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Abstract:  

As result of exposure in low light-level are images with only a small number of 

photons. Only the pixels in which arrive the photopulse have an intensity value 

different from zero. This paper presents an easy and fast procedure for simulating 

low light-level images by taking a standard well illuminated image as a reference. 

The images so obtained are composed by a few illuminated pixels on a dark 

background. When the number of illuminated pixels is less than 0.01% of the total 

pixels number it is difficult to identify the original object. 
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 توليد حاسوبي لصور ذات مستوى ضوئي واطئ
 

 ، هدى شاكر عمي*رائد نوفي حسان
 العراق -والفضاء، كمية العموم، جامعة بغدادقسم الفمك 

 

 الخلاصة:
صل التي تالنقاط  .صور ذات عدد قميل من الفوتونات ينتيجة لالتقاط صور بمستوى ضوئي واطئ هال

 قدم هذا البحث طريقة سهمة التي تمتمك شدة تختمف عن الصفر. فقط هي )ضوئية( اليها نبضه فوتونيه
كمرجع الصور ذات المستوى الضوئي الواطئ وذلك باخذ صورة ذات اضائيه معيارية جيدة  لمحاكاة وسريعة

 % 0...قاط مضيئة في خمفية سوداء. عندما كان عدد النقاط المضيئة اقل من والصور المحصمة مكونة من ن
   من العدد الكمي كان من الصعوبة تحديد الجسم الاصمي.
 

Introduction  

Low light-level images arise in many applications such as night vision, laser radar, radiological 

imaging, high energy astronomical imaging, and others. Has described experiment on the absolute 

sensitivity of the human visual system [1-4]. The spatial coordinates of detected photoevents and the 

number of detected photoevents in a given area convey information about the classical high light-level 

irradiance of the scene. The fundamental question that we address is: "How many detected photons are 

needed in the input scene to distinguish or identify a reference object from a set of background (or 

noise) images?" In the present work the reference image is used as the system impulse response. In an 

actual recognition system one can encounter changes in scale and orientation of the image as well.  

 

Astronomical Imaging 

Weak celestial bodies of steady and constant luminance emit very few photons and hence are 

relatively difficult to detect. The two main imaging devices that are used in astronomical imaging for 

such observations are photomultipliers and charge-coupled devices (CCD), which can be briefly 

specified as follows:  
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• Photoelectric devices called photomultiplier tubes were commonly used in the early 1950’s in the 

field of astronomy for the measurement of starlight. Photons that strike the surface of such device 

respond by emitting an electron according to the photoelectric effect. The electron is then accelerated 

by an electrical field, and then hits another surface called a dynode which generates three electrons. 

The process is repeated until a pulse of electrons is generated, hence leading to a pulse-counting 

procedure in a given time interval. Since the measurement depends on the number of photons counted, 

it follows a Poisson distribution. [5,6]. 
• Charge-coupled device (CCD) is an array of microscopic square-shaped light-sensitive cells, referred 

to as photosites, which converts photons to electricity linearly, i.e. the more photons strike a photosite, 

the more charge is produced by it, thereby leading to an increased brightness at the corresponding 

pixel. The linearity property of CCD arrays has made them widely used in astronomical imaging [4], 

covering a wide range of frequencies, nearly all ultra-violet to X-ray applications. As the pixel values 

generated by a CCD array are proportional to the number of photons that reach its photosites, the grey-

levels of resulting images have to follow a Poisson process [7-9]. 

Both the aforementioned methods can also suffer from additional degradation introduced by 

blurring artifacts. In particular, before reaching the imaging device, the electromagnetic waves have to 

penetrate the Earth atmosphere. Differences in the temperature distribution and the speed of wind 

across different layers of the atmosphere result in a random distribution of its diffraction index which, 

in turn, results in a linear blurring effect [9]. Therefore, deblurring procedures can potentially improve 

the quality of such measurements. 

 

The Poisson Distribution 

The Poisson distribution is a discrete probability law which determines the probability with which a 

positive integer is observed, given a positive real parameter which is equal to both the mean and 

variance of the distribution. In practice, the Poisson probability law can be interpreted as defining a 

probability measure for a counting process of events (sometimes called arrivals), which took place at a 

specified time interval [10-11]. In this interpretation, the parameter of the distribution is equal to the 

product of the temporal duration of the interval and a specific arrival rate. The distribution, which was 

originally formalized by Simon-Denis Poisson (1781−1840), is given by [9]: 

  ( )  
    (  ) 

  
                   

Where e is the base of the natural logarithm (e = 2.71828...),   (events/time) is the arrival rate of the 

events, T [time] is the time interval of the counting process and k is the number of occurrences of the 

event. 
 

