

 ISSN: 0067-2904

-WH Modules

osama Basim Mohammed, Thaer Younis Ghawi

Department of Mathematics, College of Education, AL-Qadisiyah University, AL-Qadisiyah, Iraq

Received: 13/5/2023 Accepted: 27/8/2023 Published: xx

Abstract

 This article introduces the concept of strongly-WH module which is a proper generalized of Hopfian modules. A module M is called strongly-WH, briefly s -WH if, any e -small surjective R -endomorphism of M is an automorphism. We specify and provide some properties of this concept. Furthermore, we have established connections between strongly-WH modules and various other concepts. We demonstrate that every strongly-WH module is δ -weakly Hopfian. As well as, we provide cases in which the concepts of WH, δ -weakly Hopfian, and strongly-WH modules are equivalent.

Keywords: s -WH modules; Hopfian modules; weakly Hopfian modules; e -small submodules.

المقاسات من النمط WH-

أسامة باسم ، ثائر يونس غاوي قسم الرياضيات ، كلية التربية ، جامعة القادسية ، القادسية - العراق

الخالصة

تقدم هذه المقالة مفهوم المقاس القوي من النمط WH وهو تعميم فعلي للمقاسات الهوبفيينة. يقال للمقاس طى الحلقة R انهُ قوي من النمط WH, باختصار WH-s، اذا كان كل تشاكل ذاتي شامل صغير من M النمط e على يكون تشاكل متقابل. نحن حددنا وأثبتنا بعض الخواص لهذ ه المقاسات. باإلضافة إلى ذلك، حن أثبتنا العلاقة بين المقاس من النمط WH-s وبين بعض المفاهيم الأخرى المختلفة. نحن بينًا ان المقاس من النمط WH-s يكون هوبفيين ضعيف من النمط δ. إلى جانب ذلك، نحن بينًا الحالة التي تتكافئ فيها المفاهيم من النمط WH, هوبفيين ضعيف من النمط δ و من النمط WH-s.

1. Introduction

Throughout this paper, we consider all modules to be unitary left R -modules, where R is an associative ring with an identity element. The $r_R(x)$ denotes the right annihilator of x in R. And $D \leq^{\oplus} M$ denotes that a submodule D is a direct summand of M. A non-zero submodule $E \leq M$ is said to be an essential in M, and its denoted by $E \leq M$, if $N \cap E \neq 0$ for every non-

_______________________________ *Email: edu-math.post26@qu.edu.iq

zero submodule N of M [1]. A submodule S of M is called small (e-small), which is denoted by $S \ll M$ (resp., $S \ll_{\rho} M$), if for every submodule (essential submodule) N of M with the property $M = S + N$ implies $N = M$ [2]. A module M is called hollow if every proper submodule is small in M [3]. $Rad_{\rho}(M)$ and $\delta(M)$ are a generalized radical of a module M defined as, $Rad_{\rho}(M) = \sum \{ S \in M | S \ll_{\rho} M \}$, and $\delta(M)=\sum \{ N \leq M | N \ll_{\delta} M \}$. Since every δ small submodule is e-small, then $\delta(M) \leq Rad_{q}(M)$ see [2], and [4]. If every non-zero submodules of a module M are essential then M is said to be uniform [1]. If every submodule (direct summand) of a module M are fully invariant then M is said to be a duo (weak duo) module [5].

 The study of homomorphism of modules has been extensively explored by various researchers see [6], [7], and [8]. In reference [9], they introduced the concept of Hopfian modules, which are defined as follows, a module M is considered to be Hopfian if every surjective R -endomorphism of M is an automorphism. Another generalized notion, known as generalized Hopfian (gH) modules, was presented by A. Gorbani and A. Haghany in reference [10]. A module *M* is considered as gH if it has a small kernel for every surjective R endomorphism.

In 1992, K. Varadarajan defined co-Hopfian modules as follows, a module M is said to be co-Hopfian when every injective R-endomorphism of M is an automorphism [11].

 Furthermore, the concept of weakly Hopfian (WH) modules was introduced in reference [12], as a proper generalization of Hopfian modules. A module M is said to be WH if every small surjective R -endomorphism of M is an isomorphism.

Additionally, another generalization of Hopfian modules was introduced in reference [13], known as δ-weakly Hopfian. A module *M* is considered δ-weakly Hopfian if every δ-small surjective endomorphism of M is an isomorphism.

