Mohammed and Ghawi



Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5668-5677 DOI: 10.24996/ijs.2024.65.10.29



ISSN: 0067-2904

# s-WH Modules

#### **Osama Basim Mohammed, Thaer Younis Ghawi**

Department of Mathematics, College of Education, AL-Qadisiyah University, AL-Qadisiyah, Iraq

Received: 13/5/2023 Accepted: 27/8/2023 Published: 30/10/2024

#### Abstract

This article introduces the concept of strongly-WH module which is a proper generalized of Hopfian modules. A module M is called strongly-WH, briefly *s*-WH if, any *e*-small surjective *R*-endomorphism of M is an automorphism. We specify and provide some properties of this concept. Furthermore, we have established connections between strongly-WH modules and various other concepts. We demonstrate that every strongly-WH module is  $\delta$ -weakly Hopfian. As well as, we provide cases in which the concepts of WH,  $\delta$ -weakly Hopfian, and strongly-WH modules are equivalent.

**Keywords:** *s*-WH modules; Hopfian modules; weakly Hopfian modules; *e*-small submodules.

المقاسات من النمط s-WH

أسامة باسم ، ثائر يونس غاوي قسم الرياضيات، كلية التربية، جامعة القادسية، القادسية – العراق

#### الخلاصة

تقدم هذه المقالة مفهوم المقاس القوي من النمط WH وهو تعميم فعلي للمقاسات الهوبغيينة. يقال للمقاس M على الحلقة R انه قوي من النمط WH, باختصار WH- $\sigma$ ، اذا كان كل تشاكل ذاتي شامل صغير من النمط e على M يكون تشاكل متقابل. نحن حددنا وأثبتنا بعض الخواص لهذه المقاسات. بالإضافة إلى ذلك، نحن أثبتنا العلاقة بين المقاس من النمط HM- $\sigma$  وبين بعض المفاهيم الأخرى المختلفة. نحن بينًا الى ذلك، نحن أثبتنا العلاقة بين المقاس من النمط Wh- $\sigma$  وبين بعض المفاهيم الأخرى المختلفة. نحن بينًا الى ذلك، نحن أثبتنا العلاقة بين المقاس من النمط HM- $\sigma$  وبين بعض المفاهيم الأخرى المختلفة. نحن بينًا ان المقاس من النمط من النمط  $\delta$ . إلى جانب ذلك، نحن بينًا الحالة التي تتكافئ فيها المفاهيم من النمط HM- $\sigma$  وبين ضعض المفاهيم الأخرى المختلفة. نحن بينًا الحالة التي المقاس من النمط  $\delta$  و من النمط HM- $\sigma$ .

#### 1. Introduction

Throughout this paper, we consider all modules to be unitary left *R*-modules, where *R* is an associative ring with an identity element. The  $r_R(x)$  denotes the right annihilator of *x* in *R*. And  $D \leq^{\bigoplus} M$  denotes that a submodule *D* is a direct summand of *M*. A non-zero submodule  $E \leq M$  is said to be an essential in *M*, and its denoted by  $E \leq M$ , if  $N \cap E \neq 0$  for every non-zero submodule *N* of *M* [1]. A submodule *S* of *M* is called small (*e*-small), which

\*Email: edu-math.post26@qu.edu.iq

is denoted by  $S \ll M$  (resp.,  $S \ll_e M$ ), if for every submodule (essential submodule) N of M with the property M = S + N implies N = M [2]. A module M is called hollow if every proper submodule is small in M [3].  $Rad_e(M)$  and  $\delta(M)$  are a generalized radical of a module M defined as,  $Rad_e(M) = \sum \{S \in M | S \ll_e M\}$ , and  $\delta(M) = \sum \{N \leq M | N \ll_{\delta} M\}$ . Since every  $\delta$ -small submodule is *e*-small, then  $\delta(M) \leq Rad_g(M)$  see [2], and [4]. If every non-zero submodules of a module M are essential then M is said to be uniform [1]. If every submodule (direct summand) of a module M are fully invariant then M is said to be a duo (weak duo) module [5].

The study of homomorphism of modules has been extensively explored by various researchers see [6], [7], and [8]. In reference [9], they introduced the concept of Hopfian modules, which are defined as follows, a module M is considered to be Hopfian if every surjective R-endomorphism of M is an automorphism. Another generalized notion, known as generalized Hopfian (gH) modules, was presented by A. Gorbani and A. Haghany in reference [10]. A module M is considered as gH if it has a small kernel for every surjective R-endomorphism.

In 1992, K. Varadarajan defined co-Hopfian modules as follows, a module M is said to be co-Hopfian when every injective R-endomorphism of M is an automorphism [11].

Furthermore, the concept of weakly Hopfian (WH) modules was introduced in reference [12], as a proper generalization of Hopfian modules. A module M is said to be WH if every small surjective R-endomorphism of M is an isomorphism.

Additionally, another generalization of Hopfian modules was introduced in reference [13], known as  $\delta$ -weakly Hopfian. A module *M* is considered  $\delta$ -weakly Hopfian if every  $\delta$ -small surjective endomorphism of *M* is an isomorphism.

In Section 2, we introduced a new proper generalized for Hopfian called strongly weakly Hopfian for short *s*-WH, defined as, a module *M* is said to be *s*-WH if, every *e*-small *R*epimorphism  $g \in End(M)$  is an automorphism. In the same section, we showed some important properties and examples of *s*-WH. In the end of Section 2, we investigate the behavior of *s*-WH modules Under the concept of localization. In Section 3, we have established significant relationships between *s*-WH modules and various other concepts. By exploring this connections, we have deepened our understanding of *s*-WH modules and their place within the broader context of module theory. Our research demonstrates that every *s*-WH module is  $\delta$ -weakly Hopfian. We give a cases that make the concepts of WH,  $\delta$ -weakly Hopfian and *s*-WH modules are identical.

