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Abstract

This article introduces the concept of strongly-WH module which is a proper
generalized of Hopfian modules. A module M is called strongly-WH, briefly s-WH
if, any e-small surjective R-endomorphism of M is an automorphism. We specify and
provide some properties of this concept. Furthermore, we have established
connections between strongly-WH modules and various other concepts. We
demonstrate that every strongly-WH module is §-weakly Hopfian. As well as, we
provide cases in which the concepts of WH, &-weakly Hopfian, and strongly-WH
modules are equivalent.

Keywords: s-WH modules; Hopfian modules; weakly Hopfian modules; e-small
submodules.
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1. Introduction

Throughout this paper, we consider all modules to be unitary left R-modules, where R is an
associative ring with an identity element. The rz(x) denotes the right annihilator of x in R.
And D <® M denotes that a submodule D is a direct summand of M. A non-zero submodule
E < M is said to be an essential in M, and its denoted by E < M, if N n E + 0 for every non-
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zero submodule N of M [1]. A submodule S of M is called small (e-small), which is denoted
by S & M (resp., S <, M), if for every submodule (essential submodule) N of M with the
property M =S+ N implies N =M [2]. A module M is called hollow if every proper
submodule is small in M [3]. Rad.(M) and §(M) are a generalized radical of a module M
defined as, Rad, (M) = Y>{S € M|S K, M },and §(M)=)Y.{N < M| N «s M}. Since every 6-
small submodule is e-small, then §(M) < Rad,(M) see [2], and [4]. If every non-zero
submodules of a module M are essential then M is said to be uniform [1]. If every submodule
(direct summand) of a module M are fully invariant then M is said to be a duo (weak duo)
module [5].

The study of homomorphism of modules has been extensively explored by various
researchers see [6], [7], and [8]. In reference [9], they introduced the concept of Hopfian
modules, which are defined as follows, a module M is considered to be Hopfian if every
surjective R-endomorphism of M is an automorphism. Another generalized notion, known as
generalized Hopfian (gH) modules, was presented by A. Gorbani and A. Haghany in reference
[10]. A module M is considered as gH if it has a small kernel for every surjective R-
endomorphism.

In 1992, K. Varadarajan defined co-Hopfian modules as follows, a module M is said to be
co-Hopfian when every injective R-endomorphism of M is an automorphism [11].

Furthermore, the concept of weakly Hopfian (WH) modules was introduced in reference
[12], as a proper generalization of Hopfian modules. A module M is said to be WH if every
small surjective R-endomorphism of M is an isomorphism.

Additionally, another generalization of Hopfian modules was introduced in reference [13],
known as d-weakly Hopfian. A module M is considered 3-weakly Hopfian if every &-small
surjective endomorphism of M is an isomorphism.

In Section 2, we introduced a new proper generalized for Hopfian called strongly weakly
Hopfian for short s-WH, defined as, a module M is said to be s-WH if, every e-small R-
epimorphism g € End(M) is an automorphism. In the same section, we showed some
important properties and examples of s-WH. In the end of Section 2, we investigate the behavior
of s-WH modules Under the concept of localization. In Section 3, we have established
significant relationships between s-WH modules and various other concepts. By exploring this
connections, we have deepened our understanding of s-WH modules and their place within the
broader context of module theory. Our research demonstrates that every s-WH module is &-
weakly Hopfian. We give a cases that make the concepts of WH, 5-weakly Hopfian and s-WH
modules are identical.

2. s-WH modules and some basic properties

Definition 2.1. A non-zero R-module M is called strongly weakly Hopfian, for short s-WH if
any e-small epimorphism g € End (M) is an automorphism. Moreover, a ring R is called s-
WH if, R as an R-module is an s-WH module.

Remarks and Examples 2.2.

(1) Evidently, every Hopfian R-module is an s-WH.

(2) Every Noetherian module is s-WH.

Proof. It follows directly by ( [14], Lemma 4, p. 42), and (1). O

(3) Each of Q and Z are s-WH, because the only rings homomorphism of them is the identity
map.
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(4) From [11], the modules Q as Z-module and Q as Q-module are Hopfian, so they are s-WH,
by (1).

