifurcation occurs in view of sotomayor theorem near E_{4} where $u_{1}=\widehat{u}_{1}$.

Theorem 6: Assume that condition (2.4b) or (2.4c) holds and the parameter u_{9} passes through the value $\tilde{u}_{9}=u_{5} u_{6} u_{7} u_{8}$, then the equilibrium point E_{5} transforms into nonhyperpolic equilibrium point and if

$$
\begin{equation*}
\frac{u_{5} u_{6} \tilde{z}}{\tilde{w}} \neq 1 \tag{2.18}
\end{equation*}
$$

then system (2.2) possesses a saddle-node bifurcation but no transcritical bifurcation, , nor pitch-fork bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at E_{5} that is given by $J\left(E_{5}\right)$ it is easy to verify that as $u_{9}=\tilde{u}_{9}, J\left(E_{5}, \tilde{u}_{9}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{5 x}=1+\tilde{z}>0, \quad \lambda_{5 y}=-u_{3}<0 \\
& \lambda_{5 z}+\lambda_{5 w}=u_{5} u_{6} \tilde{z}+u_{7} u_{8} \tilde{w}>0, \text { and } \\
& \lambda_{5 z} \cdot \lambda_{5 w}=0 .
\end{aligned}
$$

Then either $\lambda_{5 z}=0$ or $\lambda_{5 w}=0$.We will assume that $\lambda_{5 z}=0$.
Let $\tilde{v}=\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}, \tilde{\theta}_{4}\right)^{T}$ be the eigenvector of $J\left(E_{5}, \tilde{u}_{9}\right)$ corresponding to the eigenvalue of $\lambda_{5 z}=0 \cdot$ Then it is easy to check that $\tilde{v}=\left(0,0, \tilde{\theta}_{3},-\frac{\tilde{b}_{33}}{\tilde{b}_{34}} \tilde{\theta}_{3}\right)^{T}$, where $\tilde{b}_{33}=-u 5 u_{6} \tilde{z}<0, \tilde{b}_{34}=-\tilde{z}<0$, and $\tilde{\theta}_{3}$ represents any nonzero real value. Also, let $\tilde{y}=\left(\tilde{h}_{1}, \tilde{h}_{2}, \tilde{h}_{3}, \tilde{h}_{4}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{5}, \tilde{u}_{9}\right)$ that corresponding to the eigenvalue $\lambda_{5 z}=0 \quad$ Straight forward calculation shows that $\tilde{y}=\left(0,0, \tilde{h}_{3},-\frac{\tilde{b}_{33}}{\tilde{b}_{43}} \tilde{h}_{3}\right)^{T}$, where \tilde{h}_{3} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(X, u_{9}\right)=[0,0,0,-w z]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(E_{5}, \tilde{u}_{9}\right)=[0,0,0,-\tilde{w} \tilde{z}]^{T}$ and the following is obtained:
$\tilde{y}^{T}\left[F_{u_{9}}\left(E_{5}, \tilde{u_{9}}\right)\right]=\left(0,0, \tilde{h}_{3},-\frac{\tilde{b}_{33}}{\tilde{b}_{43}} \tilde{h}_{3}\right)[0,0,0,-\tilde{w} \tilde{z}]^{T}=\frac{\tilde{z}^{2} \tilde{h}_{3}}{u_{7} u_{8}} \neq 0$.
Also, $\tilde{y}^{T}\left[D F_{u_{9}}\left(E_{5}, \tilde{u_{9}}\right) \tilde{v}\right]=\left(0,0, \tilde{h}_{3},-\frac{\tilde{b}_{33}}{\tilde{b}_{43}} \tilde{h}_{3}\right)\left[0,0,0,-\tilde{w} \tilde{\theta}_{3}+\frac{\tilde{b}_{33} \tilde{\theta}_{3}}{\tilde{b}_{34}} \tilde{z}^{T}=\frac{\tilde{z} \tilde{h}_{y^{\prime}} \tilde{\theta}_{3}}{u_{7} u_{8}}\left[1-\frac{u_{5} u_{6}}{\tilde{w}} \tilde{z}\right] \neq 0\right.$.
By condition (2.18) .Thus system (2.2) at E_{5} possesses a saddle-node but does not experience any transcritical or pitch-for bifurcation in view of sotomayor theorem.