# 2. *s*-WH modules and some basic properties

**Definition 2.1.** A non-zero *R*-module *M* is called strongly weakly Hopfian, for short *s*-WH if any *e*-small epimorphism  $g \in End(M)$  is an automorphism. Moreover, a ring *R* is called *s*-WH if, *R* as an *R*-module is an *s*-WH module.

# **Remarks and Examples 2.2.**

(1) Evidently, every Hopfian *R*-module is an *s*-WH.

(2) Every Noetherian module is *s*-WH.

**Proof.** It follows directly by ( [14], Lemma 4, p. 42), and (1).  $\Box$ 

(3) Each of  $\mathbb{Q}$  and  $\mathbb{Z}$  are *s*-WH, because the only rings homomorphism of them is the identity map.

(4) From [11], the modules  $\mathbb{Q}$  as  $\mathbb{Z}$ -module and  $\mathbb{Q}$  as  $\mathbb{Q}$ -module are Hopfian, so they are *s*-WH, by (1).

**Example 2.3.** The  $\mathbb{Z}$ -module  $\mathbb{Z}_n$  is *s*-WH.

**Proof.** Let  $f \in End(\mathbb{Z}_n)$  be an *e*-small  $\mathbb{Z}$ -epimorphism. It follows that  $f(\bar{x}) = \bar{x}a$  where gcd(a, n) = 1 for all  $a \in \mathbb{Z}^+$  and a < n. Evidently, kerf = 0, so  $\mathbb{Z}_n$  is s-WH  $\mathbb{Z}$ -module.

The module which introduced in the next example is not an *s*-WH.

**Example 2.4.** Consider  $M = \mathbb{Z}_{p^{\infty}}$  as  $\mathbb{Z}$ -module. *M* is hollow. So, we have an *e*-small kernel for every surjective endomorphism of *M*. But, we can have a surjective endomorphism of *M* which is not an automorphism, from the multiplication by *p*. i.e.,  $f(\bar{x}) = p(\bar{x})$ , where  $\bar{x} \in M$ .

**Proposition 2.5.** Every *R*-module *M* with  $Rad_e(M) = 0$  is an *s*-WH.

**Proof.** Suppose that *M* is an *R*-module with  $Rad_e(M) = 0$  and  $f \in End(M)$  be an *e*-small *R*-epimorphism. Therefore,  $kerf \ll_e M$ , and  $kerf \subseteq Rad_e(M)$ . So, kerf = 0. Thus, *f* is an automorphism and *M* is an *s*-WH.  $\Box$ 

#### Remarks 2.6.

(1) As an application of Proposition 2.5, we have the  $\mathbb{Z}$  as  $\mathbb{Z}$ -module is *s*-WH. In fact,  $Rad_{e}(\mathbb{Z}) = 0$ .

(2) In general, the converse of Proposition 2.5, is not true, such as the  $\mathbb{Z}_{24}$  as  $\mathbb{Z}$ -module is *s*-WH. (See Examples 2.3). While  $Rad_e(\mathbb{Z}_{24}) = 2\mathbb{Z}_{24}$ , that means  $Rad_e(\mathbb{Z}_{24}) \neq \overline{0}$ .

**Proposition 2.7.** Let *M* be a projective *R*-module and  $\delta(M) = 0$ . Then *M* is an s-WH. **Proof.** Assume that *M* is a projective *R*-module with  $\delta(M) = 0$ . Let  $f \in End(M)$  be an *e*small *R*-epimorphism. Thus  $kerf \ll_e M$ , and hence  $kerf \ll_{\delta} M$  see ([2], p.1053). Therefore,  $kerf \subseteq \delta(M)$ . Hence, kerf = 0. Thus *f* is an automorphism and *M* is an *s*-WH.

**Corollary 2.8.** If *R* is a ring such that  $\delta(R) = 0$ . Then *R* is an *s*-WH. **Proof.** Since  $R = \langle 1 \rangle$  is a free *R*-module, so it is projective. We have the result by Proposition 2.7.  $\Box$ 

**Proposition 2.9.** If M is an indecomposable R-module with Rad(M) = 0. Then M is an s-WH.

**Proof.** Suppose that *M* is an indecomposable *R*-module with Rad(M) = 0. Let  $f \in End(M)$  be an *e*-small *R*-epimorphism. Therefore, *kerf* is a proper *e*-small submodule of *M* (since *M* is indecomposable), [15], implies *kerf*  $\ll$  *M* and *kerf*  $\subseteq$  *Rad*(*M*), so *kerf* = 0. Thus, *f* is an automorphism and *M* is an s-WH.  $\Box$ 

**Corollary 2.10.** If *M* is a uniform *R*-module such that Rad(M) = 0. Then *M* is an s-WH. **Proof.** Assume that *M* is a uniform module, thus *M* is an indecomposable module by([16], Examples 3.51(1)). So, Proposition 2.9 implies the result.  $\Box$ 