Example 2.3. The Z-module Z,, is s-WH.
Proof. Let f € End(Z,) be an e-small Z-epimorphism. It follows that f(x) = Xa where
gcd(a,n) = 1 forall a € Z* and a < n. Evidently, kerf = 0, so Z,, is s-WH Z-module.

The module which introduced in the next example is not an s-WH.

Example 2.4. Consider M = Z, as Z-module. M is hollow. So, we have an e-small kernel for
every surjective endomorphism of M. But, we can have a surjective endomorphism of M which
IS not an automorphism, from the multiplication by p. i.e., f(¥) = p(x), where X € M.

Proposition 2.5. Every R-module M with Rad,(M) = 0 is an s-WH.

Proof. Suppose that M is an R-module with Rad,(M) = 0 and f € End(M) be an e-small R-
epimorphism. Therefore, kerf «, M, and kerf € Rad.(M). So, kerf = 0. Thus, f is an
automorphism and M is an s-WH. o

Remarks 2.6.

(1) As an application of Proposition 2.5, we have the Z as Z-module is s-WH. In fact,
Rad,(Z) = 0.

(2) In general, the converse of Proposition 2.5, is not true, such as the Z,, as Z-module is s-
WH. (See Examples 2.3). While Rad,(Z,,) = 27Z,,, that means Rad,(Z,,) # 0.

Proposition 2.7. Let M be a projective R-module and §(M) = 0. Then M is an s-WH.

Proof. Assume that M is a projective R-module with §(M) = 0. Let f € End(M) be an e-small
R-epimorphism. Thus kerf «, M, and hence kerf «s M see ( [2], p.1053). Therefore,
kerf < §(M). Hence, kerf = 0. Thus f is an automorphism and M is an s-WH. o

Corollary 2.8. If R is aring such that §(R) = 0. Then R is an s-WH.
Proof. Since R = (1) is a free R-module, so it is projective. We have the result by Proposition
2.7.0

Proposition 2.9. If M is an indecomposable R-module with Rad(M) = 0. Then M is an s-WH.
Proof. Suppose that M is an indecomposable R-module with Rad(M) = 0. Let f € End(M)
be an e-small R-epimorphism. Therefore, kerf is a proper e-small submodule of M (since M
is indecomposable), [15], implies kerf << M and kerf < Rad(M), so kerf = 0. Thus, f is
an automorphism and M isan s-WH. o

Corollary 2.10. If M is a uniform R-module such that Rad(M) = 0. Then M is an s-WH.
Proof. Assume that M is a uniform module, thus M is an indecomposable module by( [16],
Examples 3.51(1)). So, Proposition 2.9 implies the result. o

Proposition 2.11. If M is a weak duo R-module and Rad(M) = 0. Then M is an s-WH.
Proof. Suppose that f € End(M) is an epimorphism and kerf <, M. Try to show that
kerf «< M. Assume that M = kerf + H, for some H < M. Since kerf <, M, then M =
N@H, for some semisimple submodule N of M, by [2]. Therefore, H <® M, hence it is fully
invariant, since M is a weak duo. Therefore, M = f(M) = f(kerf + H) = f(H) S M. Thus
f(H) =M. Hence, M = f(H) € H that implies M = H and kerf < M. Thus, kerf
Rad(M), it follows kerf = 0. Thus, f is an automorphism and M is an s-WH. o
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Corollary 2.12. Let M be a duo R-module with Rad(M) = 0. Then M is an s-WH.
Proof. Since any duo R-module is weak duo R-module then, Proposition 2.11 implies the result.
O

Proposition 2.13. A direct summand of a s-WH module is an s-WH.