Theorem 7: If the parameter u_{9} passes through the value $\overline{u_{9}}=u_{6} u_{7}$, then the equilibrium point transforms into nonhyperpolic equilibrium point and system (2.2) does not experience any saddle-node ,transcritical and pitch-fork bifurcation at E_{6} where $u_{9}=\overline{u_{9}}$.
Proof: According to the Jacobian matrix of system (2.2) at E_{6} that is given by $J\left(E_{6}\right)$ it is easy to verify that as $u_{9}=\overline{u_{9}}$., the $J\left(E_{6}, \bar{u}_{9}\right)$ has the following eigenvalues:
$\lambda_{6 x}=-\bar{x}>0, \quad \lambda_{6 y}=\frac{e u_{1}\left(1+u_{6}\right)-u_{3}\left(1+u_{6}\left(1+u_{2}\right)\right)}{1+u_{6}\left(1+u_{2}\right)}<0 \quad$ provided that condition(2.9a) holds $\lambda_{6 z}=-u_{5}<0$ and $\lambda_{6 w}=0$.
$\bar{v}=\left(\overline{\theta_{1}}, \overline{\theta_{2}}, \overline{\theta_{3}}, \overline{\theta_{4}}\right)^{T}$ be the eigenvector of $J\left(E_{6}, \overline{u_{9}}\right)$ corresponding to the eigenvalue of $\lambda_{6 w}=0$. Then it
 $\overline{\theta 4}$ represents any nonzero real value. Also, let $\bar{y}=\left(\overline{h_{1}}, \overline{h_{2}}, \overline{h_{3}}, \overline{h_{4}}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{6}, \overline{u_{9}}\right)$ that corresponding to the eigenvalue $\lambda_{6 w}=0$. Straight forward calculation shows that $\bar{y}=\left(0,0,0, \overline{h_{4}}\right)^{T}$, where $\overline{h_{4}}$ represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(X, u_{9}\right)=[0,0,0,-w z]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(E_{6}, \bar{u}_{9}\right)=[0,0,0,0]^{T}$, and the following is obtained:
$\left.{ }_{y}^{-} T\left[F_{u_{9}}\left(E_{6}, \overline{u_{6}}\right)\right]=\left(0,0,0, \bar{h}_{4}\right)(0,0,0,0)\right)^{T}=0$. Thus system (2.2) at E_{6} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since
$\bar{y}^{T}\left[D F_{u_{3}}\left(E_{1}, \overline{u_{3}}\right) \bar{v}\right]=\left(0,0,0, \bar{h}_{4}\right)(0,0,0,0)^{T}=0$. Here, $\quad D F_{u_{9}}\left(E_{6}, \overline{u_{9}}\right)=\left.\frac{\partial}{\partial X} F_{u_{9}}\left(X, u_{9}\right)\right|_{X=E_{6}, u_{9}=\overline{u_{9}}}$. Thus again by sotomayor theorem, system (2.2) does not possesses any transcritical bifurcation and pitch-fork bifurcation near E_{6} where $u_{9}=\overline{u_{9}}$.
Theorem 8: If the parameter u_{5} passes through the value $u_{5}^{\prime}=\frac{1}{u_{8}}$, then the equilibrium point E_{7} transforms into nonhyperpolic equilibrium point and if

$$
\begin{equation*}
u_{9} \neq u_{5} u_{6} u_{7} u_{8} \tag{2.19}
\end{equation*}
$$

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at E_{7} that is given by $J\left(E_{7}\right)$ it is easy to verify that as $u_{5}=u_{5}^{\prime}$, the $J\left(E 7, u_{5}^{\prime}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{7 x}=-1<0, \quad \lambda_{7 y}=\frac{e u_{1}-u_{3}\left(u_{2}+1\right)}{u_{2}+1}<0 \text { if condition }(2.10 a) \text { holds, } \\
& \lambda_{7 z}=0 \text { and } \lambda_{7 w}=-u_{7}<0 .
\end{aligned}
$$

Let $v^{\prime}=\left(\theta_{1}, \theta_{2}^{\prime}, \theta_{3}^{\prime}, \theta_{4}^{\prime}\right)^{T}$ be the eigenvector of $J\left(E_{7}, u_{5}^{\prime}\right)$ corresponding to the eigenvalue of $\lambda_{7 z}=0$. Then it is easy to check that $v^{\prime}=\left(-\frac{b_{13}^{\prime}}{b_{11}^{\prime}} \theta_{3}^{\prime}, 0, \theta_{3}^{\prime},-\frac{b_{43}^{\prime}}{b_{44}^{\prime}} \theta_{3}^{\prime}\right)^{T}$, where $b_{13}^{\prime}=1>0, b_{43}^{\prime}=-\frac{u_{9}}{u_{8}}<0, b_{44}^{\prime}=-u_{7}<0$, and θ_{3}^{\prime} represents any nonzero real value. Also, let $y^{\prime}=\left(h_{1}^{\prime}, h_{2}^{\prime}, h_{3^{\prime}}^{\prime}, h_{4}^{\prime}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{7}, u_{5}^{\prime}\right)$ that corresponding to the eigenvalue $\lambda_{7 z}=0$. Straight forward calculation shows that $y^{\prime}=\left(0,0, h_{3}^{\prime}, 0\right)^{T}$, where h_{3}^{\prime} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{5}}=F_{u_{5}}\left(X, u_{5}\right)=\left[0,0, z\left(1-u_{6} z\right), 0\right]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{5}}=F_{u_{5}}\left(E_{7}, u_{5}^{\prime}\right)=[0,0,0,0]^{T}$ and the following is obtained:
$y^{T}\left[F_{u_{5}}\left(E_{7}, u^{\prime}\right)\right]=\left(0,0, h_{3}^{\prime}, \underline{0}\right)(0,0,0,0)^{T}=0$. Thus system (2.2) at E_{2} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since

