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Abstract:  

     In this article, two-dimensional unsteady incompressible viscous nanofluids 

magneto-hydrodynamic (MHD) flow among two parallel plates extended infinitely 

is investigated. The equations that results from the use of similarity transformations 

for non-linear partial differential system are solved by the new algorithm. The 

important key to this construct is the derivatives that appear as coefficients in the 

power series. The effects of apparent physical parameters on velocity concentration 

and temperature distributions are described using a schematic diagram and 

interpreted physically. The effects of apparent physical parameters on concentration, 

temperature, and velocity distributions are described by graphs. For the flow of 

nanofluids, the results indicate that it is inversely proportional between the rate of 

mass and heat transfer with nanoparticle size fraction and magnetic parameter. Over 

time, squeeze number and schmidt number lead to increase the rate of mass transfer. 

This problem is dissolved numerically by using the Runge-Kutta scheme of fourth-

order (RK4S) .  

 

Keywords: Magneto-Hydrodynamic, New algorithm, Squeezing Flow ,Viscous 

Nanofluids, Metallic and Nonmetallic Nanoparticles . 

 

مسائلة الموائع النانوية للتدفق اللزج غير المستقر تحت   النمذجة التحليلية لانتقال الكتلة والحرارة على
 تأثير سرعة الانزلاق 
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 قسم الرياضيات ، كلية العلوم، جامعة البصره، البصره، العراق 

 

 الخلاصة 
بين         النانوية  السوائل  للضغط من  القابلة  المستقرة وغير  اللزوجة غير  تدفق  يتم فحص   ، المقالة  في هذه 

للنظام   التشابه  تحويلات  استخدام  من  النتائج  معادلات  حل  يتم  نهائي.  لا  بشكل  ممتدين  متوازيين  لوحين 
التفاضلي الجزئي غير الخطي بواسطة الخوارزمية الجديدة. المفتاح المهم لهذا البناء هو المشتقات التي تظهر  
وتوزيعات   السرعة  تركيز  على  الظاهرة  الفيزيائية  المعلمات  تأثيرات  يتم وصف  القوة.  متسلسلة  في  كمعامِلات 
إلى   النتائج  تشير   ، النانوية  السوائل  لتدفق  بالنسبة   . فيزيائي  وتفسير  تخطيطي  رسم  باستخدام  الحرارة  درجة 

 وجود تناسق عكسي بين معدل الكتلة ونقل الحرارة مع جزء حجم الجسيمات النانوية والمعلمة المغناطيسية.
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Introduction:  

     The analysis of mass and heat transfer for a viscid nano-fluid an unsteady flow among two 

parallel plates is motivational topic for reconnaissance cause of their industrial use and 

biological conditions, Its many physical and engineering applications can be described by 

Figure1. As follows: 

  
Figure1: The Application of Nanofluid Flow. 

 

     Stefan [1] was the first to study the squeeze flow under lubrication approximation. The 

problem of a compressed nano-fluid an unsteady flow among two parallel plates has been 

suggested by Gupta and Ray [2]. The term nano-fluid is first proposed by Choi a]]]]]\nd 

Eastman [3] a fluid in which nanoparticles are postponed in an improper fluid such as oil, 

ethylene glycol, and water with low thermal conductivity. For Cu / water and Cu/ kerosene 

the squeezing flow of nano-fluid among two parallel plates under the impacts of velocity slip 

and the dissipation of viscous was studied by Khan et al [4]. Khilap et al.[5] have acquired an 

analytic approximate solution for squeezing nano-fluid flow. In the base fluid, a nanofluid 

displays a fluid that is particles size on the order of a nanometer where diameter less of 100 

nm are combined. Usually, the conduction of fluid for the base fluid is a for example as 

lubricants, oils, polymer solution, water 5%, ethylene glycol, water, toluene, and bio-fluids. In 

nanofluids, nanoparticles are existing in active to of the fraction volume. Because nanofluids 

have a high heat transfer capacity, they have better property than conventional heat transfer 

fluids which are poor in heat conduction. For energy supply, Cooling and heating fluids 

display an important role in developing energy efficient equipment heat transfer. Therefore, 

nano-sized conductive metal particles were added to rise the thermal conductivity of these 

fluids. Moreover, the importance of these fluids is efficient use in modern industry, and 

important applications of these nanofluid are microelectronics, pharmaceutical processes and 

fuel cells. In recent years, many authors have reported and studied nanofluid technology 

analytically, numerically, experimentally in the presence of heat transfer [6-17]. The 

algorithm of the present study is to account for mass transfer, heat transfer and the slip 

velocity on unsteady squeezing nanofluid flow among two parallel plates. In this work, we 

employed a new algorithm and Runge-Kutta 4-order (RK4S) scheme and shooting scheme to 

discover the analytical and numerical solutions respectively of nonlinear ordinary differential 

equations. The impacts of governing physical parameters such as nanoparticle volume 
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fraction, Schmidt number squeeze number, magnetic and slip parameter on concentration, 

temperature, and velocity, as well as on Sherwood number, Nusselt, and skin-friction 

coefficient are examined. From our simple information, in the scientific literature this 

research has not been studied. 

 

The Statement of Problem: 

     Mass and heat transfer of two dimensional an unsteady squeezing nano-fluid in the middle 

are two parallel plates which infinite expansion. The distance between two plates can be 

define as 𝑦 = ±ℎ(𝑡) = ±𝐽(1 − 𝜉𝑡)0.5 , when time 𝑡 = 0, 𝐽 is the initial position . In this 

system, the flow does not have a chemical reaction, incompressible, the effects of viscous 

dissipation are preserved. For both the plates in direction perpendicular a transverse magnetic 

field of flexible strength is forced. Graphical modeling [6] for this study is presented see 

Figure.2.  

 

 

Figure 2: The Configuration of Flow. 