**Proposition 2.11.** If *M* is a weak duo *R*-module and Rad(M) = 0. Then *M* is an s-WH. **Proof.** Suppose that  $f \in End(M)$  is an epimorphism and  $kerf \ll_e M$ . Try to show that  $kerf \ll M$ . Assume that M = kerf + H, for some  $H \leq M$ . Since  $kerf \ll_e M$ , then  $M = N \oplus H$ , for some semisimple submodule *N* of *M*, by [2]. Therefore,  $H \leq^{\oplus} M$ , hence it is fully invariant, since *M* is a weak duo. Therefore,  $M = f(M) = f(kerf + H) = f(H) \subseteq M$ . Thus f(H) = M. Hence,  $M = f(H) \subseteq H$  that implies M = H and  $kerf \ll M$ . Thus,  $kerf \subseteq Rad(M)$ , it follows kerf = 0. Thus, f is an automorphism and M is an s-WH.  $\Box$ 

**Corollary 2.12.** Let *M* be a duo *R*-module with Rad(M) = 0. Then *M* is an s-WH. **Proof.** Since any duo *R*-module is weak duo *R*-module then, Proposition 2.11 implies the result.  $\Box$ 

#### **Proposition 2.13.** A direct summand of a *s*-WH module is an *s*-WH.

**Proof.** Let *M* be a *s*-WH module and  $N \leq \bigoplus M$ . So,  $M = N \oplus L$  for some  $L \leq M$ . Assume that  $f \in End(N)$  is an *e*-small epimorphism. Consider  $I_L: L \to L$  is an identity map over *L*. Thus  $f \oplus I_L: M \to M$  with  $f \oplus I_L(n+l) = f(n) + l$  for all  $n \in N$  and  $l \in L$  is a surjective, since  $f \oplus I_L(M) = f \oplus I_L(N \oplus L) = f(N) \oplus I_L(L) = N \oplus L = M$ . Then by [2], we have that  $ker(f \oplus I_L) = kerf \oplus ker(I_L) = kerf \oplus 0 \ll_e N \oplus L = M$ , *i.e.*,  $f \oplus I_L$  is an *e*-small epimorphism. Since *M* is an *s*-WH, so  $f \oplus I_L$  is an automorphism of *M*. That is  $ker(f \oplus I_L) = 0$  implies kerf = 0. Thus, *N* is an *s*-WH, since *f* is an automorphism of *N*.  $\Box$ 

**Proposition 2.14.** Let  $M = M_1 \oplus M_2$  such that  $M_1$  and  $M_2$  are fully invariant under every surjection of M. Then M is an *s*-WH if and only if  $M_i$  is an *s*-WH, for all i = 1, 2. **Proof.**  $\Longrightarrow$ ) Follows directly by Proposition 2.13.

⇐) Let  $f: M \to M$  be an *e*-small *R*-epimorphism, then  $f|_{M_i}: M_i \to M_i$  is an *R*-epimorphism for all i = 1, 2, and by assumption  $M_1, M_2$  are fully invariant submodules. Since  $kerf = ker(f|_{M_1} \oplus f|_{M_2}) = (kerf|_{M_1}) \oplus (kerf|_{M_2}) \ll_e M_1 \oplus M_2 = M$ , then  $kerf|_{M_1} \ll_e M_1$  and  $kerf|_{M_2} \ll_e M_2$  by [2]. That means  $f|_{M_1}$  and  $f|_{M_2}$  are an *e*-small *R*-epimorphisms. By assumption  $f|_{M_1}$  and  $f|_{M_2}$  are automorphisms. Therefore,  $kerf = ker(f|_{M_1} \oplus f|_{M_2}) = 0 \oplus 0 = 0$ . Thus, *f* is an automorphism. Hence, *M* is an *s*-WH.  $\Box$ 

**Corollary 2.15.** Let  $M = \bigoplus_{i=1}^{n} M_i$  such that  $M_i$  is fully invariant under every surjection of M for all i = 1, 2, ..., n. Then M is an *s*-WH if and only if  $M_i$  is a *s*-WH, for all i = 1, 2, ..., n.

**Corollary 2.16.** If *M* is a weak duo module and all its direct summands are under any surjection of *M*. Then *M* is an *s*-WH if and only if any direct summand of *M* is an *s*-WH. **Proof.** By Proposition 2.14, since any direct summand of *M* is fully invariant, as *M* is a weak duo module.  $\Box$ 

**Proposition 2.17.** Let  $M = M_1 \oplus M_2$  be an *R*-module such that  $r_R(M_1) \oplus r_R(M_2) = R$ . Then *M* is an *s*-WH if and only if  $M_i$  is an *s*-WH, for all i = 1, 2.

**Proof.** If part follows directly by Proposition 2.13.

The only if part. Assume that  $f \in End(M)$  is a surjective and  $kerf \ll_e M$ . Since  $r_R(M_1) \oplus r_R(M_2) = R$  and  $Imf \leq M_1 \oplus M_2$ , then by [17], there exists  $X \leq M_1$  and  $Y \leq M_2$  such that  $Imf = X \oplus Y$ . Thus,  $f(M) = f(M_1 \oplus M_2) = f(M_1) \oplus f(M_2) = X \oplus Y = Imf|_{M_1} \oplus Imf|_{M_2}$ , so  $Imf|_{M_1} \leq M_1$  and  $Imf|_{M_2} \leq M_2$ . Thus  $f|_{M_1}$  is a surjective for all i = 1,2. And we have that  $kerf = (kerf|_{M_1}) \oplus (kerf|_{M_2}) \ll_e M_1 \oplus M_2 = M$ , therefore  $ker f|_{M_1} \ll_e M_1$  and  $kerf|_{M_2} \ll_e M_2$  by [2]. That means  $f|_{M_1}$  and  $f|_{M_2}$  are an *e*-small *R*-epimorphisms. By assumption  $f|_{M_1}$  and  $f|_{M_2}$  are automorphisms that implies  $kerf|_{M_1} = kerf|_{M_2} = 0$ . If  $f(m_1 + m_2) = 0$ , then  $f(m_1) + f(m_2) = 0$ , so  $m_1 = m_2 = 0$ , i.e., kerf = 0. Thus, *M* is an *s*-WH.  $\Box$ 

**Proposition 2.18.** The following are equivalent for *M* as *R*-module. (1) *M* is *s*-WH;

(2) For all *e*-small submodule N of M,  $M/N \cong M$  if and only if N = 0.