 In Section 2, we introduced a new proper generalized for Hopfian called strongly weakly Hopfian for short s -WH, defined as, a module *M* is said to be s -WH if, every *e*-small R epimorphism $g \in End(M)$ is an automorphism. In the same section, we showed some important properties and examples of s -WH. In the end of Section 2, we investigate the behavior of s-WH modules Under the concept of localization. In Section 3, we have established significant relationships between s -WH modules and various other concepts. By exploring this connections, we have deepened our understanding of s -WH modules and their place within the broader context of module theory. Our research demonstrates that every s -WH module is δ weakly Hopfian. We give a cases that make the concepts of WH, δ -weakly Hopfian and s -WH modules are identical.

2. -WH modules and some basic properties

Definition 2.1. A non-zero R -module M is called strongly weakly Hopfian, for short s -WH if any *e*-small epimorphism $g \in End(M)$ is an automorphism. Moreover, a ring R is called *s*-WH if, R as an R -module is an s -WH module.

Remarks and Examples 2.2.

 (1) Evidently, every Hopfian R -module is an s -WH.

(2) Every Noetherian module is s -WH.

Proof. It follows directly by ($[14]$, Lemma 4, p. 42), and (1). \Box

(3) Each of Q and Z are s-WH, because the only rings homomorphism of them is the identity map.

(4) From [11], the modules $\mathbb Q$ as $\mathbb Z$ -module and $\mathbb Q$ as $\mathbb Q$ -module are Hopfian, so they are s-WH, by (1) .

Example 2.3. The \mathbb{Z} -module \mathbb{Z}_n is s-WH.

Proof. Let $f \in End(\mathbb{Z}_n)$ be an *e*-small Z-epimorphism. It follows that $f(\bar{x}) = \bar{x}a$ where $gcd(a, n) = 1$ for all $a \in \mathbb{Z}^+$ and $a < n$. Evidently, $ker f = 0$, so \mathbb{Z}_n is s-WH \mathbb{Z} -module.

The module which introduced in the next example is not an s -WH.

Example 2.4. Consider $M = \mathbb{Z}_{n^{\infty}}$ as \mathbb{Z} -module. M is hollow. So, we have an *e*-small kernel for every surjective endomorphism of M . But, we can have a surjective endomorphism of M which is not an automorphism, from the multiplication by p. i.e., $f(\bar{x}) = p(\bar{x})$, where $\bar{x} \in M$.

Proposition 2.5. Every R-module M with $Rad_e(M) = 0$ is an s-WH.

Proof. Suppose that M is an R-module with $Rad_e(M) = 0$ and $f \in End(M)$ be an e-small Repimorphism. Therefore, $ker f \ll_e M$, and $ker f \subseteq Rad_e(M)$. So, $ker f = 0$. Thus, f is an automorphism and M is an s -WH. \square

Remarks 2.6.

(1) As an application of Proposition 2.5, we have the \mathbb{Z} as \mathbb{Z} -module is s -WH. In fact, $Rad_{e}(\mathbb{Z})=0.$

(2) In general, the converse of Proposition 2.5, is not true, such as the \mathbb{Z}_{24} as \mathbb{Z} -module is s-WH. (See Examples 2.3). While $Rad_e(\mathbb{Z}_{24}) = 2\mathbb{Z}_{24}$, that means $Rad_e(\mathbb{Z}_{24}) \neq \overline{0}$.

Proposition 2.7. Let M be a projective R-module and $\delta(M) = 0$. Then M is an s-WH. **Proof.** Assume that M is a projective R-module with $\delta(M) = 0$. Let $f \in End(M)$ be an e-small R-epimorphism. Thus $ker f \ll_e M$, and hence $ker f \ll_{\delta} M$ see ([2], p.1053). Therefore, $ker f \subseteq \delta(M)$. Hence, $ker f = 0$. Thus f is an automorphism and M is an s-WH. \Box

Corollary 2.8. If R is a ring such that $\delta(R) = 0$. Then R is an s-WH. **Proof.** Since $R = \langle 1 \rangle$ is a free R-module, so it is projective. We have the result by Proposition $2.7. \Box$