Proof. Let M be a s-WH module and N <® M. So, M = N@L for some L < M. Assume that
f € End(N) is an e-small epimorphism. Consider I,: L — L is an identity map over L. Thus
f®I1,:M - M with f@&I,(n+1)=f(n)+1 for all n €N and [ € L is a surjective, since
fer,(M) = fel,(N®L) = f(N)®I, (L) =N®L =M. Then by [2], we have that
ker(f@l,) = kerf®@ker(l,) = kerf®0 K, N®OL =M, i.e., f®Il, is an e-small
epimorphism. Since M is an s-WH, so f@®]; is an automorphism of M. That is ker(f®1;) = 0
implies kerf = 0. Thus, N is an s-WH, since f is an automorphism of N. o

Proposition 2.14. Let M = M;@®M, such that M; and M, are fully invariant under every
surjection of M. Then M is an s-WH if and only if M; is an s-WH, forall i = 1,2.

Proof. =) Follows directly by Proposition 2.13.

&) Let f: M — M be an e-small R-epimorphism, then f1{,,.: M; — M; is an R-epimorphism for
all i =1,2, and by assumption M;, M, are fully invariant submodules. Since kerf =
ker (f |m,®f |m,) = (kerflu,)®(kerfly,) K. M;®M, =M, then ker f|y, <, M; and
kerf|u, <. M, by [2]. That means f|y, and f|y, are an e-small R-epimorphisms. By
assumption f|y, and f[y, are automorphisms. Therefore, kerf = ker (f|y,®f|m,) =
00 = 0. Thus, f is an automorphism. Hence, M is an s-WH. o

Corollary 2.15. Let M =@}~ M; such that M; is fully invariant under every surjection of M
foralli = 1,2,...,n. Then M is an s-WH if and only if M; isa s-WH, foralli = 1,2, ...,n.

Corollary 2.16. If M is a weak duo module and all its direct summands are under any surjection
of M. Then M is an s-WH if and only if any direct summand of M is an s-WH.

Proof. By Proposition 2.14, since any direct summand of M is fully invariant, as M is a weak
duo module. o

Proposition 2.17. Let M = M; @M, be an R-module such that r, (M,)®rz(M,) = R. Then M
is an s-WH if and only if M; is an s-WH, forall i = 1,2.

Proof. If part follows directly by Proposition 2.13.

The only if part. Assume that f € End(M) is a surjective and kerf «, M. Since
1R (M;)®rg(M;) = Rand Imf < M;@®M,, then by [17], there exists X < M, and Y < M, such
that Imf = X@Y. Thus, f (M)= f (M, ®M,) = f(M)®f (M,) = X®Y = Imf |y, @ Imf|y,,
so Imf|y, < M, and Imf|y, < M,. Thus |y, is asurjective forall i = 1,2. And we have that
kerf=(kerf|u,)®(kerfly,) <. Mi@®M, =M, therefore ker fly, <¢M; and
kerfly, < My by [2]. That means f|y, and f|y, are an e-small R-epimorphisms. By
assumption f|y, and fl,, are automorphisms that implies kerf|,, = kerfl|y, =0. If
f(my + my) =0, then f(my) + f(m,) =0,s0 my =m, =0, i.e., kerf =0. Thus, M is an
s-WH. o

Proposition 2.18. The following are equivalent for M as R-module.
(1) M is s-WH,;
(2) For all e-small submodule N of M, M/N = M if and only if N = 0.
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Proof. (1) =)(2) Assume that N = 0. Then trivially M/N = M. Suppose that M/N = M
with N «, M. Let y: M/N — M be an R-isomorphism. Consider a canonical R-epimorphism
m:M — M/N. Then ym is a surjective endomorphism of M with ker(ym) = n~1(kery) =
n~1(N) = N, that is iy is an e-small R-epimorphism. Therefore, i is an automorphism. i.e.,
ker(ym) = 0 by (1). Then N = 0.

(2) =)(1) Let f € End(M) be an e-small R-epimorphism. Thus kerf <, M. We have that
M/kerf = M by the First Isomorphism Theorem and by (2), kerf =0, so f is an R-
automorphism. Hence, M is an s-WH. o

Proposition 2.19. Let M be a module, consider the following:
(1) M is s-WH.