$$
\begin{aligned}
& y^{T}\left[D F_{u_{5}}\left(E_{7}, u_{5}^{\prime}\right) v^{\prime}\right]=\left(0,0, h_{3}^{\prime}, \underline{0}\right)\left(0,0, \theta_{3}^{\prime}, 0\right)^{T}=h_{3}^{\prime} \theta_{3}^{\prime} \neq 0 . \text { here, } \\
& D F_{u_{5}}\left(E_{7}, u_{5}^{\prime}\right)=\left.\frac{\partial}{\partial X} F_{u_{5}}\left(X, u_{5}\right)\right|_{X=E_{7}, u_{5}=u_{5}^{\prime} .}
\end{aligned}
$$

Moreover, we have $y^{T}\left[D^{2} F_{u_{5}}\left(E_{7}, u_{5}^{\prime}\right)\left(v^{\prime}, v^{\prime}\right)\right]=h_{3}^{\prime} \theta^{\prime 2} 3\left[\frac{u_{9}-u_{5} u_{u_{u}} u_{7} u_{8}}{u_{7} u_{8}}\right] \neq 0$,
by condition (2.19). Here, $D^{2} F_{u_{5}}\left(E_{7}, u_{5}^{\prime}\right)=\left.D J\left(X, u_{5}\right)\right|_{X=E_{7}, u_{5}=u_{5}^{\prime}}$. Then by sotomayor theorem, system (2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near E_{2} where $u_{7}=\underline{u_{7}}$.However, violate condition (2.19) gives that $y^{\prime}\left[D^{2} F_{u_{5}}\left(E_{7}, u_{5}^{\prime}\right)\left(v^{\prime}, \nu^{\prime}\right)\right]=0$, and hence further computation shows

$$
y^{\prime T}\left[D^{3} F_{u_{5}}\left(E 7, u_{5}^{\prime}\right)\left(v^{\prime}, v^{\prime}, v^{\prime}\right)\right]=\left(0,0, h_{3}^{\prime}, 0\right)\left(\frac{b_{13}^{\prime 3}}{b_{11}^{\prime 3}} \theta_{3}^{3}\left(u_{2}-1\right) u_{1},-2 \frac{b_{13}^{\prime 3}}{b_{11}^{\prime 3}} \theta_{3}^{3} \frac{e u_{1} u_{2}}{\left(1+u_{2}\right)^{3}}, 0,0\right)^{T}=0
$$

Therefore according to Sotomayor theorem, there is no pitch-fork bifurcation.
Theorem 9:Assume that conditions (2.5a),(2.5b) and (2.5c) hold and the parameter u_{9} passes through the value $\bar{u}_{9}=u_{6} u_{7}$, then the equilibrium point E_{8} transforms into nonhyperpolic equilibrium point and

$$
\begin{equation*}
\text { if } u_{5} \neq \frac{1}{u_{8}} \tag{2.20}
\end{equation*}
$$

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at E_{8} that is given by $J\left(E_{8}\right)$ it is easy to verify that as $u_{9}=\breve{u}_{9}$, the $J\left(E_{8}, \breve{u}_{9}\right)$ has the following eigenvalues:
$\lambda_{8 x}=-\frac{\breve{A}_{1}}{2}+\frac{1}{2} \sqrt{\breve{A}_{1}^{2}-4 \breve{A}_{2}}$, and $\lambda_{8 y}=-\frac{\breve{A}_{1}}{2}-\frac{1}{2} \sqrt{\breve{A}_{1}^{2}-4 \breve{A}_{2}}$ where
$\breve{A}_{1}=-\breve{x}\left(-1+\frac{u_{1} \breve{y}}{\left(u_{2}+\breve{x}\right)^{2}}\right)+u_{4} \breve{y}$, and $\breve{A}_{2}=u_{4} \breve{x} \breve{y}\left(1-\frac{u_{1} \breve{y}}{\left(u_{2}+\breve{x}\right)^{2}}\right)+\frac{e u_{1}^{2} u_{2} \breve{x} \breve{y}}{\left(u_{2}+\breve{x}\right)^{3}}$,
$\lambda_{8 z}=-u_{5}<0$ and $\lambda_{8 w}=0$.