Proposition 2.9. If *M* is an indecomposable *R*-module with $Rad(M) = 0$. Then *M* is an *s*-WH. **Proof.** Suppose that M is an indecomposable R-module with $Rad(M) = 0$. Let $f \in End(M)$ be an e-small R-epimorphism. Therefore, $ker f$ is a proper e-small submodule of M (since M is indecomposable), [15], implies $ker f \ll M$ and $ker f \subseteq Rad(M)$, so $ker f = 0$. Thus, f is an automorphism and M is an s -WH. \square

Corollary 2.10. If *M* is a uniform *R*-module such that $Rad(M) = 0$. Then *M* is an s-WH. **Proof.** Assume that M is a uniform module, thus M is an indecomposable module by([16], Examples 3.51(1)). So, Proposition 2.9 implies the result. **□**

Proposition 2.11. If *M* is a weak duo *R*-module and $Rad(M) = 0$. Then *M* is an s-WH. **Proof.** Suppose that $f \in End(M)$ is an epimorphism and $ker f \ll_e M$. Try to show that $ker f \ll M$. Assume that $M = ker f + H$, for some $H \leq M$. Since $ker f \ll_e M$, then $M =$ $N \oplus H$, for some semisimple submodule N of M, by [2]. Therefore, $H \leq^{\oplus} M$, hence it is fully invariant, since M is a weak duo. Therefore, $M = f(M) = f(ker f + H) = f(H) \subseteq M$. Thus $f(H) = M$. Hence, $M = f(H) \subseteq H$ that implies $M = H$ and $ker f \ll M$. Thus, $ker f \subseteq H$ $Rad(M)$, it follows $ker f = 0$. Thus, f is an automorphism and M is an s-WH. \square

Corollary 2.12. Let M be a duo R-module with $Rad(M) = 0$. Then M is an s-WH. **Proof.** Since any duo R-module is weak duo R-module then, Proposition 2.11 implies the result. **□**

Proposition 2.13. A direct summand of a s-WH module is an s-WH.

Proof. Let *M* be a s-WH module and $N \leq^{\oplus} M$. So, $M = N \oplus L$ for some $L \leq M$. Assume that $f \in End(N)$ is an e-small epimorphism. Consider $I_L: L \to L$ is an identity map over L. Thus $f \oplus I_L$: $M \to M$ with $f \oplus I_L(n+l) = f(n) + l$ for all $n \in N$ and $l \in L$ is a surjective, since $f \oplus I_L(M) = f \oplus I_L(N \oplus L) = f(N) \oplus I_L(L) = N \oplus L = M$. Then by [2], we have that $ker(f \oplus I_L) = ker f \oplus ker(I_L) = ker f \oplus 0 \ll_e N \oplus L = M$, i.e., $f \oplus I_L$ $f \bigoplus I_L$ is an *e*-small epimorphism. Since *M* is an *s*-WH, so $f \oplus I_L$ is an automorphism of *M*. That is $ker(f \oplus I_L) = 0$ implies $ker f = 0$. Thus, N is an s-WH, since f is an automorphism of N. \Box

Proposition 2.14. Let $M = M_1 \oplus M_2$ such that M_1 and M_2 are fully invariant under every surjection of M. Then M is an s-WH if and only if M_i is an s-WH, for all $i = 1,2$. **Proof.** \implies Follows directly by Proposition 2.13.

 \Leftarrow) Let $f: M \to M$ be an *e*-small *R*-epimorphism, then $f|_{M_i}: M_i \to M_i$ is an *R*-epimorphism for all $i = 1, 2$, and by assumption M_1 , M_2 are fully invariant submodules. Since $ker f =$ $\ker(f|_{M_1}\oplus f|_{M_2}) = (\ker f|_{M_1}) \oplus (\ker f|_{M_2}) \ll_e M_1 \oplus M_2 = M$, then $\ker f|_{M_1} \ll_e M_1$ and $ker f|_{M_2} \ll_e M_2$ by [2]. That means $f|_{M_1}$ and $f|_{M_2}$ are an *e*-small *R*-epimorphisms. By assumption $f|_{M_1}$ and $f|_{M_2}$ are automorphisms. Therefore, $\ker f = \ker (f|_{M_1} \oplus f|_{M_2}) =$ $0 \oplus 0 = 0$. Thus, f is an automorphism. Hence, M is an s-WH. \Box

Corollary 2.15. Let $M = \bigoplus_{i=1}^{n} M_i$ such that M_i is fully invariant under every surjection of M for all $i = 1, 2, ..., n$. Then *M* is an *s*-WH if and only if M_i is a *s*-WH, for all $i = 1, 2, ..., n$.