(2) If M = M®N, then N = 0, for some semisimple module N.
Then (1) =)(2). And if M is projective, we have (2) =)(1).

Proof. (1) =)(2) Assume that M is an s-WH module, where M = M@N for some semisimple
module N. It follows that M = K@L where K = M and L = N. From [2], we deduce that L is
an e-small submodule of M. We have M /L = K = M. Thus, by Proposition 2.18, L = 0, hence
N =0.

(2) =)(1) Conversely, suppose that M is projective and f € End(M) is an epimorphism,
where kerf <, M. Thus f split, that is M = T@®kerf, for some T < M. By the First
Isomorphism Theorem, we have that T = M/kerf = M. By [2], M = S®T where S is a
semisimple submodule of kerf. By the modular law, kerf = kerf N M = kerf n (S®T) =
S®(kerf nT) =S. It follows that M = M@kerf and kerf is semisimple. By (2), kerf =0
and M will be an s-WH module. o

We will offer the following condition (E*) for any R-module M:
(ENIff:M - M"and g: M' - M" are any two R-endomorphisms, then f and g are e-small if
and only if gf is e-small.

Proposition 2.20. If M is a module with the property that for any g € End (M), there exists an
n € Z* such that kerg™ n I'mg™ = 0, then M is an s-WH.

Proof. Let g € End(M) be an e-small epimorphism. By assumption, there is an integer n > 1
such that kerg"Nimg™ = 0. It follows that g™ € End(M) is an epimorphism, i.e., Img" =
M. Thus, kerg™ nImg™ = kerg" N M = kerg™ = 0. But we know that kerg < kerg",
which implies kerg = 0. Therefore, g is an automorphism. Hence, M is an s-WH. o

Corollary 2.21. Let M be an R-module satisfies (E*) property. If M has ACC on e-small
submodules, then M is an s-WH.

Proposition 2.22. Let M be an R-module. If for any R-epimorphism ¢: M — M, there existn >
1 such that kerg™ = kere™* forall i € Z*, then M is an s-WH.

Proof. Let ¢ € End(M) be any surjective. We claim that ker ¢™ N Im¢e™ = 0. Let y €
ker o™ N Ime™. Thus ¢™(y) =0 and y = ¢"(x) for some x € M. Hence, ¢?"(x) =
@™ (y) = 0. Hence, x € kerg?™. But from our assumption we have that kero™ = kero™t" =
kerp?™. So, x € kero™. Therefore, 0 = ¢™(x) = y. Hence, ker ¢™ N Img™ = 0. Since ¢ is
a surjective, so Ime"™ = M, thus kerp™ =0. But kerp C kere™ So, kerp <, M.
Therefore, M is an s-WH. o

Proposition 2.23. Let M be an R-module has (E*) property and N be any non-zero e-small
submodule of M, if M/N is s-WH, then M is an s-WH.
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Proof. Assume M is not s-WH, then there is an e-small epimorphism f € End (M) that it is not
automorphism, (kerf # 0). From 1% isomorphism theorem there is an R-isomorphism
@:M/kerf — M. Consider m: M — M /kerf the canonical map, then kerm = kerf <, M.
Therefore, rr is an e-small epimorphism. It follows that wg: M /kerf — M /kerf is an e-small
epimorphism, by hypothesis, which is not isomorphism (since ker(mg) = ¢~ 1(kerm) =
o Y(kerf) + Onm/kerf), Ut M/N is s-WH, which is a contradiction. Hence, kerf = 0 and M
isan s-WH. o