**Proof.** (1)  $\Rightarrow$ )(2) Assume that N = 0. Then trivially  $M/N \cong M$ . Suppose that  $M/N \cong M$  with  $N \ll_e M$ . Let  $\psi: M/N \to M$  be an *R*-isomorphism. Consider a canonical *R*-epimorphism  $\pi: M \to M/N$ . Then  $\psi\pi$  is a surjective endomorphism of M with  $ker(\psi\pi) = \pi^{-1}(ker\psi) = \pi^{-1}(N) = N$ , that is  $\psi\pi$  is an *e*-small *R*-epimorphism. Therefore,  $\psi\pi$  is an automorphism. i.e.,  $ker(\psi\pi) = 0$  by (1). Then N = 0.

 $(2) \Longrightarrow$ )(1) Let  $f \in End(M)$  be an *e*-small *R*-epimorphism. Thus  $kerf \ll_e M$ . We have that  $M/kerf \cong M$  by the First Isomorphism Theorem and by (2), kerf = 0, so f is an *R*-automorphism. Hence, M is an s-WH.  $\Box$ 

**Proposition 2.19.** Let M be a module, consider the following:

(1) *M* is *s*-WH. (2) If  $M \cong M \oplus N$ , then N = 0, for some semisimple module *N*. Then (1)  $\Rightarrow$ )(2). And if *M* is projective, we have (2)  $\Rightarrow$ )(1).

**Proof.** (1)  $\Rightarrow$ )(2) Assume that *M* is an *s*-WH module, where  $M \cong M \oplus N$  for some semisimple module *N*. It follows that  $M = K \oplus L$  where  $K \cong M$  and  $L \cong N$ . From [2], we deduce that *L* is an *e*-small submodule of *M*. We have  $M/L \cong K \cong M$ . Thus, by Proposition 2.18, L = 0, hence N = 0.

 $(2) \Longrightarrow)(1)$  Conversely, suppose that M is projective and  $f \in End(M)$  is an epimorphism, where  $kerf \ll_e M$ . Thus f split, that is  $M = T \oplus kerf$ , for some  $T \leq M$ . By the First Isomorphism Theorem, we have that  $T \cong M/kerf \cong M$ . By [2],  $M = S \oplus T$  where S is a semisimple submodule of kerf. By the modular law,  $kerf = kerf \cap M = kerf \cap (S \oplus T) = S \oplus (kerf \cap T) = S$ . It follows that  $M \cong M \oplus kerf$  and kerf is semisimple. By (2), kerf = 0 and M will be an s-WH module.  $\Box$ 

We will offer the following condition  $(E^*)$  for any *R*-module *M*:

 $(E^*)$  If  $f: M \to M'$  and  $g: M' \to M''$  are any two *R*-endomorphisms, then *f* and *g* are *e*-small if and only if *gf* is *e*-small.

**Proposition 2.20.** If *M* is a module with the property that for any  $g \in End(M)$ , there exists an  $n \in \mathbb{Z}^+$  such that  $kerg^n \cap Img^n = 0$ , then *M* is an *s*-WH.

**Proof.** Let  $g \in End(M)$  be an *e*-small epimorphism. By assumption, there is an integer  $n \ge 1$  such that  $kerg^n \cap Img^n = 0$ . It follows that  $g^n \in End(M)$  is an epimorphism, i.e.,  $Img^n = M$ . Thus,  $kerg^n \cap Img^n = kerg^n \cap M = kerg^n = 0$ . But we know that  $kerg \le kerg^n$ , which implies kerg = 0. Therefore, *g* is an automorphism. Hence, *M* is an *s*-WH.  $\Box$ 

**Corollary 2.21.** Let M be an R-module satisfies ( $E^*$ ) property. If M has ACC on e-small submodules, then M is an s-WH.

**Proposition 2.22.** Let *M* be an *R*-module. If for any *R*-epimorphism  $\varphi: M \to M$ , there exist  $n \ge 1$  such that  $ker\varphi^n = ker\varphi^{n+i}$  for all  $i \in \mathbb{Z}^+$ , then *M* is an *s*-WH.

**Proof.** Let  $\varphi \in End(M)$  be any surjective. We claim that  $\ker \varphi^n \cap Im\varphi^n = 0$ . Let  $y \in \ker \varphi^n \cap Im\varphi^n$ . Thus  $\varphi^n(y) = 0$  and  $y = \varphi^n(x)$  for some  $x \in M$ . Hence,  $\varphi^{2n}(x) = \varphi^n(y) = 0$ . Hence,  $x \in \ker \varphi^{2n}$ . But from our assumption we have that  $\ker \varphi^n = \ker \varphi^{n+n} = \ker \varphi^{2n}$ . So,  $x \in \ker \varphi^n$ . Therefore,  $0 = \varphi^n(x) = y$ . Hence,  $\ker \varphi^n \cap Im\varphi^n =$ 

0. Since  $\varphi$  is a surjective, so  $Im\varphi^n = M$ , thus  $ker\varphi^n = 0$ . But  $ker\varphi \subseteq ker\varphi^n$ . So,  $ker\varphi \ll_e M$ . Therefore, M is an s-WH.  $\Box$ 

**Proposition 2.23.** Let *M* be an *R*-module has  $(E^*)$  property and *N* be any non-zero *e*-small submodule of *M*, if *M*/*N* is *s*-WH, then *M* is an *s*-WH.