Let $\breve{v}=\left(\breve{\theta}_{1}, \breve{\theta}_{2}, \breve{\theta}_{3}, \breve{\theta}_{4}\right)^{T}$ be the eigenvector of $J\left(E_{8}, \breve{u}_{9}\right)$ corresponding to the eigenvalue of $\lambda_{8 w}=0$. Then it easy to check that $\widetilde{v}=\left(-\frac{\breve{b}_{22} \breve{b}_{13} \breve{b}_{34}}{\breve{b}_{33}\left(b_{12} \breve{b}_{21}-\breve{b}_{11} \breve{b}_{22}\right)} \breve{\theta}_{4}, \frac{\breve{b}_{21} \breve{b}_{13} \breve{b}_{34}}{b_{33}\left(\breve{b}_{12} \breve{b}_{21}-\breve{b}_{11} \breve{b}_{22}\right)} \breve{\theta}_{4},-\frac{\breve{b}_{34}}{\breve{b}_{33}} \breve{\theta}_{4}, \breve{\theta}_{4}\right)^{T}$, where $\breve{b}_{11}=-\breve{x}+\frac{u_{1} \breve{x} \bar{y}}{\left(u_{2}+\breve{x}\right)^{2}}, \breve{b}_{12}=-\frac{u_{1} \breve{x}}{u_{2}+\breve{x}}<0, \breve{b}_{13}=\breve{x}>0, \breve{b}_{21}=\frac{e u_{1} u_{2} \breve{y}}{\left(u_{2}+\breve{x}\right)^{2}}>0, \breve{b}_{22}=-u_{4} \breve{y}<0$, $b_{33}=-u_{5}<0, \breve{b}_{34}=-\frac{1}{u_{6}}<0$
and $\breve{\theta}_{4}$ represents any nonzero real value. Also, let $\breve{y}=\left(\breve{h}_{1}, \breve{h}_{2}, \breve{h}_{3}, \breve{h}_{4}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{8}, \breve{u}_{9}\right)$ that corresponding to the eigenvalue $\lambda_{8 w}=0$. Straight forward calculation shows that $\breve{y}=\left(0,0,0, \breve{h}_{4}\right)^{T}$, where \breve{h}_{4} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(X, u_{9}\right)=[0,0,0,-w z]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(E_{8}, \breve{u}_{9}\right)=[0,0,0,0]^{T}$ and the following is obtained:
$\breve{y}^{T}\left[F_{u_{9}}\left(E_{8}, \breve{u} 9\right)\right]=\left(0,0,0, \breve{h_{4}}\right)(0,0,0,0)^{T}=0$. Thus system (2.2) at E_{2} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since
$\breve{y}^{T}\left[D F_{u_{9}}\left(E_{8}, \breve{u}_{9}\right) \breve{v}\right]=\left(0,0,0, \breve{h}_{4}\right)\left(0,0,0,-\breve{z} \breve{\theta}_{4}\right)^{T}=-\breve{h}_{4} \breve{\theta}_{4} \breve{z} \neq 0$.
here, $D F_{u_{9}}\left(E_{8}, \breve{u}_{9}\right)=\left.\frac{\partial}{\partial X} F_{u_{9}}\left(X, u_{9}\right)\right|_{X=E_{8}, u_{5}=\breve{u}_{5}}$.
Moreover, we have $\breve{y}^{T}\left[D^{2} F_{u_{9}}\left(E_{8}, \breve{u_{9}}\right)(\breve{v}, \breve{v})\right]=\left[\frac{u_{6} u_{7}\left(1-u_{5} u_{8}\right)}{u_{6} u_{9}}\right] \breve{\theta}_{4}{ }^{2} \breve{h}_{4} \neq 0$, by condition (2.20).
Here, $\quad D^{2} F_{u_{5}}\left(E_{8}, \breve{u}_{5}\right)=\left.D J\left(X, u_{9}\right)\right|_{X=E_{8}, u_{5}=\breve{u}_{5}} \cdot$ Then by sotomayor theorem, system (2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near E_{8} where $u_{9}=\breve{u}_{9}$. However, violate condition (2.20) gives that
$\breve{y}^{T}\left[D^{2} F_{u_{9}}\left(E_{8}, \breve{u} 9\right)(\breve{v}, \breve{v})\right]=0$, and hence further computation shows
$\breve{y}^{T}\left[D^{3} F_{u_{9}}\left(E_{8}, \breve{u}_{9}\right)(\breve{v}, \breve{v}, \breve{v})\right]=\left(0,0,0, \breve{h}_{4}\right)\left(k_{1}, k_{2}, 0,0\right)^{T}=0$
where $k_{1}=-u_{1} \breve{y} \breve{\theta}_{1}^{3}+\frac{u_{2}\left(u_{1}-\breve{x}\right)}{\left(u_{2}+\breve{x}\right)^{3}} \breve{\theta}_{1}^{2} \breve{\theta}_{2}+\frac{u_{1} \breve{\theta}_{1}^{2} \breve{\theta}_{2}\left(u_{2}-\breve{x}\right)}{\left(u_{2}+\breve{x}\right)^{3}}+\left(u_{1} u_{2}-u_{1} \breve{x}\right) \breve{\theta}_{1}^{2} \breve{\theta}_{2}$ and
$k_{2}=\frac{2 e u_{1} u_{2} \breve{\theta}_{1}^{2}}{\left(u_{2}+\breve{x}\right)^{3}}\left(\frac{2 \breve{y} \breve{\theta}_{1}}{\left(u_{2}+\breve{x}\right)^{2}}-\breve{\theta}_{2}-\frac{\breve{\theta}_{2}}{\left(u_{2}+\breve{x}\right)}\right.$
Therefore according to Sotomayor theorem, there is no pitch-fork bifurcation.