 

This problem representing nanofluid flow is as follows: 

 
∂ǔ

𝜕𝑥
+

𝜕�̌�

𝜕𝑦
= 0,                                                                                                                             (1) 

∂ǔ

𝜕𝑡
+ ǔ

𝜕ǔ

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+

1

�̌�𝑛𝑓

𝜕𝑝

𝜕𝑥
−

�̌�𝑛𝑓

�̌�𝑛𝑓
[

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2] + �̌�𝑛𝑓�̌�0�̌� = 0,                (2)  

∂v̌

𝜕𝑡
+ ǔ

𝜕v̌

𝜕𝑥
+ 𝑣

𝜕�̌�

𝜕𝑦
+

1

�̌�𝑛𝑓

𝜕𝑝

𝜕𝑦
−

�̌�𝑛𝑓

�̌�𝑛𝑓
[

𝜕2�̌�

𝜕𝑥2 +
𝜕2�̌�

𝜕𝑦2] = 0,                                                                     (3)  

∂�̌�

𝜕𝑡
+ ǔ

𝜕�̌�

𝜕𝑥
+ 𝑣

𝜕�̌�

𝜕𝑦
−

�̌�𝑛𝑓

(�̌� �̌�𝑝)𝑛𝑓

[
𝜕2�̌�

𝜕𝑥2
+

𝜕2�̌�

𝜕𝑦2
] −

�̌�𝑛𝑓

(�̌� �̌�𝑝)𝑛𝑓

[4 (
𝜕�̌�

𝜕𝑥
)

2

+ (
𝜕�̌�

𝜕𝑦
+

𝜕�̌�

𝜕𝑥
)

2

] = 0,     (4)  

∂�̌�

𝜕𝑡
+ ǔ

𝜕�̌�

𝜕𝑥
+ 𝑣

𝜕�̌�

𝜕𝑦
− 𝐷 [

𝜕2�̌�

𝜕𝑥2 +
𝜕2�̌�

𝜕𝑦2] = 0,                                                                                                                              (5) 

The components of the velocity are ǔ and v̌ . �̌�, �̌�, �̌�𝑛𝑓 , (�̌� �̌�𝑝)𝑛𝑓 and �̌�𝑛𝑓 indicate the 

temperature, the pressure, density, heat capacitance, and dynamic viscosity. The stated 

problem has the boundary conditions given form  

�̌� = −�̌�
𝜕𝑢

𝜕𝑦
 , 𝑣 = 𝑣𝑤 =

𝑑ℎ

𝑑𝑡
, �̌� = �̌�ℎ , �̌� = �̌�ℎ 

 at 𝑦 = ℎ(𝑡),                                                                                    (6) 

𝑣 =
𝜕𝑢

𝜕𝑦
=

𝜕�̌�

𝜕𝑦
, �̌� = �̌�0  at 𝑦 = 0,                                                                                                 (7) 

The mathematics equation of the nanofluid are : 

• The density : �̌�𝑛𝑓 = (1 − Δ)�̌�𝑓 + Δ �̌�𝑠, 

• The heat capacity : (�̌� �̌�𝑝)𝑛𝑓 = (1 − Δ)(�̌� �̌�𝑝)𝑓 + Δ(�̌� �̌�𝑝)𝑠, 

• The dynamic viscosity (Brinkman) : �̌�𝑛𝑓 =
�̌�𝑓

(1−Δ)2.5 , 
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• The thermal conductivity (Maxwell-Garnetts): �̌�𝑛𝑓 =
�̌�𝑠+2�̌�𝑓−2Δ(�̌�𝑓−�̌�𝑠)

�̌�𝑠+2�̌�𝑓+2Δ(�̌�𝑓−�̌�𝑠)
�̌�𝑓 ,  

�̌�𝑠, �̌�𝑓 , �̌�𝑓 , Δ and �̌�𝑠 are the thermal conductivity for the solids, the thermal conductivity for of 

the base fluid, the fluid density, volume fraction of nanoparticles and the density of the solid 

respectively. Equations.1-7 can be simplified through the following definitions:  

�̌� =
𝛼𝑥

𝑙(1−𝜉𝑡)
 Μ′(𝛼), 𝑣 ̌ = −

𝛼𝑙

2(1−𝜉𝑡)0.5
 Μ(𝛼), 𝛼 =

𝑦

𝑙(1−𝜉𝑡)0.5
,                                                     (a8) 

 Ζ(α) =  
�̌�−�̌�0 

�̌�ℎ −�̌�0 
, Ε(𝛼) =

�̌�−�̌�0

�̌�ℎ−�̌�0
,                                                                                                    (b8)  

M′(𝛼) is the velocity distribution along the x-axis, M(𝛼) is the velocity distribution along the 

y-axis, Ζ(𝛼) is dimensionless temperature distribution , Ε(α) is dimensionless concentration 

function and 𝛼 is the local similarity variable. Now, substituting Equation .a8 and Equation. 

b8 into Equations .1-7. The final from of the resulting equations are  
𝑑4Μ

𝑑𝛼4 − 𝑆𝑓1(1 − Δ)2.5 [𝛼 
𝑑3Μ

𝑑𝛼3 + 3
𝑑2Μ

𝑑𝛼2 +
𝑑Μ

𝑑𝛼

𝑑2Μ

𝑑𝛼2 − Μ
𝑑3Μ

𝑑𝛼3 ] − 𝑘𝑛
𝑑2Μ

𝑑𝛼2 = 0,                                (9) 

𝑑2Ζ

𝑑𝛼2 +
Pr 𝑆 𝑓2

𝑓3
[Μ

𝑑Ζ

𝑑𝛼
− 𝛼

𝑑Ζ

𝑑𝛼
] +

Pr 𝐸𝑐

𝑓3(1−Δ)2.5 [(
𝑑2Μ

𝑑𝛼2 )
2

+ 4𝜓2(
𝑑Μ

𝑑𝛼
)2] = 0,                                         (10) 

𝑑2Ε

𝑑𝛼2 + 𝑆 𝑆𝑐 [Μ
𝑑Ε

𝑑𝛼
− 𝛼 

𝑑Ε

𝑑𝛼
] = 0,                                                                                               (11) 

The boundary conditions provided are  

Μ(0) = 0,
𝑑2Μ(0)

𝑑𝛼2 = 0,
𝑑M(0)

𝑑𝛼
= 0, Ε(0) = 0,                                                                          (a12) 

Μ(1) = 0,
𝑑Μ(1)

𝑑𝛼
= − Ω 

𝑑2Μ(1)

𝑑𝛼2 , Ζ(1) = 1, Ε(1) = 1,                                                         (b12) 