Corollary 2.16. If *M* is a weak duo module and all its direct summands are under any surjection of M. Then M is an s -WH if and only if any direct summand of M is an s -WH.

Proof. By Proposition 2.14, since any direct summand of M is fully invariant, as M is a weak duo module. **□**

Proposition 2.17. Let $M = M_1 \oplus M_2$ be an R-module such that $r_R(M_1) \oplus r_R(M_2) = R$. Then M is an s-WH if and only if M_i is an s-WH, for all $i = 1,2$. **Proof.** If part follows directly by Proposition 2.13.

The only if part. Assume that $f \in End(M)$ is a surjective and $ker f \ll_e M$. Since $r_R(M_1) \oplus r_R(M_2) = R$ and $Im f \leq M_1 \oplus M_2$, then by [17], there exists $X \leq M_1$ and $Y \leq M_2$ such that $Imf = X \oplus Y$. Thus, $f(M) = f(M_1 \oplus M_2) = f(M_1) \oplus f(M_2) = X \oplus Y = Imf|_{M_1} \oplus Imf|_{M_2}$, so $Imf|_{M_1} \leq M_1$ and $Imf|_{M_2} \leq M_2$. Thus $f|_{M_i}$ is a surjective for all $i = 1,2$. And we have that $ker f = (ker f|_{M_1}) \oplus (ker f|_{M_2}) \ll_e M_1 \oplus M_2 = M$, therefore $ker f|_{M_1} \ll_e M_1$ and $ker f|_{M_2} \ll_e M_2$ by [2]. That means $f|_{M_1}$ and $f|_{M_2}$ are an *e*-small *R*-epimorphisms. By assumption $f|_{M_1}$ and $f|_{M_2}$ are automorphisms that implies $ker f|_{M_1} = ker f|_{M_2} = 0$. If $f(m_1 + m_2) = 0$, then $f(m_1) + f(m_2) = 0$, so $m_1 = m_2 = 0$, i.e., $ker f = 0$. Thus, M is an -WH. **□**

Proposition 2.18. The following are equivalent for M as R -module.

 (1) *M* is *s*-WH;

(2) For all *e*-small submodule N of M, $M/N \cong M$ if and only if $N = 0$.

Proof. (1) \Rightarrow (2) Assume that $N = 0$. Then trivially $M/N \cong M$. Suppose that $M/N \cong M$ with $N \ll_e M$. Let $\psi: M/N \to M$ be an R-isomorphism. Consider a canonical R-epimorphism $\pi: M \to M/N$. Then $\psi \pi$ is a surjective endomorphism of M with $ker(\psi \pi) = \pi^{-1}(ker \psi)$ $\pi^{-1}(N) = N$, that is $\psi \pi$ is an e-small R-epimorphism. Therefore, $\psi \pi$ is an automorphism. i.e., $ker(\psi \pi) = 0$ by (1). Then $N = 0$.

 $(2) \implies (1)$ Let $f \in End(M)$ be an e-small R-epimorphism. Thus $ker f \ll_e M$. We have that $M/ker f \cong M$ by the First Isomorphism Theorem and by (2), $ker f = 0$, so f is an Rautomorphism. Hence, M is an s-WH. \square

Proposition 2.19. Let *M* be a module, consider the following:

 (1) *M* is s -WH.

(2) If $M \cong M \oplus N$, then $N = 0$, for some semisimple module N.

Then $(1) \implies (2)$. And if *M* is projective, we have $(2) \implies (1)$.

Proof. (1) \Rightarrow (2) Assume that *M* is an *s*-WH module, where $M \cong M \oplus N$ for some semisimple module N. It follows that $M = K \oplus L$ where $K \cong M$ and $L \cong N$. From [2], we deduce that L is an e-small submodule of M. We have $M/L \cong K \cong M$. Thus, by Proposition 2.18, $L = 0$, hence $N = 0$.