Theorem 10:Assume that conditions (2.6b)-(2.6c) are hold and the parameter u_{5} passes through the value, then the equilibrium point E_{9} transforms into nonhyperpolic equilibrium point and if

$$
\begin{equation*}
u_{9} \neq u_{6} u_{7} \tag{2.21}
\end{equation*}
$$

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at $\quad E_{9}$ that is given by $J\left(E_{9}\right)$ it is easy to verify that as $u_{5}=\hat{u}_{5}$, the $J\left(E_{9}, \hat{u}_{5}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{9 x}=-\frac{B_{1}}{2}+\frac{1}{2} \sqrt{B_{1}^{2}-4 B_{2}}, \lambda_{9 y}=-\frac{B_{1}}{2}-\frac{1}{2} \sqrt{B_{1}^{2}-4 B_{2}} \text { where } \\
& B_{1}=-\breve{x}\left(-1+\frac{u_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}\right)+u_{4} \hat{y}, B_{2}=u_{4} \hat{x} \hat{y}\left(1-\frac{u_{1} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}\right)+\frac{e u_{1}^{2} u_{2} \hat{x} \hat{y}}{\left(u_{2}+\hat{x}\right)^{3}} \\
& \lambda_{9 z}=0 \text { and } \lambda_{9 w}=-U_{7}<0 .
\end{aligned}
$$

Let $\hat{V}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}\right)^{T}$ be the eigenvector of $J\left(E E_{9}, \hat{u}_{5}\right)$ corresponding to the eigenvalue of $\lambda_{9 z}=0$. Then it is easy to check that $\check{v}=\left(\frac{\hat{b}_{22} \hat{b}_{13}}{\left(\hat{b}_{12} \hat{b}_{21}-\hat{b}_{11} \hat{b}_{22}\right)} \hat{\theta}_{3},-\frac{\hat{b}_{21} \hat{b}_{13}}{\left(\hat{b}_{12} \hat{b}_{21}-\hat{b}_{11} \hat{b}_{22}\right)} \hat{\theta}_{3}, \hat{\theta}_{3},-\frac{\hat{b}_{43}}{\hat{b}_{44}} \hat{\theta}_{3}\right)^{T}$,
where
$\hat{b}_{11}=-\hat{x}+\frac{u_{1} \hat{x} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}, \hat{b}_{12}=-\frac{u_{1} \hat{x}}{u_{2}+\hat{x}}<0, \hat{b}_{13}=\hat{x}>0, \hat{b}_{21}=\frac{e u_{1} u_{2} \hat{y}}{\left(u_{2}+\hat{x}\right)^{2}}>0, \hat{b}_{22}=-u_{4} \hat{y}<0$,
$\hat{b}_{43}=-\frac{u_{9}}{u_{8}}<0, \hat{b}_{44}=-u_{7}<0$
and $\hat{\theta}_{3}$ represents any nonzero real value. Also, let $\hat{y}=\left(\hat{h}_{1}, \hat{h}_{2}, \hat{h}_{3}, \hat{h}_{4}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{9}, \hat{u}_{5}\right)$ that corresponding to the eigenvalue $\lambda_{9 z}=0$. Straight forward calculation shows that $\hat{y}=\left(0,0, \hat{h}_{3}, 0\right)^{T}$, where \hat{h}_{3} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{5}}=F_{u_{5}}\left(X, u_{5}\right)=\left[0,0, z\left(1-u_{6} z\right), 0\right]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{5}}=F_{u_{5}}\left(E_{9}, \hat{u}_{5}\right)=[0,0,0,0]^{T}$ and the following is obtained:
$\hat{y}^{T}\left[F_{u_{5}}\left(E 9, \hat{u}_{5}\right)\right]=\left(0,0, \hat{h}_{3}, 0\right)(0,0,0,0)^{T}=0$.
Thus system (2.2) at E_{9} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since $\hat{y}^{T}\left[D F_{u_{5}}\left(E 9, \hat{u}_{5}\right) \hat{v}\right]=\left(0,0, \hat{h}_{3}, 0\right)\left(0,0, \hat{\theta}_{3}, 0\right)^{T}=\hat{h}_{3} \hat{\theta}_{3} \neq 0$.
here, $D F_{u_{5}}\left(E_{9}, \hat{u}_{5}\right)=\left.\frac{\partial}{\partial X} F_{u_{5}}\left(X, u_{5}\right)\right|_{X=E_{9}, u_{5}=\hat{u}_{5}} \cdot$ Moreover, we have
$\hat{y}^{T}\left[D^{2} F_{u_{5}}\left(E_{9}, \hat{u}_{5}\right)(\hat{v}, \hat{v})\right]=\left[\frac{u_{9}-u_{6} u_{7}}{u_{7} u_{8}}\right] \hat{\theta}_{3}^{2} \hat{h}_{4} \neq 0$, by condition (2.21).
Here, $\quad D^{2} F_{u_{5}}\left(E_{9}, \hat{u}_{5}\right)=\left.D J\left(X, u_{5}\right)\right|_{X=E_{9}, u_{5}=\hat{u}_{5}}$.Then by sotomayor theorem, system (2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near E_{9} where $u_{5}=\hat{u}_{5}$. However, violate condition (2.21) gives that $\hat{y}^{T}\left[D^{2} F_{u_{5}}\left(E_{9}, \hat{u}\right)(\hat{v}, \hat{v})\right]=0$, and hence further computation shows $\left.\hat{y}^{T}\left[D^{3} F_{u_{5}}(E 9, \hat{u})\right)(\hat{v}, \hat{v}, \hat{v})\right]=\left(0,0, \hat{h}_{3}, 0\right)\left(S_{1}, S_{2}, 0,0\right)^{T}=0$.
where $S_{1}=-u_{1} \breve{y} \breve{\theta}_{1}^{3}+\frac{u_{2}\left(u_{1}-\breve{x}\right)}{\left(u_{2}+\breve{x}\right)^{3}} \breve{\theta}_{1}^{2} \breve{\theta}_{2}+\frac{u_{1} \breve{\theta}_{1}^{2} \breve{\theta}_{2}\left(u_{2}-\breve{x}\right)}{\left(u_{2}+\breve{x}\right)^{3}}+\left(u_{1} u_{2}-u_{1} \breve{x}\right) \breve{\theta}_{1}^{2} \breve{\theta}_{2}$, and $S_{2}=\frac{2 e u_{1} u_{2} \breve{\theta}_{1}^{2}}{\left(u_{2}+\breve{x}\right)^{3}}\left(\frac{2 \breve{y} \breve{\theta}_{1}}{\left(u_{2}+\breve{x}\right)^{2}}-\breve{\theta}_{2}-\frac{\breve{\theta}_{2}}{\left(u_{2}+\breve{x}\right)}\right.$