The definitions of the parameters for Equations .9-12 as 

Schmidt parameter: Sc =
𝜈𝑓

𝐷𝑛𝑓
, Squeeze parameter: 𝑆 =

𝜉𝑙2

2𝜈𝑓
, Prandtl parameter: 𝑃𝑟 =

�̌�𝑓( �̌��̌�)𝑓

�̌�𝑓
, Eckert parameter: 𝐸𝑐 =

�̌�𝑓

(�̌� �̌��̌�)𝑓
 (

𝜉𝑥

2(1−𝜉𝑡)
)2, Slip parameter: Ω =

𝐿

𝑙(1−𝜉𝑡)0.5, The 

reference length: 𝜓 =
1

𝑥
, The magnetic parameter : 𝑘𝑛 =

2�̌�𝑛𝑓�̌�0
2

ℎ(𝑡)2

�̌�𝑓 �̌�𝑓
, 

The proposed system has been implanted nanofluid where to  appear the base fluid which is 

water contains various kinds of nanoparticles such as silver (Ag), titanium oxide (TiO2), 

alumina (Al2O3) and copper Cu with addition the slip velocity under effect . The properties 

of thermo physical nano-fluids are introduced in Table 1. 

 

Table 1: The properties of hermo physical nano-fluids. 
Thermo physical 

Properties 
�̌� (

𝐾𝑔

𝑚3
) �̌��̌� (

𝐽

𝑘𝑔𝐾
) �̌�(

𝑊

𝑚𝐾
) 

Pure water 

Cu 

Ag 

Al2O3 

 TiO2 

997.1 

8933 

10500 

3970 

4250 

4179 

385 

235 

765 

686.2 

0.613 

401 

429 

40 

8.9538 

 

The  Physical of Quantities: 

the Sherwood number 𝑆ℎ𝑥 , the Nusselt number 𝑁𝑢𝑥 and the skin friction coefficient 𝐶𝑓𝑥 can 

be introduced as 

 𝑆ℎ𝑥 =  
𝑙 𝑚𝑤

𝐷𝑛𝑓(�̌�ℎ −�̌�0 )
, 𝑚𝑤 =  −𝐷𝑛𝑓 (

𝜕�̌�

𝜕𝑦
)𝑦=ℎ(𝑡),                         (a13) 

 𝑁𝑢𝑥 =  
𝑙 𝑞𝑤

�̌�𝑓(�̌�ℎ −�̌�0 )
, 𝑞𝑤 = −�̌�𝑛𝑓 (

𝜕�̌�

𝜕𝑦
)𝑦=ℎ(𝑡),                              (b13) 

 𝐶𝑓𝑥 =
𝜏𝑤

�̌�𝑛𝑓𝑣𝑤
2 , 𝜏𝑤 = �̌�𝑛𝑓 (

𝜕𝑢

𝜕𝑦
)𝑦=ℎ(𝑡),                                                                                                 (c13) 
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By using Equation .8 and Equation.13, yield  

 𝑆ℎ𝑥
∗ = √1 − 𝜉𝑡𝑆ℎ𝑥 = − 

𝑑Ε(1)

𝑑𝛼
 ,                                                                                              (14) 

𝑁𝑢𝑥
∗ = √1 − 𝜉𝑡𝑁𝑢𝑥 = −𝑓3 

𝑑Ζ(1)

𝑑𝛼
,                                                                                           (15)  

𝐶𝑓𝑥
∗ = (

1

𝑓1(1−𝜖)
5
2

)
𝑑2Μ(1)

𝑑𝛼2
,                                                                                                         (16) 

where 𝑅𝑒𝑥 is Reynolds number. 

 

The Application  of New Algorithm for   Squeezing Unsteady Magneto-hydrodynamic 

Nano-Fluid Flow Problem: 

 In this section, the steps of the new algorithm[6-10] are implemented to resolve the ordinary 

differential Equations .9 - 12 to find the analytic approximate solution Μ(𝛼), Ζ(𝛼), and Ε(𝛼), 

can be summarized, by integrating Equation .9 four times, Equation.10 and Equation .11 

twotimes with respect to 𝛼 in [0, 𝛼], we get 

Μ(𝛼) = 𝐽11 + 𝐽12𝛼 + 𝐽13
𝛼2

2!
+ 𝐽14

𝛼3

3!
+ 𝐿1

−1[𝑆𝑓1(1 − Δ)2.5 (𝛼 
𝑑3Μ

𝑑𝛼3 + 3
𝑑2Μ

𝑑𝛼2 +
𝑑Μ

𝑑𝛼

𝑑2Μ

𝑑𝛼2 −

Μ
𝑑3Μ

𝑑𝛼3 ) + 𝑘𝑛
𝑑2Μ

𝑑𝛼2 ],                                                                                            (a17)  

Ζ(𝛼) = 𝐽21 + 𝐽22𝛼 − 𝐿2
−1[

Pr 𝑆 𝑓2

𝑓3
(Μ

𝑑Ζ

𝑑𝛼
− 𝛼

𝑑Ζ

𝑑𝛼
) +

Pr 𝐸𝑐

𝑓3(1−Δ)2.5 ((
𝑑2Μ

𝑑𝛼2 )
2

+ 4𝜓2 (
𝑑Μ

𝑑𝛼
)

2

)], (𝑏17)  

Ε(𝛼) = 𝐽31 + 𝐽32𝛼 − 𝐿3
−1[𝑆 𝑆𝑐 (Μ

𝑑Ε

𝑑𝛼
− 𝛼 

𝑑Ε

𝑑𝛼
)],                   (c17) 

the Equations .a17-c17 become by formula as follow:  

M(𝛼) = 𝐽11 + 𝐽12𝛼 + 𝐽13
𝛼2

2!
+ 𝐽14

𝛼3

3!
+ 𝐿1

−1𝐾1[Η(𝛼)],                                                        (18a) 

Ζ(𝛼) = 𝐽21 + 𝐽22𝛼 + 𝐿2
−1𝐾2[Ζ(𝛼)],                                                                                    (18b) 