(2) \Rightarrow)(1) Conversely, suppose that M is projective and $f \in End(M)$ is an epimorphism, where $\ker f \ll_{e} M$. Thus f split, that is $M = T \bigoplus \ker f$, for some $T \leq M$. By the First Isomorphism Theorem, we have that $T \cong M/ker f \cong M$. By [2], $M = S \oplus T$ where S is a semisimple submodule of kerf. By the modular law, $ker f = ker f \cap M = ker f \cap (S \oplus T) =$ $S\bigoplus (ker f \cap T) = S$. It follows that $M \cong M \bigoplus ker f$ and $ker f$ is semisimple. By (2), $ker f = 0$ and M will be an s -WH module. \square

We will offer the following condition (E^*) for any R-module M: (E^*) If $f: M \to M'$ and $g: M' \to M''$ are any two R-endomorphisms, then f and g are e-small if and only if gf is e-small.

Proposition 2.20. If M is a module with the property that for any $q \in End(M)$, there exists an $n \in \mathbb{Z}^+$ such that $\text{ker} g^n \cap \text{Im} g^n = 0$, then M is an s-WH.

Proof. Let $g \in End(M)$ be an e-small epimorphism. By assumption, there is an integer $n \ge 1$ such that $\text{ker} g^n \cap \text{Im} g^n = 0$. It follows that $g^n \in \text{End}(M)$ is an epimorphism, i.e., $\text{Im} g^n = 0$ M. Thus, $\text{ker} g^n \cap \text{Im} g^n = \text{ker} g^n \cap M = \text{ker} g^n = 0$. But we know that $\text{ker} g \leq \text{ker} g^n$, which implies $\text{ker } q = 0$. Therefore, q is an automorphism. Hence, M is an s-WH. \Box

Corollary 2.21. Let M be an R -module satisfies (E^*) property. If M has ACC on e -small submodules, then M is an s -WH.

Proposition 2.22. Let M be an R-module. If for any R-epimorphism $\varphi: M \to M$, there exist $n \geq$ 1 such that $ker \varphi^{n} = ker \varphi^{n+i}$ for all $i \in \mathbb{Z}^{+}$, then *M* is an *s*-WH.

Proof. Let $\varphi \in End(M)$ be any surjective. We claim that $\ker \varphi^n \cap \text{Im}\varphi^n = 0$. Let $y \in$ ker $\varphi^n \cap Im\varphi^n$. Thus $\varphi^n(y) = 0$ and $y = \varphi^n(x)$ for some $x \in M$. Hence, $\varphi^{2n}(x) =$ $\varphi^{n}(y) = 0$. Hence, $x \in \text{ker}\varphi^{2n}$. But from our assumption we have that $\text{ker}\varphi^{n} = \text{ker}\varphi^{n+n} =$ $ker \varphi^{2n}$. So, $x \in ker \varphi^n$. Therefore, $0 = \varphi^n(x) = y$. Hence, $ker \varphi^n \cap Im \varphi^n = 0$. Since φ is a surjective, so $Im \varphi^n = M$, thus $ker \varphi^n = 0$. But $ker \varphi \subseteq ker \varphi^n$. So, $ker \varphi \ll_e M$. Therefore, M is an s -WH. \square

Proposition 2.23. Let M be an R-module has (E^*) property and N be any non-zero e-small submodule of M, if M/N is s-WH, then M is an s-WH.

Proof. Assume M is not s-WH, then there is an e-small epimorphism $f \in End(M)$ that it is not automorphism, ($ker f \neq 0$). From 1st isomorphism theorem there is an R-isomorphism φ : *M*/kerf \rightarrow *M*. Consider π : *M* \rightarrow *M*/kerf the canonical map, then ker π = kerf \ll_e *M*. Therefore, π is an e-small epimorphism. It follows that $\pi\varphi$: $M/ker f \rightarrow M/ker f$ is an e-small epimorphism, by hypothesis, which is not isomorphism (since $ker(\pi \varphi) = \varphi^{-1}(ker \pi) =$ $\varphi^{-1}(ker f) \neq 0_{M/ker f}$, but M/N is s-WH, which is a contradiction. Hence, $ker f = 0$ and M is an s -WH. \Box