Therefore according to Sotomayor theorem, there is no pitch-fork bifurcation.
Theorem 11:Assume that conditions (2.4b) or (2.4c) holds and the parameter u_{3} passes through the value $u^{\bullet} 3=\frac{e u_{1} x^{\bullet}}{u_{2}+x^{\bullet}}$ where x^{\bullet} given in (2.7), then the equilibrium point E_{10} transforms into nonhyperpolic equilibrium point and system (2.2) possesses transcritical bifurcation, but no saddlenode bifurcation, nor pitch-fork bifurcation can occur at E_{10} where $u_{3}=u^{\bullet} 3$.
Proof: According to the Jacobian matrix of system (2.2) at E_{10} that is given by $J\left(E_{10}\right)$ it is easy to verify that as $u_{3}=u^{\bullet} 3$, the $J\left(E_{10}, u^{\bullet} 3\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{10 x}=-x^{\bullet}<0, \lambda_{10 y}=0, \lambda_{10 z}=-\frac{B_{1}^{\bullet}}{2}+\frac{1}{2} \sqrt{B_{1}^{\bullet_{1}^{2}}-4 B_{2}^{\bullet}} \text {, and } \\
& \lambda_{10 w}=-\frac{B_{1}^{\bullet}}{2}-\frac{1}{2} \sqrt{B_{1}^{\bullet}{ }_{1}^{2}-4 B^{\bullet}} 2 \\
& \text { where } B^{\bullet}{ }_{1}=u_{5} u_{6} z^{\bullet}+u_{7} u_{8} w^{\bullet} \text {, and } B^{\bullet}{ }_{2}=\left(u_{5} u_{6} u_{7} u_{8}-u_{9}\right) z^{\bullet} w^{\bullet} .
\end{aligned}
$$