Ε(𝛼) = 𝐽31 + 𝐽32𝛼 + 𝐿3
−1𝐾3[Ε(𝛼)],                                                                                    (18c)  

whereas, 

𝐽11 = M(0), 𝐽12 = M′(0), 𝐽13 = M′′(0), 𝐽14 = M′′′(0), 𝐽21 = Ζ(0),  𝐽22 = Ζ′(0), 

𝐽31 = Ε(0),  𝐽32 = Ε′(0), and 𝐿1
−1 = ∫ ∫ ∫ ∫ (. )(𝑑𝛼)4𝛼

0
,

𝛼

0

𝛼

0

𝛼

0
 𝐿2

−1 =  𝐿3
−1 = ∫ ∫ (. )(𝑑𝛼)2,

𝛼

0

𝛼

0
  

𝐾1[M(𝛼)] = 𝑆𝑓1(1 − Δ)2.5  [𝛼 
𝑑3Μ

𝑑𝛼3
+ 3

𝑑2Μ

𝑑𝛼2
+

𝑑Μ

𝑑𝛼

𝑑2Μ

𝑑𝛼2
− Μ

𝑑3Μ

𝑑𝛼3
] + 𝑘𝑛

𝑑2Μ

𝑑𝛼2
,  

𝐾2[Ζ(𝛼)] = −
Pr 𝑆 𝑓2

𝑓3
[Μ

𝑑Ζ

𝑑𝛼
− 𝛼

𝑑Ζ

𝑑𝛼
] −

Pr 𝐸𝑐

𝑓3(1 − Δ)2.5
[(

𝑑2Μ

𝑑𝛼2
)

2

+ 4𝜓2(
𝑑Μ

𝑑𝛼
)2],  

𝐾3[Ε(𝛼)] = −𝑆 𝑆𝑐 [Μ
𝑑Ε

𝑑𝛼
− 𝛼 

𝑑Ε

𝑑𝛼
],  

form boundary conditions Equation .12a and Equation.12b become 

Μ(𝛼) = 𝐽12𝛼 + 𝐽14
𝛼3

3!
+ 𝐿1

−1𝐾1[Μ(𝛼)],                                                                                (19a) 

Ζ(𝛼) = 𝐽21 + 𝐿2
−1𝐾2[Ζ(𝛼)],                                                                                                 (19b) 

Ε(𝛼) = 𝐽32𝛼 + 𝐿3
−1𝐾3[Ε(𝛼)],                                                                                              (19c) 

with the following hypothesis: 

𝐾1[Μ(𝛼)] = ∑
𝑑(𝑚−1)𝐾1[Μ0(𝛼)]

𝑑𝛼(𝑚−1)
∞
𝑚=1 ,  𝐾2[Ζ(𝛼)] = ∑

𝑑(𝑚−1)𝐾2[Ζ0(𝛼)]

𝑑𝛼(𝑚−1)
∞
𝑚=1 ,  

𝐾3[Ε(𝛼)] = ∑
𝑑(𝑚−1)𝐾3[Ε0(𝛼)]

𝑑𝛼(𝑚−1)
∞
𝑚=1 ,                                                                                         (20)      

Through the above hypotheses, we find that the analytical solutions is known as the following 

as: 

M(𝛼) = M0 + M1 + M2 + ⋯,                                                                                             (21a) 

Ζ(𝛼) = Ζ0 + Ζ1 + Ζ2 + ⋯,                                                                                                 (21b) 

Ε(𝛼) = Ε0 + Ε1 + Ε2 + ⋯,                                                                                                      (21c) 
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so,  

 M0 = 𝐽12𝛼 + 𝐽14
𝛼3

3!
, M1 = 𝐿1

−1𝐾1[M0(𝛼)], M2 = 𝐿1
−1𝐾1

′[M0(𝛼)], …,  

Ζ0 = 𝐽21,  Ζ1 = 𝐿2
−1𝐾2[Ζ0(𝛼)], Ζ2 = 𝐿2

−1𝐾2′[Ζ0(𝛼)], …,  
Ε0 = 𝐽32𝛼,  Ε1 = 𝐿3

−1𝐾3[Ε0(𝛼)], Ε2 = 𝐿3
−1𝐾3′[Ε0(𝛼)], …,  

The values of 𝐾1, 𝐾2 and 𝐾3 with derivatives with respect to 𝛼 . Let can be calculate which is 

the crucial part of new algorithm:  

 𝐾1[Μ0(𝛼)] = 𝑆𝑓1(1 − Δ)2.5  [𝛼 
𝑑3Μ0

𝑑𝛼3 + 3
𝑑2Μ0

𝑑𝛼2 +
𝑑Μ0

𝑑𝛼

𝑑2Μ0

𝑑𝛼2 − Μ0
𝑑3Μ0

𝑑𝛼3 ] + 𝑘𝑛
𝑑2Μ0

𝑑𝛼2 ,           (22)  

𝐾2[Ζ0(𝛼)] = −
Pr 𝑆 𝑓2

𝑓3
[Μ0

𝑑Ζ0

𝑑𝛼
− 𝛼

𝑑Ζ0

𝑑𝛼
] −

Pr 𝐸𝑐

𝑓3(1−Δ)2.5 [(
𝑑2Μ0

𝑑𝛼2 )
2

+ 4𝜓2 (
𝑑Μ0

𝑑𝛼
)

2

],                      (23) 

𝐾3[Ε0(𝛼)] = −𝑆 𝑆𝑐 [Μ0
𝑑Ε0

𝑑𝛼
− 𝛼 

𝑑Ε0

𝑑𝛼
],                                                                                  (24) 

𝐾1
′[Μ0(𝛼)] = ∑ 𝐾1Μ0

(𝑔1−1) .(Μ0𝛼)(𝑔1−1),4
𝑔1=1                                                                         (25)  

𝐾2
′[Ζ(𝛼)] = ∑ 𝐾2Μ0

(𝑔1−1) .(Μ0α)(𝑔1−1) + 𝐾2Ζ0
′ .(Ζ0α)′,3

𝑔1=1                                                  (26) 

𝐾3
′[Ε0(𝛼)] = 𝐾3Ε0

′ .(Ε0α)′ + 𝐾3Μ0
 Μ0𝛼,                                                                                  (27) 

⋮ 
The derivatives of the functions Μ, Ζ and Ε are unknown. As wall as, we propose hypothesis 

as follows:  