Theorem 2.24. Let M be a uniform quasi-projective R-module has (E*) property. Then M is an
s-WH if and only if M/N is s-WH, with N is an e-small fully invariant submodule of M.
Proof. Assume that M is s-WH and N is an e-small fully invariant submodule of M. If
f:M/N - M/N is an e-small epimorphism. Consider the e-small canonical epimorphism
m:M — M/N (as kerm = N K, M), so fm:M — M/N is an e-small epimorphism, as M has
(E™) property. Since M is quasi projective, then there exists an endomorphism g of M such that
g = fm. This equality implies that g is an epimorphism, as M is uniform. Since, fm is e-small.
Then is g is e-small that implies g is e-small, since M has (E*) property. Since M is s-WH,
then g is an automorphism. For all m € M, we deduce that f(m + N) = fr(m) = tg(m) =
gm)+N, and then kerf ={m+NeM/N|f(m+N) =N} =
{(m+N€eM/N gim)+ N=N}={m+N€e€M/N|g(M) €N}=K/N, where K=
{fme M|g(m) e N} and NS K = g 1(N). Since N is fully invariant in M and g~ €
End(M), then g=*(N) € N, thus K = g~*(N) = N. Hence, kerf = K/N = 04,y and M /N,
is an s-WH. The converse is clear when N = 0. o

Definition 2.25. [18] Let R be a ring with identity 1 a subset S of a ring R is called
multiplicatively closed set if the following two conditions hold:

1)1€sS.

(2) Forall wand v in S, the product uv € S.

Definition 2.26. [18] Let M be an R-module. Let S be a multiplicatively closed set in R. Let T
be the set of all ordered pairs (x,s) where x € R and s € S. Define a relation on T by
(x,5)~(x,$) if there exists t € S such that t(sx — $x) = 0. This is an equivalence relation on
T, and we denote the equivalence class of (x, s) by x/s . Let S™1M denote the set of equivalence
classes of T with respect to this relation. We can make S~M into an R-module by setting x /s +
y/t = (tx + sy)/st, a(x/s) = ax/s, a € R. W The R-module S™M is called a quotient
module (localization of module), or a module of quotient. Note that if 0 € S, then S™1M = 0.

Definition 2.27. [19] Let M be an R-module and R is a commutative ring. An element r € R is
called prime to L, where L < M, if rm € L (m € M) implies that m € L.

The set of all elements of R that are not prime to L, denote by L(L),i.e., L(L) ={r ER|rm €
L forsomem € M \ L}.

In the next results, we examine the behavior of the s-WH under the concept of localization.

Proposition 2.28. Suppose that M be an R-module and S a multiplicative closed subset of R
such that L(L)NS =@ forany L < M. If S™1M is a s-WH as S™*R-module, then M is an s-
WH as R-module.

Proof. Let f:M —> M be an e-small R-epimorphism. Define S~1R-endomorphism

ST1f:S7IM > S7IM by S71f (%) = @ for allm € M, s € S. Then we have Im(S~1f) =
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S7X(mf)=S5"1M, then S'f is an S~ !R-epimorphism. Since kerf «, M, thus
ker(S™1f) = S71(kerf) <, S™IM from ([20], Lemma 2.3.3). As S™1M is s-WH. Therefore,
ker(S™1f) = S71(kerf) = S71(0), then kerf = 0 by ( [20], Lemma 2.3.1.) Hence, M is s-
WH. o

3. s-WH modules and related concepts

Many relations between s-WH modules and other types of modules are introduced in this
section, such as generalized hollow, semisimple and nonsingular uniform modules. We give a
case that make the concepts WH, 6-weakly Hopfian and s-WH modules are identical, we give
two cases that make the concepts Hopfian and s-WH are equivalent. Also, we put a condition
on co-Hopfian ring to become an s-WH ring.

Recall that a module M is called generalized hollow if any proper submodule of M is an e-
small [21].

Proposition 3.1. Let M be a non-zero R-module, if M is a generalized Hollow module. Then
M is an s-WH if and only if M is a Hopfian.

Proof. Let M be an s-WH R-module. Let f € End(M) be an R-epimorphism, so kerf c M
(since, if kerf = M then f = 0, a contradiction), Then kerf <, M, as M is generalized
Hollow. Since M is s-WH, so kerf = 0. Hence, M is a Hopfian R-module, since f is an
automorphism. Conversely, follows by Remarks and Examples 2.2(1). o

Proposition 3.2. Every s-WH module is a §-weakly Hopfian.