Let $v^{\bullet}=\left(\theta_{1}^{\bullet}, \theta_{2}^{\bullet}, \theta_{3}^{\bullet}, \theta_{4}^{\bullet}\right)^{T}$ be the eigenvector of $J\left(E_{10}, u_{3}^{\bullet}\right)$ corresponding to the eigenvalue of $\lambda_{10 y}=0$. Then it is easy to check that $v^{\bullet}=\left(-\frac{b_{12}^{\bullet}}{b_{11}^{\bullet}} \theta_{2}^{\bullet}, \theta_{2}^{\bullet}, 0,0\right)^{T}$, where
$b^{\bullet}{ }_{11}=-\hat{x}<0, b^{\bullet} 12=-\frac{u_{1} x^{\bullet}}{u_{2}+x^{\bullet}}<0$,
and $\theta^{\bullet} 2$ represents any nonzero real value. Also, let $y^{\bullet}=\left(h_{1}^{\bullet}, h_{2}^{\bullet}, h_{3}^{\bullet}, h_{4}^{\bullet}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{10}, u_{3}^{\bullet}\right)$ that corresponding to the eigenvalue $\lambda_{10 y}=0$. Straight forward calculation shows that $y^{\bullet}=\left(0, h_{2}^{\bullet}, 0,0\right)^{T}$, where h_{2}^{\bullet} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{3}}=F_{u_{3}}\left(X, u_{3}\right)=[0,0,-y, 0]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$
With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{3}}=F_{u_{3}}\left(E_{10}, u^{\bullet} 3\right)=[0,0,0,0]^{T}$ and the following is obtained:
$y^{\bullet}\left[F_{u_{3}}\left(E_{10}, u^{\bullet} 3\right)\right]=\left(0,0, h^{\bullet} 2,0\right)(0,0,0,0)^{T}=0$.
Thus system (2.2) at E_{10} does not experience any saddle-node bifurcation in view of sotomayor theorem. Also, since $y^{\bullet} T\left(D F_{u_{3}}\left(E_{1} 0, u^{\bullet} 3\right) v^{\bullet}\right]=\left(0,0, h^{\bullet} 2,0\right)\left(0,-\theta_{2}^{\bullet}, 0,0\right)^{T}=-h_{2}^{\bullet} \theta_{2}^{\bullet} \neq 0$.
here, $D F_{u_{3}}\left(E_{10}, u_{3}^{\cdot \bullet}\right)=\left.\frac{\partial}{\partial X} F_{u_{3}}\left(X, u_{3}\right)\right|_{X=E_{10}, u_{3}=u_{3}^{\cdot}} \cdot$ Moreover, we have

$$
\begin{aligned}
& y^{\bullet} T \\
& {\left[D^{2} F_{u_{3}}\left(E_{10}, u^{\bullet} 3\right)\left(v^{\bullet}, v^{\bullet}\right)\right] }\left.=\left(0,0, h^{\bullet}, 0\right)\left(-\frac{b_{12}^{\bullet}}{b_{11}^{\bullet}} \frac{b_{12}^{\bullet}}{b_{11}^{\bullet}}+2 \frac{u_{1} x^{\bullet}}{\left(u_{2}+x^{\bullet}\right)^{2}} \theta_{2}^{\bullet 2}\right),-\frac{b_{12}^{\bullet}}{b_{11}^{\bullet}} \frac{e u_{1} u_{2}}{\left(u_{2}+x^{\bullet}\right)^{2}} \theta_{2}^{\bullet}-2 u_{2} \theta_{2}^{\bullet 2}, 0,0\right)^{T} \\
&=\left[-\frac{b_{12}^{\bullet}}{b_{11}^{\bullet}} \frac{e u_{1} u_{2}}{\left(u_{2}+x^{\bullet}\right)^{2}} \theta_{2}^{\bullet}-2 u_{2} \theta_{2}^{\bullet 2}\right] h_{2}^{\bullet} \neq 0 .
\end{aligned}
$$

Here, $D^{2} F_{u_{3}}\left(E_{10}, u_{3}\right)=\left.D J\left(X, u_{3}\right)\right|_{X=E_{10}, u_{3}=u_{3} \cdot}$.Then by sotomayor theorem, system (2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near E_{10} where $u_{3}=u^{\bullet} 3$.

Theorem 12:Assume that $E_{11}=\left(x^{*}, y^{*}, z^{*}, w^{*}\right)$ exist and the parameter u_{9} passes through the value $u_{9}^{*}=u_{5} u_{6} u_{7} u_{8}$ then the equilibrium point E_{11} transforms into nonhyperpolic equilibrium point and if

$$
\begin{equation*}
w^{*} \neq u_{5} u_{6} z^{*} \tag{2.22}
\end{equation*}
$$

where z^{*} and w^{*} are given in (2.7a) and (2.7b), then system (2.2) possesses a saddle-node bifurcation, but not transcritical bifurcation nor pitch-fork bifurcation can occur at E_{11} where $u_{9}=u_{9}^{*}$.
Proof: According to the Jacobian matrix of system (2.2) at E_{11} that is given by $J\left(E_{11}\right)$ it is easy to verify that as $u_{9}=u_{9}^{*}$, the $J\left(E_{1}, u_{9}^{*}\right)$ has the following eigenvalues:

$$
\begin{aligned}
& \lambda_{11 x}=-\frac{R_{1}}{2}+\frac{1}{2} \sqrt{R_{1}^{2}-4 R_{2}}, \lambda_{11 y}=-\frac{R_{1}}{2}-\frac{1}{2} \sqrt{R_{1}^{2}-4 R_{2}}, \\
& \lambda_{11 z}=-\frac{R_{3}}{2}+\frac{1}{2} \sqrt{R_{3}^{2}-4 R_{4}^{2}},=-\frac{R_{3}}{2}+\frac{R_{3}}{2}=0, \lambda_{11}=-\frac{R_{3}}{2}-\frac{1}{2} \sqrt{R_{3}^{2}-4 R_{4}^{2}}=-R_{3} \\
& \text { where } R_{1}=-x^{*}\left(-1+\frac{u_{1} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}\right)+u_{4} y^{*}, R_{2}=u_{4} x^{*} y^{*}\left(1-\frac{u_{1} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}\right)+\frac{e u_{1}^{2} u_{2} x * y *}{\left(u_{2}+x^{*}\right)^{3}}, \\
& R_{3}=u_{5} u_{6} z^{*}+u_{7} u_{8} w^{*}, \text { and }_{4}=\left(u_{5} u_{6} u_{7} u_{8}-u_{9}^{*}\right) z^{*} w^{*}=0
\end{aligned}
$$