Μ𝛼 =  Μ1 =  𝐿−1𝐾1[Μ0(𝛼)],  Μ𝛼𝛼 =  Μ2 =  𝐿−1𝐾1
′[Μ0(𝛼)],                                              (28)  

Ζ𝛼 = Ζ1 =  𝐿−1𝐾2[Ζ0(𝛼)],  Ζ𝛼𝛼 =  Ζ2 =  𝐿−1𝐾2
′[Ζ0(𝛼)],                                                     (29) 

 Ε𝛼 = Ε1 =  𝐿−1𝐾3[Ε0(𝛼)],  Ε𝛼𝛼 =  Ε2 =  𝐿−1𝐾3
′[Ε0(𝛼)],                                                    (30) 

Now, the first derivatives of 𝐾 as follows: 

𝑘1Μ0
= −𝑆𝑓1(1 − Δ)2.5 Μ0

′′′, 𝑘1Μ0Μ0
= 𝑘1Μ0Μ0

′ = 0,  𝑘1Μ0Μ0
′′′ = −𝑆𝑓1(1 − Δ)2.5, 

𝑘1Μ0Μ0Μ0
= 𝑘1Μ0Μ0Μ0

′ = 𝑘1Μ0Μ0
′ Μ0

′ = 𝑘1Μ0Μ0
′ Μ0

′ = 𝑘1Μ0Μ0
′′Μ0

′′ = 𝑘1Μ0Μ0
′′′Μ0

′′′ = 0,  

𝑘1Μ0
′ = 𝑆𝑓1(1 − Δ)2.5Μ0

′′, 𝑘1Μ0Μ0
′ = 𝑘1Μ0

′ Μ0
′′′ = 0, 𝑘1Μ0

′ Μ0
′′ = 𝑆𝑓1(1 − Δ)2.5,  

𝑘1Μ0Μ0Μ0
′ = 𝑘1Μ0Μ0

′ Μ0
′ = 𝑘1Μ0

′ Μ0
′ Μ0

′ = 𝑘1Μ0
′ Μ0

′′′Μ0
′ = 𝑘1Μ0

′ Μ0
′′Μ0

′′ = 𝑘1Μ0
′ Μ0

′′′Μ0
′′′ = 0, 

𝑘1Μ0
′′ = 𝑆𝑓1(1 − Δ)2.5(3 + Μ0

′ ) + 𝑘𝑛,  𝑘1Μ0
′′Μ0

′′′ = 0, 𝑘1Μ0
′′Μ0

′ = 𝑆𝑓1(1 − Δ)2.5, 

𝑘1Μ0
′′Μ0Μ0

′ = 𝑘1Μ0
′′Μ0

′ Μ0
′ = 𝑘1Μ0

′′Μ0
′ Μ0

′ = 𝑘1Μ0
′′Μ0

′′′Μ0
′ = 𝑘1Μ0

′′Μ0
′′Μ0

′′ = 𝑘1Μ0
′′Μ0

′′′Μ0
′′′ = 0, 

𝑘1Μ0
′′′ = 𝑆𝑓1(1 − Δ)2.5(𝛼 − Μ0), 𝑘1Μ0

′′′Μ0
′′ = 0, 𝑘1Μ0

′′′Μ0
= 𝑆𝑓1(1 − Δ)2.5, 

𝑘1Μ0
′′′Μ0Μ0

′ = 𝑘1Μ0
′′′Μ0

′ Μ0
′ = 𝑘1Μ0

′′′Μ0
′ Μ0

′ = 𝑘1Μ0
′′′Μ0

′′′Μ0
′ = 𝑘1Μ0

′′′Μ0
′′Μ0

′′ = 𝑘1Μ0
′′′Μ0

′′′Μ0
′′′ = 0,  

𝐾2Μ0
= −

Pr 𝑆 𝑓2

𝑓3
Ζ0

′ , 𝑘2Μ0Μ0
′ = 𝑘2Μ0Μ0

′′ = 𝑘2Μ0Μ0
= 0, 𝐾2Μ0Ζ0

′ = −
Pr 𝑆 𝑓2

𝑓3
,  

𝑘2𝑔0𝑔0𝑔0
= 𝑘2𝑔0𝑔0

′ 𝑔0
= 𝑘2𝑔0𝑔0

′ 𝑔0
′ = 𝑘2𝑔0

′ 𝑔0
′′′𝑔0

′ = 𝑘2𝑔0𝑔0
′′𝑔0

′′ = 𝑘2𝑔0𝑔0
′′′𝑔0

′′′ = 0, 

𝐾2Μ0
′ = −

2 Pr 𝐸𝑐

𝑓3(1 − Δ)2.5
Μ0

′ , 𝑘2Μ0Μ0
′ = 𝑘2Μ0

′ Μ0
′ = 0, 𝐾2Μ0Μ0

′ = −
2 Pr 𝐸𝑐

𝑓3(1 − Δ)2.5
, 

𝑘2Μ0
′ Μ0Μ0

= 𝑘2Μ0Μ0
′ Μ0

′ = 𝑘2Μ0
′ Μ0

′ Μ0
′ = 𝑘2Μ0

′ Ζ0
′ Μ0

′ = 𝑘2Μ0
′ Ζ0

′ Ζ0
′ = 𝑘2Μ0

′ Μ0
′′Μ0

′′′ = 0, 

𝐾2Μ0
′′ =

−8𝜓2𝑃𝑟𝐸𝑐

𝑓3(1 − ∆)2.5
Μ0

′′, 𝑘2Μ0
′′Μ0

′ = 𝑘2Μ0
′′Μ0

′′ = 0, 𝐾2Μ0
′′Μ0

′′ =
−8𝜓2𝑃𝑟𝐸𝑐

𝑓3(1 − ∆)2.5
, 

𝑘2Μ0
′ Μ0Ζ0

′ = 𝑘2Μ0Μ0
′′Μ0

′ = 𝑘2Μ0
′′Μ0

′′Μ0
′ = 𝑘2Μ0

′′Ζ0
′ Μ0

′ = 𝑘2Μ0
′′Μ0

′ 𝜃0
′ = 𝑘2Μ0

′′Μ0
′′Μ0

′′′ = 0, 

𝑘2Μ0
′ Μ0Ζ0

′ = 𝑘2Ζ0
′ Μ0

′′Μ0
′ = 𝑘2Ζ0

′ Μ0
′′Μ0

′ = 𝑘2Ζ0
′ Ζ0

′ Μ0
′ = 𝑘2Ζ0

′ Ζ0
′ Ζ0

′ = 𝑘2Μ0
′′Μ0

′′Μ0
′′′ = 0, 

𝐾2Ζ0
′ = −

Pr 𝑆 𝑓2

𝑓3
(Μ0 − 𝛼) , 𝐾2Ζ0

′ Μ0
= −

Pr 𝑆 𝑓2

𝑓3
, 𝐾2Ζ0

′ Μ0
′ = 𝐾2Ζ0

′ Μ0
′′ = 0,  

𝐾3Ε0
′ = −𝑆 𝑆𝑐(Μ − 𝛼), 𝑘2Ε0

′ Μ0
= −𝑆 𝑆𝑐 , 𝐾3Μ0

= −𝑆 𝑆𝑐Ε0
′ , 𝐾3Μ0Ε0

′ = −𝑆 𝑆𝑐. 

Substituting Equations.22-30 in Equations.21a-21c, we obtain the following results solutions: 
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 Results and Discussions: 

     In this section, the Impacts of various physical parameters on the axial velocity Μ(𝛼), the 

radial velocity Μ′(𝛼), temperature Ζ(𝛼) and concentration Ε(𝛼) distributions are analyzed . 

So to show the graphical and the tabular simulation, the results and discussions are divided 

into four in the upcoming subsections for Pr = 6.2, 𝐸𝑐 = 𝜓 = 0.01 as follows: 