**Proof.** Assume *M* is not *s*-WH, then there is an *e*-small epimorphism  $f \in End(M)$  that it is not automorphism,  $(kerf \neq 0)$ . From 1<sup>st</sup> isomorphism theorem there is an *R*-isomorphism  $\varphi: M/kerf \rightarrow M$ . Consider  $\pi: M \rightarrow M/kerf$  the canonical map, then  $ker\pi = kerf \ll_e M$ . Therefore,  $\pi$  is an *e*-small epimorphism. It follows that  $\pi\varphi: M/kerf \rightarrow M/kerf$  is an *e*-small epimorphism, by hypothesis, which is not isomorphism (since  $ker(\pi\varphi) = \varphi^{-1}(ker\pi) = \varphi^{-1}(kerf) \neq 0_{M/kerf}$ ), but M/N is *s*-WH, which is a contradiction. Hence, kerf = 0 and M is an *s*-WH.  $\Box$ 

**Theorem 2.24.** Let *M* be a uniform quasi-projective *R*-module has  $(E^*)$  property. Then *M* is an *s*-WH if and only if M/N is *s*-WH, with N is an *e*-small fully invariant submodule of M. **Proof.** Assume that M is s-WH and N is an e-small fully invariant submodule of M. If  $f: M/N \to M/N$  is an *e*-small epimorphism. Consider the *e*-small canonical epimorphism  $\pi: M \to M/N$  (as  $ker\pi = N \ll_e M$ ), so  $f\pi: M \to M/N$  is an *e*-small epimorphism, as M has  $(E^*)$  property. Since M is quasi projective, then there exists an endomorphism g of M such that  $\pi g = f\pi$ . This equality implies that g is an epimorphism, as M is uniform. Since,  $f\pi$  is *e*-small. Then is  $\pi g$  is *e*-small that implies g is *e*-small, since M has  $(E^*)$  property. Since M is s-WH, then g is an automorphism. For all  $m \in M$ , we deduce that  $f(m+N) = f\pi(m) = f\pi(m)$  $\pi g(m) = g(m) + N,$ and then  $kerf = \{m + N \in M/N | f(m + N) = N\} =$  $\{m + N \in M/N | g(m) + N = N\} = \{m + N \in M/N | g(M) \in N\} = K/N$ , where K = $\{m \in M \mid g(m) \in N\}$  and  $N \subseteq K = g^{-1}(N)$ . Since N is fully invariant in M and  $g^{-1} \in M$ End(M), then  $g^{-1}(N) \subseteq N$ , thus  $K = g^{-1}(N) = N$ . Hence,  $kerf = K/N = 0_{M/N}$  and M/N, is an *s*-WH. The converse is clear when N = 0.  $\Box$ 

**Definition 2.25.** [18] Let R be a ring with identity 1 a subset S of a ring R is called multiplicatively closed set if the following two conditions hold: (1)  $1 \in S$ .

(2) For all u and v in S, the product  $uv \in S$ .

**Definition 2.26.** [18] Let *M* be an *R*-module. Let *S* be a multiplicatively closed set in *R*. Let *T* be the set of all ordered pairs (x, s) where  $x \in R$  and  $s \in S$ . Define a relation on *T* by  $(x, s) \sim (\dot{x}, \dot{s})$  if there exists  $t \in S$  such that  $t(s\dot{x} - \dot{s}x) = 0$ . This is an equivalence relation on *T*, and we denote the equivalence class of (x, s) by x/s. Let  $S^{-1}M$  denote the set of equivalence classes of *T* with respect to this relation. We can make  $S^{-1}M$  into an *R*-module by setting x/s + y/t = (tx + sy)/st, a(x/s) = ax/s,  $a \in R$ . W The *R*-module  $S^{-1}M$  is called a quotient module (localization of module), or a module of quotient. Note that if  $0 \in S$ , then  $S^{-1}M = 0$ .

**Definition 2.27.** [19] Let *M* be an *R*-module and *R* is a commutative ring. An element  $r \in R$  is called prime to *L*, where  $L \leq M$ , if  $rm \in L$  ( $m \in M$ ) implies that  $m \in L$ . The set of all elements of *R* that are not prime to *L*, denote by  $\mathcal{L}(L)$ , i.e.,  $\mathcal{L}(L) = \{r \in R \mid rm \in L \text{ for some } m \in M \setminus L\}.$ 

In the next results, we examine the behavior of the s-WH under the concept of localization.

**Proposition 2.28.** Suppose that *M* be an *R*-module and *S* a multiplicative closed subset of *R* such that  $\mathcal{L}(L) \cap S = \emptyset$  for any  $L \leq M$ . If  $S^{-1}M$  is a *s*-WH as  $S^{-1}R$ -module, then *M* is an *s*-WH as *R*-module.