Let $v^{*}=\left(\theta_{1}^{*}, \theta_{2}^{*}, \theta_{3}^{*}, \theta_{4}^{*}\right)^{T}$ be the eigenvector of $J\left(E_{1} 1, u_{9}^{*}\right)$ corresponding to the eigenvalue of $\lambda_{11 z}=0$. Then it is easy to check that

where, $b^{*} 11=-x^{*}+\frac{u_{1} x^{*} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}, b^{*} 12=-\frac{u_{1} x^{*}}{u_{2}+x^{*}}<0, b^{*} 13=x^{*}>0, b^{*} 21=\frac{e u_{1} u_{2} y^{*}}{\left(u_{2}+x^{*}\right)^{2}}>0$,
$b^{*} 22=-u_{4} y^{*}<0, b^{*} 33=-u_{5} u_{6} z^{*}<0, b^{*} 34=-z^{*}<0$
and θ_{3}^{*} represents any nonzero real value. Also, let $y^{*}=\left(h_{1}^{*}, h_{2}^{*}, h_{3}^{*}, h_{4}^{*}\right)^{T}$ represents the eigenvector of $J^{T}\left(E_{11}, u_{9}^{*}\right)$ that corresponding to the eigenvalue $\lambda_{11 z}=0$. Straight forward calculation shows that

where $b_{43}^{*}=-u{ }_{9}^{*} w^{*}<0, b_{44}^{*}=-u 7 u w^{*} w^{*}<0$, and h_{3}^{*} represents any nonzero real number.
Now, since $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(X, u_{9}^{*}\right)=[0,0,0,-w z]^{T}$, where $X=(x, y, z, w)^{T}$ and $F=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)^{T}$

With $f_{i} ; i=1,2,3,4$ represent the right hand side of system (2.2). Then we get $\frac{\partial F}{\partial u_{9}}=F_{u_{9}}\left(E_{11}, u_{9}^{*}\right)=\left[0,0,0,-w^{*} z^{*}\right]^{T}$ and the following is obtained:
$y^{* T}\left[F_{u_{9}}\left(E_{11}, u_{9}^{*}\right)\right]=\frac{u_{5} u_{6} z^{* 2}}{u_{7} u_{8}} h_{3}^{*} \neq 0$. Also, since $y^{* T}\left[D F_{u_{9}}\left(E_{11}, u_{9}^{*}\right) v^{*}\right]=\left[-w^{*}+u_{5} u_{6} z^{*}\right] \theta_{3}^{*} \neq 0$, by condition (2.22).Here, $D F_{u_{9}}\left(E_{11}, u_{9}^{*}\right)=\left.\frac{\partial}{\partial X} F_{u_{9}}\left(X, u_{9}\right)\right|_{X=E_{11}, u_{9}=u_{9}^{*}}$.Then by sotomayor theorem, system (2.2) possesses a saddle-node bifurcation but not transcritical bifurcation nor pitch-fork bifurcation can occur at E_{11} where $u_{9}=u_{9}^{*}$.

References

1. Lotka, A.J.1925.Element of physical biology, Williams and Wilkins, Baltimore.
2. Volterra, V.1931.Leconssen la theorie mathematique de la leitte pou lavie, Gauthier- ,Villars, Paris.
3. Meyer, W.J.1985.Concept of mathematical modeling, McGraw-Hill.
4. Cushing, J.M.1977.Integro-differential equations and delay models in population dynamics, Leture Notes in Biomathematics. Springer-Verlag Heidelberg.. 20.
5. Paul, C.1986.Ecology, John Wiley and Sons Inc., New York.
6. Freedman, H.I.1980. Deterministic mathematical models in population, ecology, Marcel Dekker, Inc., New York, USA.
7. Kapour, J.N. 1988. Mathematical modeling, Wiley-Eastern.
8. Kapour, J.N. 1985.Mathematical models in biology and medicine Affiliated, East-West.
9. Bob, W.K. 2010.Numerical bifurcation analysis of dynamical systems, Department of Theoretical Biology,Vrije University.
10. Remy, M.E. and Christiane R. 2009. Bifurcation analysis of a generalized gause model with prey harvesting and a generalized Holling response function of type III,NSERC in Canada.
11. Rami ,R.and Raid, K.N. 2014. The dynamics of the multi-interactions ecological systems,Lambert Academic Publishing.

[^0]: *Email:azhar_abbas_m@yahoo.com