1-Tabular Discussion of Physical Quantities: The effects of 𝑆 on the Sherwood number 𝑆ℎ𝑥
∗  

, the Nusselt number 𝑁𝑢𝑥
∗ , and the skin-friction coefficient 𝐶𝑓𝑥

∗  are shown in Table.2. Through 

this table it can watch clearly that 𝑁𝑢𝑥
∗  and 𝐶𝑓𝑥

∗  are oppositely proportional to 𝑆, while 𝑆ℎ𝑥
∗  is 

directly proportional to 𝑆. The comparison between non-metallic nanoparticles (Al2O3, TiO2) 

and metallic nanoparticles (Ag, Cu) is demonstrated in the Table. 3. It is noted in the 

mentioned table that the value of the 𝐶𝑓𝑥
∗  is less for metallic nanoparticles than non-metallic 

nanoparticles, but non-metallic nanoparticles have an increased mass and heat transfer rate 

compared to metallic nanoparticles. Table.4 displays the impacts of 𝐶𝑓𝑥
∗ , 𝑁𝑢𝑥

∗  , 𝑆ℎ𝑥
∗  and for 

several values of 𝐾𝑛 . It can be seen from the table that the influence of growing K values is 

to reduce the rate of mass transfer , the rate of heat transfer , and the skin-friction coefficient. 

Further, the impacts of the nanoparticle volume fraction ∆ are displayed in Table .5. From this 

table it is determined that the incrementing values Δ of rises 𝐶𝑓𝑥
∗  and decreases the 𝑁𝑢𝑥

∗  , 𝑆ℎ𝑥
∗ . 

Table.6 displays the impacts for 𝐶𝑓𝑥
∗ , 𝑁𝑢𝑥

∗  , 𝑆ℎ𝑥
∗  for diverse values of slip number Ω and 

Schmidt number 𝑆𝑐. The impact growth of Ω is to rise the coefficient of skin-friction with 

decreasing the rate of mass and heat transfer may that noticed from this table. Furthermore , 

the rate of mass transfer growth with the rise in 𝑆𝑐, whereas the skin friction coefficient and 

the rate of heat transfer not have any influence when changing 𝑆𝑐 on the rate of heat transfer 

and the skin friction coefficient . 

 

Table.2: Calculating of  𝐶𝑓𝑥
∗ , 𝑁𝑢𝑥

∗  and 𝑆ℎ𝑥
∗  various values of 𝑆 for Cuwater nano-fluid when 

𝐾𝑛 = 𝑆𝑐 = 1, ∆= 0.02, Ω = 0.1. 
S -1.0 -0.5 0 0.5 1.0 

C𝑓𝑥
∗ 6 -1.34295 -1.77787 -2,09419 -2.34148 -2.54426 

𝐶𝑓𝑥
∗  -1.70854 -1.97792 -2.19683 -2.37941 -2.53538 

𝑁𝑢𝑥
∗ 6 0.187977 0.127657 0.104693 0.094096 0.088577 

𝑁𝑢𝑥
∗  0.184680 0.113226 0.103595 0.093037 0.090204 

𝑆ℎ𝑥
∗ 6 -1.0694254 -1.0293233 -1.0000000 -0.9770841 -0.9583107 

𝑆ℎ𝑥
∗  -1.0618908 -1.0271843 -1.0000000 -0.9773102 -0.9574584 

 

Table.3: The calculating of  𝐶𝑓𝑥
∗ ,  𝑁𝑢𝑥

∗  and 𝑆ℎ𝑥
∗  with various nanoparticles when 𝐾𝑛 = 𝑆𝑐 =

1, ∆= 0.02, Ω = 0.1. 
Nanoparticle Ag Cu TiO2 Al2O3 

C𝑓𝑥
∗ 6 -2.48678 -2.54426 -2.73607 -2.74807 

𝐶𝑓𝑥
∗  -2.476075 -2.53581 -2.73309 -2.74591 

𝑁𝑢𝑥
∗ 6 0.088535 0.088577 0.088742 0.088792 

𝑁𝑢𝑥
∗  0.090147 0.090204 0.090906 0.090959 

𝑆ℎ𝑥
∗ 6 -0.95851 -0.95831 -0.95777 -0.95772 

𝑆ℎ𝑥
∗  -0.95751 -0.95746 -0.95703 -0.95700 
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Table.4:The calculating of  𝐶𝑓𝑥
∗ ,  𝑁𝑢𝑥