Photon-Limited Images 

At low levels of illumination, an input scene can be described in a binomial form. The detected 

image is composed of a set of photo-pulses distributed over a dark background, and hence, can be 

represented as a collection of Dirac-delta functions [12][13][14]: 

 ̂(   )  ∑  (     ( ))             ( )

 

   

 

 

where    represents the spatial coordinates of the k-th detected photo-pulse and N is the total number 

of detected photo-pulses. If the photo-pulses are collected by a detector of area A for a fixed time 

interval T, the conditional probability distribution for detecting N photo-pulses in the time interval [t, 

t+T] is an inhomogeneous Poisson process given by: 
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in which  (   )    (   )     where   is the quantum efficiency of the detector, I(r,t) is the classical 

image irradiance, h is Planck's constant and v the incident light frequency. 
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In those cases in which I(r,t) does not fluctuate significantly, the ensemble average produces the 

following observable counting distribution[14-15]: 

 ( )  
 ̅ 

  
   ̅         ( ) 

where  ̅  
  

  
∫  ( )   
 

, It can also be seen that the probability density function for photo-pulse 

coordinates is given by [16,17-18]: 

 ( )  
 ( )

∫  (  )   
 

       ( ) 

 

Simulation of Photon-Limited Images 

The previous section described the statistical behavior of photon-limited or low light-level images. 

This will now be used in the simulation procedure, low light-level images of a given high light-level 

scene can be generated using a Poisson random number generator.  

For a low light-level image the input Poisson parameter     is chosen as follows: 

1) Consider an image of area A, which has pixels of area   , and suppose that the average number 

of detected photoevents in the entire image is to be  ̅. From photo detection theory, the Poisson 

parameter for the ijth picture element is: 

    
 ̅ (     )  

∬        (     )
 

        ( ) 

where I(xi,yj) is the high light-level irradiance of the pixel at spatial coordinates (xi,yj), and 

∬        (     )
 

  represent the total intensity of the input image. 

 

2) A low light-level image can be produced from a corresponding high light-level scene by calling a 

Poisson random generator with parameter Eij at each pixel in the associated high light-level 

image. 

3) This simulation method allows us to obtain images with the same characteristics as those taken 

with a low light-level camera. Computer generation of low light-level images is shown in figure-

1: first column, Saturn rings; second column, G1.9+0.3 galaxy; third column, The Baghdad 

university tower.  

The high light-level images contain 256 gray levels.  ̅̅̅ is the average number of detected photoevents 

over the entire image. 

 

Figure-2 shows the effect of the size of the pixel area (A) in the resulted simulation images, when the 

A is increases the bright image value will be increased. Analysis of a synthetic image and its 

resulting low level image further proved the output to be Poissonian images (The fact that the mean 

value of the low level image is almost equal to its variance),   according to the table -1, this statistical 

property can be achieved only in the images have low number of photo-pulses or photoevents (N) and 

small pixel area.  
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Figure 1- Computer-generated low light-level images: first column, Saturn rings; second column, G1.9+0.3 

galaxy; third column, The Baghdad university tower. The high light-level images contain 256 gray 

levels. N is the average number of detected photoevents over the entire image. With A=1 pixel. 
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Figure 2- Computer-generated low light-level images: first column, Saturn rings; second column, G1.9+0.3 

galaxy; third column, The Baghdad university tower. The high light-level images contain 256 gray 

levels. N is the average number of detected photoevents over the entire image. With A=10 pixel. 
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Table 1- statistical property for three low light-level images (Saturn rings, G1.9+0.3 galaxy; Baghdad university 

tower), each table contain different pixel area and different average number (N) of detected 

photoevents over the entire image with its mean and variance. 

Saturn Mean = 89.8678 Variance=6.68E+03 

Pixel area A=1 Pixel area A=10 

N mean variance mean variance 

50000 0.7574 1.2241 7.6238 55.5102 

12500 0.1913 0.2191 1.9078 4.9259 

3125 0.0469 0.0485 0.4792 0.6739 

750 
0.0111 

 
0.0112 

 
0.1145 

 
0.1248 

 
 

Galaxy Mean =  23.0396 Variance=1.89E+03 

Pixel area A=1 Pixel area A=10 

N mean variance mean variance 

50000 0.7647 2.831 7.6066 213.1871 

12500 0.1923 0.3204 1.9069 14.9449 

3125 0.0479 0.0554 0.4744 1.2831 

750 0.0108 0.011 0.1147 0.1634 
 

Baghdad university tower Mean =   115.69 Variance=6.75E+03 

Pixel area A=1 Pixel area A=10 

N mean variance mean variance 

50000 0.7617 1.0518 7.6419 36.9666 

12500 0.1907 0.2085 1.9054 3.7417 

3125 0.0482 0.0488 0.4723 0.5851 

750 0.0118 0.0119 0.1133 0.1192 
 

 

Conclusion 

Presented an approach for representing and processing the low light-level image analysis using 

simple and fast algorithm. When the number of photons and pixel area are small, the measurement 

process is best modeled with a Poisson distribution. 

The fact that the mean value of the noise is equal to its variance implies that the higher the values 

of the original image, the more severe is their contamination by noise. This fact creates the major 

difficulty in restoration of Poissonian images. 

When the number of illuminated pixels in the noisy low light-level image is less than the 0.8% of 

the total pixels number it’s proved the output to be Poisson. 
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