Proof. Let M be a s-WH R-module. If f € End(M) is a §-small R-epimorphism, then
kerf «s M, and then kerf «, M, by ( [2], p.1052). Since M is s-WH, then kerf = 0.
Therefore, M is a 5-weakly Hopfian R-module, since f is an isomorphism. o

Corollary 3.3. Every s-WH module is WH.
Proof. Since every §-weakly Hopfian is WH from [13]. Then the result is followed by
Proposition 3.2. o

Now, we will give the case that makes the concepts WH, §-weakly Hopfian and s-WH modules
identical.

Proposition 3.4. If M is a non-zero indecomposable R-module. Then the following are
equivalent.

(1) M is s-WH;

(2) M is 5-weakly Hopfian;

(3) M is WH.

Proof. (1) =)(2) By Proposition 3.2.

(2) =)(3) By [13].

(3) =)(1) Assume that M is a WH R-module, let f € End(M) is an e-small epimorphism. If
kerf = M, then f = 0, which it is a contradiction. Thus, kerf is a proper e-small submodule
of M, and since M is indecomposable, [15], implies kerf « M, that means f € End(M) is a
small R-epimorphism. Since M is a WH R-module, then f is an automorphism. Hence, M is an
s-WH. o

Corollary 3.5. The following are equivalent for a non-zero uniform R-module M.
(1) M is s-WH;
(2) M is 6-weakly Hopfian;
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(3) M is WH.
Proof. Assume that M is a uniform module, thus M is an indecomposable module by ( [16]
,Examples 3.51(1)). Thus, Proposition 3.4 implying the result. o

Proposition 3.6. Let M be a uniform and torsion-free module. Then M is an s-WH.

Proof. Let f: M — M be an e-small R-epimorphism. Let 0 # x € M\kerf, f(x) # 0,50 —x €
Mand f(—x) = f(x).—1 # 0, i.e., —x € M\kerf. Forany r € R, f(xr) = f(x)r. Since M
is an torsion-free R-module, it follows that f(x)r #0 and then xr € M\kerf. Thus,
(M\kerf) u {0} is a submodule of M and so (M\kerf) U {0} 2 M, as M is uniform. As
(M\kerf)u {0} + kerf =M and f an e-small R-epimorphism, i.e., kerf «, M, thus
(M\kerf)u {0} = M, so kerf = 0. Hence, M is an s-WH. o

Example 3.7. The reverse of Proposition 3.6, is not true generally. Consider the Z-module Z,,
where p,q are prime numbers. By Examples 2.3, Z,, is an s-WH, but nor uniform neither
torsion-free Z-module.

Theorem 3.8. For a projective R-module M, the following are equivalent.

(1) M is s-WH;

(2) if f € End(M) has a right inverse in End(M) and kerf is a semisimple, then f has a left
inverse in End(M);

(3) if f € End(M) has aright inverse in End(M) and kerf <, M, then f has a left inverse in
End(M);

(4) if f € End(M) has a right inverse in End(M) and (1 — gf)M <, M, then f has a left
inverse in End(M);

(5) if f € End(M) is asurjective and kerf is semisimple, then f has a left inverse in End(M).
Proof. Itis clear that f € End(M) is a surjective if and only if fg = 1 for some g € End(M).
Thus, kerf = (1 — gf)M, to see this: let x Ekerf = f(x) =0 = (1—-gf)(x) =x—
gf(x)=x—g(0)=x = x€(1—-gf)M. Now, assume that ye (1-gf)M = y =
(1—-gf)(x) for some xeM = y=x—gf(x) = f()=fx)—-fgf(x) =fx) -
1(f)=fx)—f(x)=0 = y€kerf. So M =kerf@®(gf)M = kerf®Img, since
kerf+(gf) M =1 —-gf) M+ (gf)M =M, also if me€ kerfnImg = f(m)=0 and
m = g(a), forsomea € M = 0= f(m) = f(g(a)) = fg(a) =1(a) =a=m=g(a) =
g(0) =0.