**Proof.** Let  $f: M \to M$  be an *e*-small *R*-epimorphism. Define  $S^{-1}R$ -endomorphism  $S^{-1}f: S^{-1}M \to S^{-1}M$  by  $S^{-1}f\left(\frac{m}{s}\right) = \frac{f(m)}{s}$  for all  $m \in M$ ,  $s \in S$ . Then we have  $Im(S^{-1}f) = S^{-1}(Imf) = S^{-1}M$ , then  $S^{-1}f$  is an  $S^{-1}R$ -epimorphism. Since  $kerf \ll_e M$ , thus  $ker(S^{-1}f) = S^{-1}(kerf) \ll_e S^{-1}M$  from ([20], Lemma 2.3.3). As  $S^{-1}M$  is *s*-WH. Therefore,  $ker(S^{-1}f) = S^{-1}(kerf) = S^{-1}(kerf) = S^{-1}(0)$ , then kerf = 0 by ([20], Lemma 2.3.1.) Hence, *M* is *s*-WH.  $\Box$ 

# 3. s-WH modules and related concepts

Many relations between *s*-WH modules and other types of modules are introduced in this section, such as generalized hollow, semisimple and nonsingular uniform modules. We give a case that make the concepts WH,  $\delta$ -weakly Hopfian and *s*-WH modules are identical, we give two cases that make the concepts Hopfian and *s*-WH are equivalent. Also, we put a condition on co-Hopfian ring to become an *s*-WH ring.

Recall that a module M is called generalized hollow if any proper submodule of M is an e-small [21].

**Proposition 3.1.** Let M be a non-zero R-module, if M is a generalized Hollow module. Then M is an s-WH if and only if M is a Hopfian.

**Proof.** Let *M* be an *s*-WH *R*-module. Let  $f \in End(M)$  be an *R*-epimorphism, so  $kerf \subset M$  (since, if kerf = M then f = 0, a contradiction), Then  $kerf \ll_e M$ , as *M* is generalized Hollow. Since *M* is *s*-WH, so kerf = 0. Hence, *M* is a Hopfian *R*-module, since *f* is an automorphism. Conversely, follows by Remarks and Examples 2.2(1).  $\Box$ 

# **Proposition 3.2.** Every *s*-WH module is a $\delta$ -weakly Hopfian.

**Proof.** Let M be a s-WH R-module. If  $f \in End(M)$  is a  $\delta$ -small R-epimorphism, then  $kerf \ll_{\delta} M$ , and then  $kerf \ll_{e} M$ , by ([2], p.1052). Since M is s-WH, then kerf = 0. Therefore, M is a  $\delta$ -weakly Hopfian R-module, since f is an isomorphism.  $\Box$ 

# Corollary 3.3. Every *s*-WH module is WH.

**Proof.** Since every  $\delta$ -weakly Hopfian is WH from [13]. Then the result is followed by Proposition 3.2.  $\Box$ 

Now, we will give the case that makes the concepts WH,  $\delta$ -weakly Hopfian and s-WH modules identical.

**Proposition 3.4.** If M is a non-zero indecomposable R-module. Then the following are equivalent.

(1) *M* is *s*-WH; (2) *M* is *s*-weakly Hopfian; (3) *M* is WH. **Proof.** (1)  $\Rightarrow$ )(2) By Proposition 3.2. (2)  $\Rightarrow$ )(3) By [13]. (3)  $\Rightarrow$ )(1) Assume that *M* is a WH *R*-module, let  $f \in End(M)$  is an *e*-small epimorphism. If kerf = M, then f = 0, which it is a contradiction. Thus, kerf is a proper *e*-small submodule of *M*, and since *M* is indecomposable, [15], implies  $kerf \ll M$ , that means  $f \in$  End(M) is a small *R*-epimorphism. Since *M* is a WH *R*-module, then *f* is an automorphism. Hence, *M* is an *s*-WH.  $\Box$ 

**Corollary 3.5.** The following are equivalent for a non-zero uniform *R*-module *M*.

(**1**) *M* is *s*-WH;

(2) *M* is  $\delta$ -weakly Hopfian;

(**3**) *M* is WH.

**Proof.** Assume that *M* is a uniform module, thus *M* is an indecomposable module by ([16], Examples 3.51(1)). Thus, Proposition 3.4 implying the result.  $\Box$ 

**Proposition 3.6.** Let *M* be a uniform and torsion-free module. Then *M* is an *s*-WH.

**Proof.** Let  $f: M \to M$  be an *e*-small *R*-epimorphism. Let  $0 \neq x \in M \setminus kerf$ ,  $f(x) \neq 0$ , so  $-x \in M$  and  $f(-x) = f(x) - 1 \neq 0$ , i.e.,  $-x \in M \setminus kerf$ . For any  $r \in R$ , f(xr) = f(x)r. Since *M* is an torsion-free *R*-module, it follows that  $f(x)r \neq 0$  and then  $xr \in M \setminus kerf$ . Thus,  $(M \setminus kerf) \cup \{0\}$  is a submodule of *M* and so  $(M \setminus kerf) \cup \{0\} \leq M$ , as *M* is uniform. As  $(M \setminus kerf) \cup \{0\} + kerf = M$  and *f* an *e*-small *R*-epimorphism, i.e.,  $kerf \ll_e M$ , thus  $(M \setminus kerf) \cup \{0\} = M$ , so kerf = 0. Hence, *M* is an *s*-WH.  $\Box$ 

**Example 3.7.** The reverse of Proposition 3.6, is not true generally. Consider the  $\mathbb{Z}$ -module  $\mathbb{Z}_{pq}$  where p,q are prime numbers. By Examples 2.3,  $\mathbb{Z}_{pq}$  is an *s*-WH, but nor uniform neither torsion-free  $\mathbb{Z}$ -module.