∗  and 𝑆ℎ𝑥
∗  various values of 𝐾𝑛 for Cuwater nano-fluid 

when 𝑆 = 𝑆𝑐 = 1, ∆= 0.02, Ω = 0.1. 
𝑘𝑛 C𝑓𝑥

∗ [5] 𝐶𝑓𝑥
∗  𝑁𝑢𝑥

∗ [5] 𝑁𝑢𝑥
∗  𝑆ℎ𝑥

∗ [5] 𝑆ℎ𝑥
∗  

0 

1 

2 

-2.46084 

-2.54426 

-2.62230 

-2.43009 

-2.50306 

-2.57136 

0.089198 

0.088577 

0.088075 

0.090793 

0.090204 

0.088951 

 

-0.95676 

-0.95831 

-0.95974 

-0.95635 

-0.95768 

-0.95892 

 

Table.5: The calculating of  𝐶𝑓𝑥
∗ ,  𝑁𝑢𝑥

∗  and 𝑆ℎ𝑥
∗  with various values of Δ for Cuwater nano-fluid 

when 𝑆𝑐 = 𝑆 = 𝐾𝑛 = 1, Ω = 0.1. 
Δ C𝑓𝑥

∗ [5] 𝐶𝑓𝑥
∗  𝑁𝑢𝑥

∗ [5] 𝑁𝑢𝑥
∗  𝑆ℎ𝑥

∗ [5] 𝑆ℎ𝑥
∗  

0.00 

0.02 

0.05 

-2.76550 

-2.54426 

-2.31844 

-2.764221 

-2.535381 

-2.301882 

0.092885 

0.088577 

0.082295 

0.100352 

0.090204 

0.086806 

-0.95773 

-0.95831 

-0.95911 

-0.956968 

-0.957458 

-0.958051 

 

 

Table.6: The calculating of  𝐶𝑓𝑥
∗ ,  𝑁𝑢𝑥

∗  and 𝑆ℎ𝑥
∗  with various values of 𝑆𝑐 and s Ω for Cuwater 

nano-fluid when 𝑆𝑐 = 𝑆 = 𝐾𝑛 = 1, Ω = 0.1. 
𝑆𝑐 𝑆ℎ𝑥

∗  Ω 𝐶𝑓𝑥
∗  𝑁𝑢𝑥

∗  𝐶𝑓𝑥
∗  

0 

5 

10 

-1.000000000 

-0.777004441 

-0.472332473 

0.01 

0.09 

0.10 

-3.3242353 

-2.5739918 

-2.5030648 

0.158907 

0.095350 

0.090204 

-0.9431919 

-0.9564467 

-0.9576854 

 

2-The Discussion of Tables: In order to certify the analytical outcomes obtained, in Table. 7 

and Table. 8, exposed comparison of the present solutions, written report by Gupta and 

Ray[2] and Runge-Kutta-Fehlberg scheme of fourth-fifth order (RKF45)[5] and they found a 

good agreement for the axial velocity Μ(𝛼) and temperature Ζ(𝛼). Table.9 and Table.10 

shown the comparison of the results with RK4S on the axial velocity Μ(𝛼) and temperature 

Ζ(𝛼) for two cases when 𝑆 > 0 means the moving of plates apart and 𝑆 < 0 leads to the 

moving of plates together. From these tables it can observe clearly the solution are a good 

match for both cases. 

 

Table.7: The comparison the values of Μ(𝛼) and Ζ(𝛼) with RK4 for 𝑆 = 1, Δ = 0.02 , 𝑃𝑟 =
6.2, 𝐾𝑛 = 𝑆𝐶 = Ω = 0. 

α Gupta and Ray[2] RKF45[5] Present result 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.00000000 

0.14135866 

0.28066605 

0.41578075 

0.54437882 

0.66385692 

0.77122923 

0.86301562 

0.93511971 

0.98269524 

1.00000000 

0.00000000 

0.14135879 

0.28066639 

0.41578137 

0.54437979 

0.66385837 

0.77123132 

0.86301853 

0.93512364 

0.98270044 

1.00000000 

0.00000000 

 0.14136869 

0.28068547 

 0.41580821 

 0.54441219 

0.66389328 

0.77126478 

 0.86304578 

 0.93513984 

0.98270280 

1.00000000 
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Table.8: The comparison the values of Μ(𝛼) and Ζ(𝛼) with RK4 for 𝑆 = 1, Δ = 0.02 , 𝑃𝑟 =
6.2, 𝐾𝑛 = 𝑆𝐶 = Ω = 0. 

α Gupta and Ray[2] RKF45[5] Present result 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.03206637 

1.03206407 

1.03203202 

1.03189263 

1.03150811 

1.03066423 

1.02903983 

1.02615205 

1.02125916 

1.01318608 

1.00000000 

1.02996637 

1.02996428 

1.02993531 

1.02980932 

1.02946175 

1.02869896 

1.02723066 

1.02462037 

1.02019765 

1.01290031 

1.00000000 

1.034179872 

1.034147797 

1.034147797 

1.034008169 

1.033621990 

1.032769762 

1.031113515 

1.028127453 

1.022978178 

1.014325533 

1.000000000 

 

 

Table. 9: The comparison the values of Μ(𝛼) and Ζ(𝛼) with RK4 when 𝑆 = 0.3, Δ =
0.02, 𝐾𝑛 = 0.2, 𝑃𝑟 = 0.2, 𝑆𝐶 = 0.1, Ω = 0.1. 

𝛼 Μ(𝛼) RK4 Ζ(𝛼) RK4 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0000000000 

0.1348198148 

0.2676739026 

0.3965666787 

0.5194427132 

0.6341564956 

0.7384418402 

0.8298808532 

0.9058724075 

0.9636001337 

1.0000000000 

0.000000000 

0.134820063 

0.267675168 

0.396573333 

0.519467467 

0.634225124 

0.738594877 

0.830167904 

0.906333150 

0.964224080 

1.000000000 

1.000764038 

1.000763969 

1.000763009 

1.000758855 

1.000747514 

1.000723056 

1.000677232 

1.000598967 

1.000473649 

1.000282218 

1.000000000 

1.000764038 

1.000763967 

1.000762881 

1.000758230 

1.000745769 

1.000719324 

1.000670417 

1.000587739 

1.000456402 

1.000256878 

1.000000000 

 

Table. 10: The comparison the values of Μ(𝛼) and Ζ(𝛼) with RK4 when 𝑆 = −0.3, Δ =
0.02, 𝐾𝑛 = 0.2, 𝑃𝑟 = 0.2, 𝑆𝑐 = 0.1, Ω = 0.1. 