(1) =)(2) Assume that f € End(M) contain a right inverse with kerf is semisimple. Thus
fg = 1 for some g € End(M). Then g is an injective, i.e., kerg = 0. From 1% isomorphism
theorem, M = M /0 = M /kerg = Img. By above argument, we have M = Img®kerf =
M®kerf, ie., M = M®kerf and kerf is semisimple, thus kerf = 0, by Proposition 2.19,
that is f is an automorphism. As fg = 1,then g = f~1. Hence gf = f~f = 1, that mean g
is a left inverse of f in End(M).

(2) =)(3) Assume that f € End(M) contain a right inverse in End(M) and kerf <, M.
Since M = kerf®Img, [2], implies kerf is semisimple. From (2), f has a left inverse in
End(M).

(3) =)(4) Since kerf = (1 — gf)M, (3) implies (4).

(4) =)(5) Let f € End(M) be a surjective and kerf is semisimple, then f has a right inverse
in End(M). By above argument, we have kerf = (1 — gf)M and M = kerf@®Img. By [2],
kerf = (1 —gf)M <, M, then f has a left inverse in End (M), by (4).

(5) =) (1) Assume that if f € End(M) is a surjective and kerf «, M. Hence, f has a right
inverse in End(M). By above argument, M = kerf@®Img. kerf is semisimple from [2], so f
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contain a left inverse in End(M) by (5). That is hf = 1 for some h € End(M). Thus f €
End (M) is an injective. Hence, it is an automorphism. Therefore, (1) holds. o

Proposition 3.9. Let M be a semisimple module. Then M is s-WH if and only if it is Hopfian.
Proof. Suppose that M is an s-WH module. Let f: M — M be an R-epimorphism. As M is a
semisimple module, then by [22], we get kerf <, M, i.e., f is an e-small R-epimorphism and
so f is an automorphism. Hence, M is Hopfian. Conversely, follows by Remarks 2.2(1). o

Proposition 3.10. Every co-Hopfian quasi-projective module is an s-WH.

Proof. Suppose that M is a co-Hopfian quasi-projective module and let ¢: M — M be an e-
small epimorphism. Since M is quasi-projective, so thereisan f € End(M) suchthat of = I,.
As I, isamonomorphism, then so is f. As M is a co-Hopfian module, thus f is an epimorphism.
Since 0 = kerly = ker(of) = f1(kere), then 0 = f(0) = f(f "1(kerg)) = kere, that
means ¢ is an automorphism. Hence, M is an s-WH. o

Example 3.11. The reverse of Proposition 3.10, need not be true in general. Examples 2.6(1)
shows that the Z-module Z is s-WH. But we know that Z-module Z is quasi-projective not co-
Hopfian see [11].

Corollary 3.12. Every projective co-Hopfian module is an s-WH.
Proof. Clear by Proposition 3.10. o

Corollary 3.13. Every co-Hopfian ring is a s-WH ring.
Proof. Suppose that R is a co-Hopfian ring. As R = (1) is a free R-module, so it is projective.
Then the result is followed by Corollary 3.12. o

Proposition 3.14. If M is a nonsingular uniform module, then M is an s-WH.

Proof. Let M be a nonsingular uniform module. Suppose that ¢ € End(M) is an e-small
epimorphism, i.e., kergp <, M. Assume kergp # 0. We have Kerep < M because M is
uniform. Thus M /ker¢ is singular by ( [1], Proposition 1.21). From the First Isomorphism
Theorem M /kerp = M. This is a contradiction because M /ker is singular and nonsingular.
Hence, ker(¢) = 0, S0 ¢ is an automorphism. Therefore, M isan s-WH. o

Remarks 3.15.

(1) We note that Proposition 3.14, is another proof for Example 2.6(1), of Z-module Z being s-
WH, in fact Z as Z-module is nonsingular and uniform.

(2) The reverse of Proposition 3.14, need not be true in general. Examples 2.3 shows that the
Z-module Z, is s-WH. But we know that Z, nor nonsingular neither uniform as Z-module.

4. Conclusions
We defined a new concept of modules called s-WH which is a proper generalized of
Hopfian. It is shown and investigate some different properties and examples of this class.
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