**Theorem 3.8.** For a projective *R*-module *M*, the following are equivalent.

(1) *M* is *s*-WH;

(2) if  $f \in End(M)$  has a right inverse in End(M) and kerf is a semisimple, then f has a left inverse in End(M);

(3) if  $f \in End(M)$  has a right inverse in End(M) and  $kerf \ll_e M$ , then f has a left inverse in End(M);

(4) if  $f \in End(M)$  has a right inverse in End(M) and  $(1 - gf)M \ll_e M$ , then f has a left inverse in End(M);

(5) if  $f \in End(M)$  is a surjective and kerf is semisimple, then f has a left inverse in End(M).

**Proof.** It is clear that  $f \in End(M)$  is a surjective if and only if fg = 1 for some  $g \in End(M)$ . Thus, kerf = (1 - gf)M, to see this: let  $x \in kerf \implies f(x) = 0 \implies (1 - gf)(x) = x - gf(x) = x - g(0) = x \implies x \in (1 - gf)M$ . Now, assume that  $y \in (1 - gf)M \implies y = (1 - gf)(x)$  for some  $x \in M \implies y = x - gf(x) \implies f(y) = f(x) - fgf(x) = f(x) - 1(f(x)) = f(x) - f(x) = 0 \implies y \in kerf$ . So  $M = kerf \oplus (gf)M = kerf \oplus Img$ , since kerf + (gf)M = (1 - gf)M + (gf)M = M, also if  $m \in kerf \cap Img \implies f(m) = 0$  and m = g(a), for some  $a \in M \implies 0 = f(m) = f(g(a)) = fg(a) = 1(a) = a \implies m = g(a) = g(0) = 0$ .

 $(1) \Rightarrow$ )(2) Assume that  $f \in End(M)$  contain a right inverse with kerf is semisimple. Thus fg = 1 for some  $g \in End(M)$ . Then g is an injective, i.e., kerg = 0. From 1<sup>st</sup> isomorphism theorem,  $M \cong M/0 = M/kerg \cong Img$ . By above argument, we have  $M = Img \oplus kerf \cong M \oplus kerf$ , i.e.,  $M \cong M \oplus kerf$  and kerf is semisimple, thus kerf = 0, by Proposition 2.19, that is f is an automorphism. As fg = 1, then  $g = f^{-1}$ . Hence  $gf = f^{-1}f = 1$ , that mean g is a left inverse of f in End(M).

 $(2) \Rightarrow$ )(3) Assume that  $f \in End(M)$  contain a right inverse in End(M) and  $kerf \ll_e M$ . Since  $M = kerf \oplus Img$ , [2], implies kerf is semisimple. From (2), f has a left inverse in End(M).

 $(3) \Rightarrow)(4)$  Since kerf = (1 - gf)M, (3) implies (4).

 $(4) \Longrightarrow)(5)$  Let  $f \in End(M)$  be a surjective and kerf is semisimple, then f has a right inverse in End(M). By above argument, we have kerf = (1 - gf)M and  $M = kerf \oplus Img$ . By [2],  $kerf = (1 - gf)M \ll_e M$ , then f has a left inverse in End(M), by (4).

 $(5) \Rightarrow$ )(1) Assume that if  $f \in End(M)$  is a surjective and  $kerf \ll_e M$ . Hence, f has a right inverse in End(M). By above argument,  $M = kerf \oplus Img$ . kerf is semisimple from [2], so f contain a left inverse in End(M) by (5). That is hf = 1 for some  $h \in End(M)$ . Thus  $f \in End(M)$  is an injective. Hence, it is an automorphism. Therefore, (1) holds.  $\Box$ 

**Proposition 3.9.** Let *M* be a semisimple module. Then *M* is *s*-WH if and only if it is Hopfian. **Proof.** Suppose that *M* is an *s*-WH module. Let  $f: M \to M$  be an *R*-epimorphism. As *M* is a semisimple module, then by [22], we get  $kerf \ll_e M$ , i.e., *f* is an *e*-small *R*-epimorphism and so *f* is an automorphism. Hence, *M* is Hopfian. Conversely, follows by Remarks 2.2(1).

# **Proposition 3.10.** Every co-Hopfian quasi-projective module is an *s*-WH.

**Proof.** Suppose that *M* is a co-Hopfian quasi-projective module and let  $\varphi: M \to M$  be an *e*-small epimorphism. Since *M* is quasi-projective, so there is an  $f \in End(M)$  such that  $\varphi f = I_M$ . As  $I_M$  is a monomorphism, then so is *f*. As *M* is a co-Hopfian module, thus *f* is an epimorphism. Since  $0 = kerI_M = ker(\varphi f) = f^{-1}(ker\varphi)$ , then  $0 = f(0) = f(f^{-1}(ker\varphi)) = ker\varphi$ , that means  $\varphi$  is an automorphism. Hence, *M* is an *s*-WH.  $\Box$ 

**Example 3.11.** The reverse of Proposition 3.10, need not be true in general. Examples 2.6(1) shows that the  $\mathbb{Z}$ -module  $\mathbb{Z}$  is *s*-WH. But we know that  $\mathbb{Z}$ -module  $\mathbb{Z}$  is quasi-projective not co-Hopfian see [11].