𝛼 Μ(𝛼) RK4 Ζ(𝛼) RK4 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0000000000 

0.1408361219 

0.2790646202 

0.4121069915 

0.5374422752 

0.6526341027 

0.7553557098 

0.8434123108 

0.9147602618 

0.9675225258 

1.0000000000 

0.0000000000 

0.1408358774 

0.2790651872 

0.4121147341 

0.5374775462 

0.6527447283 

0.7556358322 

0.8440273030 

0.9159785955 

0.969755602 

1.0000000000 

1.000968638 

1.000968519 

1.000966846 

1.000959721 

1.000940833 

1.000901717 

1.000832097 

1.000720245 

1.000553366 

1.000317945 

1.000000000 

1.000968638 

1.000968517 

1.000966623 

1.000958640 

1.000937913 

1.000895783 

1.000822019 

1.000705338 

1.000533975 

1.000296286 

1.000000000 

 

3-The Discussion of Figures: Figures.3-8 display the behavior of the distributions for the 

axial velocity Μ(𝛼), the radial velocity Μ′(𝛼), temperature Ζ(𝛼) and concentration Ε(𝛼) with 

Cu/water nano-fluid varied values parameters. Figure. 3 demonstrates with increasing values 

𝐾𝑛, the axial velocity decreases, and the radial velocity losses close the lower plate surface 

for 0 ≤ 𝛼 ≤ 0.5, while after a confident distance the velocity rises when 𝛼 ≥ 0.5. Obviously, 

this figure gives temperature drops monotonously for rising values of 𝐾𝑛. Also, the 

distinctions of the velocity and temperature for diverse values of volume fraction parameter 

are evidenced in Figure.4. It can be seen from the figure that it is similar to the case of 

increasing the parameter of the magnetic. Figure.5 depicts that the axial velocity decreases, 
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near the wall the values of the radial velocity decrease for 0 ≤ 𝛼 ≤ 0.6 while for 0.6 ≤ 𝛼 ≤
1 the radial velocity increases and higher slip number values the temperature monotonically. 

From this figure that the concentration of Ε(𝛼) with higher values of slip number Ω is 

dropping. When the base fluid is water, Figures.6 illustrates the impact of various 

nanoparticles on temperature and velocity. It has been established from this figure noted that 

titanium oxide TiO2 has a slightly higher distribution of velocity for different nano-fluids as 

compared with various other nanoparticles such as Cu, Ag, and Al2O3 which have different 

velocities. The radial velocity Μ′(𝛼) is decreasing for 0 ≤ 𝛼 ≤ 0.5, with the different 

nanoparticles while the outcomes become inverted for 0.5 ≤ 𝛼 ≤ 1. It is noticed a review of 

this figure can matter of nano-fluid for reducing values of Ζ(𝛼) while 𝛼 alteration between 0 

and 1 is TiO2/ water, Al2O/ water, Ag/ water and Cu/water nano-fluid, but the concentration 

values have no effect when changing the nanoparticle materials. The properties of 𝑆 on 

concentration, temperature and velocity distributions are drawn in Figure.7. We can easily see 

from this figure the velocity values near the surface of the bottom plate decreases regularly 

with the increase of the value of 𝑆, and as we move away from the surface of the bottom plate, 

this values increases and increasing values of the squeeze number 𝑆 appears decreases the 

temperature Ζ (α). Also, this figure demonstrates that the values of Ε(𝛼) rise with higher 

squeeze number and increasing of α means a slight increment in the concentration Ε(𝛼). 

Figure.8 demonstrates the effectiveness of rising the Schmidt number 𝑆𝑐 in growing the 

concentration profile. 

 

 
 

Figures 3: The behavior 𝑘𝑛 on Μ(𝛼), Μ ′(𝛼) and Ζ(α). 
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Figure 4: The behavior Δ on Μ(𝛼), Μ ′(𝛼) and Ζ(α). 
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Figure 5: The behavior Ω on Μ(𝛼), Μ ′(𝛼), Ζ(α) and Ε(𝛼). 
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Figure 6 :The behavior nanoparticles on Μ(𝛼), Μ ′(𝛼), Ζ(α) and Ε(𝛼). 
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Figure 7 :The behavior 𝑆 on Μ(𝛼), Μ ′(𝛼), Ζ(α) and Ε(𝛼). 
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Figure 8: The behavior 𝑆𝑐 on Ε(𝛼). 

 

Conclusion: 

     The governing equations for this paper are a group of ordinary differential equations that 

result by using a proper transformation of the partial differential equations. The effect of slip 

velocity, addressing the current paper the analytical and numerical solutions incompressible 

viscous nano-fluid of two-dimensioned an unsteady magneto hydrodynamic flow among two 

parallel plates that are of infinite extension. In addition, The proposed problem are resolved 

numerically using fourth-order of the Runge-Kutta scheme. The above discussions provide 

outcomes are as follows: 

(a) The rising of the magnetic field, in Cu-water nanofluid lead to The temperature 

distribution is dropping. The base fluid is H2O, the axial velocity of the nano-fluid with 

the nanoparticles of metallic Ag and Cu is lower than the nanoparticles of nonmetallic 

TiO2 and Al2O3, but after 𝛼 = 0.5 nature gives opposite. The temperature distribution of 

the nonmetallic nanoparticles is greater than the metallic nanoparticles. 

(c) The temperature begins to drop in Cu-water nanofluid when the squeezing number 

positive . 

(d) The raising values of 𝐾𝑛 and S drive to the radial velocity Μ′(𝛼) of Cu- water lows down 

normally in both cases it is opposite after 𝛼 = 0.5 . 

(f) For Cu- water nanofluid, the rate for heat transfer and the rate for mass transfer decrease as 

The squeezing number positive . 

(e) The rate of heat transfer and the rate of mass transfer for the nanoparticles of metallic are 

minor than the nanoparticles of nonmetallic. 

(g) As the squeeze number values increase, the concentration value increases slightly. Also 

the variable values of the slip parameter has little effect on the concentration. 

(h) In concentration, the amount of improvement can be visible as Schmidt number goes up.  
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