**Corollary 3.12.** Every projective co-Hopfian module is an *s*-WH. **Proof.** Clear by Proposition 3.10.  $\Box$ 

**Corollary 3.13.** Every co-Hopfian ring is a *s*-WH ring.

**Proof.** Suppose that *R* is a co-Hopfian ring. As  $R = \langle 1 \rangle$  is a free *R*-module, so it is projective. Then the result is followed by Corollary 3.12.  $\Box$ 

# **Proposition 3.14.** If *M* is a nonsingular uniform module, then *M* is an *s*-WH.

**Proof.** Let M be a nonsingular uniform module. Suppose that  $\varphi \in End(M)$  is an e-small epimorphism, i.e.,  $ker\varphi \ll_e M$ . Assume  $ker\varphi \neq 0$ . We have  $Ker\varphi \trianglelefteq M$  because M is uniform. Thus  $M/ker\varphi$  is singular by ([1], Proposition 1.21). From the First Isomorphism Theorem  $M/ker\varphi \cong M$ . This is a contradiction because  $M/ker\varphi$  is singular and nonsingular. Hence,  $ker(\varphi) = 0$ , so  $\varphi$  is an automorphism. Therefore, M is an s-WH.  $\Box$ 

# Remarks 3.15.

(1) We note that Proposition 3.14, is another proof for Example 2.6(1), of  $\mathbb{Z}$ -module  $\mathbb{Z}$  being *s*-WH, in fact  $\mathbb{Z}$  as  $\mathbb{Z}$ -module is nonsingular and uniform.

(2) The reverse of Proposition 3.14, need not be true in general. Examples 2.3 shows that the  $\mathbb{Z}$ -module  $\mathbb{Z}_6$  is *s*-WH. But we know that  $\mathbb{Z}_6$  nor nonsingular neither uniform as  $\mathbb{Z}$ -module.

# 4. Conclusions

We defined a new concept of modules called *s*-WH which is a proper generalized of Hopfian. It is shown and investigate some different properties and examples of this class.

#### References

- [1] K. R. Goodearl, "Ring theory, Nonsingular rings and modules," *Dekker*, New york 1976.
- [2] D. X. Zhou and X. R. Zhang, "Small-essential submodules and morita duality," *Southeast Asian Bulletin of Mathematics*, vol. 35, pp. 1051-1062, 2011.
- [3] R. Wisbauer, "Foundations of module and ring theory," Gordon and Breach, Reading, 1991.
- [4] Y. Q. Zhou, "Generalizations of perfect, semiperfect and semiregular rings," *Algebra Colloq*, vol. 7, no. 3, pp. 305-318., 2000.
- [5] A. C. Ozcan, A. Harmanci and P. F. Smith, "Duo modules," *Glasgow Math.J.*, vol. 48, no. 3, pp. 533-545, 2006.
- [6] F. D. Shyaa and H. A. Al-sada, "Z-small Quasi-Dedekind Modules," *Iraqi Journal of Science*, vol. 64, no. 6, pp. 2982-2990, 2023.
- [7] H. A. Shahad and N. S. Al-Muthafar, "Small-Essentialy Quasi-Dedekind R-Modules," *Iraqi Journal of Science*, vol. 63, no. 7, pp. 3135-3140, 2022.
- [8] M. S. Abbas and B. M. Hamad, "Duo Gamma Modules and Full Stability," *Iraqi Journal of Science*, vol. 61, no. 3, pp. 646-651, 2020.
- [9] V. A. Hiremath, "Hopfian rings and Hopfian modules," *Indian J. Pure Appl. Math*, vol. 17, pp. 895-900, 1986.
- [10] A. Ghorbani and A. Haghany, "Generalized Hopfian modules," *Journal of Algebra*, vol. 255, pp. 324-341, 2002.
- [11] K. Varadarajan, "Hopfian and co-Hopfian objects," Publ. Mat, vol. 36, pp. 293-317, 1992.
- [12] Y. Wang, "Generalizations of Hopfian and co-Hopfian modules," *Int. J. Math sci*, vol. 9, p. 1455–1460, 2005.
- [13] S. E. Atani, M. Khoramdel and S. D. Pishhesari, "Modules in which every surjective endomorphism has a δ-small kernel," *Algebra and Discrete Mathematics*, vol. 26, no. 2, p. 170– 189, 2018.
- [14] P. Ribenboim, "Rings and modules," *Tracts in Mathematics*, *Interscience Publishers*, vol. 24, 1969.
- [15] I. M.-A. Hadi and S. H. Aidi, "On e-small submodules," *Ibn Al-Haitham Jour. for Pure & Appl. Sci,* vol. 28, no. 3, pp. 214-222, 2015.
- [16] T. Y. Lam, Lectures on modules and rings, 189 ed., New York: Graduate Texts in Mathematics 189, Springer, 1999.
- [17] M. S. Abbas, On fully stable modules, Ph.D. Thesis, Iraq: University of Baghdad, 1990.
- [18] M. D. Larsen and P. J. McCarthy, Multiplicative theory of ideals, New york and London: Academic press, 1971.
- [19] S. E. Atani and A. Y. Darani, "Notes on the primal submodules," *Chiang Mai J. Sci*, vol. 35, no. 3, pp. 399-410, 2008.
- [20] M. M. Obaid, *Principally g-supplemented modules and some related concepts, M. Sc. Thesis,* Iraq: College of Education, University of Al-Qadisiyah, 2022.
- [21] I. M.-A. Hadi and S. H. Aidi, "e-Hollow modules," Int. J. of Advanced Sci. and Technical Research, vol. 3, no. 5, pp. 453-461, 2015.
- [22] O. B. Mohammed and T. Y. Ghawi, "About e-gH module," *Journal of Al-Qadisiyah for Mathematics and Computer*, vol. 15, no. 1, pp. 121-126, 2023.