Theorem 2.24. Let M be a uniform quasi-projective R-module has (E^*) property. Then M is an s-WH if and only if M/N is s-WH, with N is an e-small fully invariant submodule of M. **Proof.** Assume that M is s -WH and N is an e -small fully invariant submodule of M . If $f: M/N \to M/N$ is an e-small epimorphism. Consider the e-small canonical epimorphism $\pi: M \to M/N$ (as $ker \pi = N \ll_e M$), so $f \pi: M \to M/N$ is an e-small epimorphism, as M has (E^*) property. Since M is quasi projective, then there exists an endomorphism g of M such that $\pi g = f\pi$. This equality implies that g is an epimorphism, as M is uniform. Since, $f\pi$ is e-small. Then is πg is e-small that implies g is e-small, since M has (E^*) property. Since M is s-WH, then g is an automorphism. For all $m \in M$, we deduce that $f(m+N) = f\pi(m) = \pi g(m)$ $g(m) + N$, and then $\ker f = \{m + N \in M/N | f(m + N) = N\}$ ${m + N \in M/N | g(m) + N = N} = {m + N \in M/N | g(M) \in N} = K/N$, where $K =$ ${m \in M | g(m) \in N}$ and $N \subseteq K = g^{-1}(N)$. Since N is fully invariant in M and $g^{-1} \in$ $End(M)$, then $g^{-1}(N) \subseteq N$, thus $K = g^{-1}(N) = N$. Hence, $ker f = K/N = 0_{M/N}$ and M/N , is an s-WH. The converse is clear when $N = 0$. \Box

Definition 2.25. [18] Let R be a ring with identity 1 a subset S of a ring R is called multiplicatively closed set if the following two conditions hold: (1) 1 \in *S*.

(2) For all u and v in S , the product $uv \in S$.

Definition 2.26. [18] Let M be an R -module. Let S be a multiplicatively closed set in R . Let T be the set of all ordered pairs (x, s) where $x \in R$ and $s \in S$. Define a relation on T by $(x, s) \sim (\dot{x}, \dot{s})$ if there exists $t \in S$ such that $t(s\dot{x} - \dot{s}x) = 0$. This is an equivalence relation on T, and we denote the equivalence class of (x, s) by x/s . Let $S^{-1}M$ denote the set of equivalence classes of T with respect to this relation. We can make $S^{-1}M$ into an R-module by setting x/s + $y/t = (tx + sy)/st$, $a(x/s) = ax/s$, $a \in R$. W The R-module $S^{-1}M$ is called a quotient module (localization of module), or a module of quotient. Note that if $0 \in S$, then $S^{-1}M = 0$.

Definition 2.27. [19] Let *M* be an *R*-module and *R* is a commutative ring. An element $r \in R$ is called prime to L, where $L \leq M$, if $rm \in L$ ($m \in M$) implies that $m \in L$. The set of all elements of R that are not prime to L, denote by $\mathcal{L}(L)$, i.e., $\mathcal{L}(L) = \{r \in R \mid rm \in \mathbb{R}\}$ L for some $m \in M \setminus L$.

In the next results, we examine the behavior of the s-WH under the concept of localization.

Proposition 2.28. Suppose that M be an R -module and S a multiplicative closed subset of R such that $\mathcal{L}(L) \cap S = \emptyset$ for any $L \leq M$. If $S^{-1}M$ is a s-WH as $S^{-1}R$ -module, then M is an s-WH as R -module.

Proof. Let $f: M \to M$ be an e-small R-epimorphism. Define $S^{-1}R$ -endomorphism $S^{-1}f: S^{-1}M \to S^{-1}M$ by $S^{-1}f\left(\frac{m}{\epsilon}\right)$ $\left(\frac{m}{s}\right) = \frac{f(m)}{s}$ $\frac{m}{s}$ for all $m \in M$, $s \in S$. Then we have $Im(S^{-1}f) =$

 $S^{-1}(Im f) = S^{-1}M$, then $S^{-1}f$ is an $S^{-1}R$ -epimorphism. Since $ker f \ll_e M$, thus $ker(S^{-1}f) = S^{-1}(ker f) \ll_e S^{-1}M$ from ([20], Lemma 2.3.3). As $S^{-1}M$ is s-WH. Therefore, $ker(S^{-1}f) = S^{-1}(ker f) = S^{-1}(0)$, then $ker f = 0$ by ([20], Lemma 2.3.1.) Hence, *M* is s-WH. **□**

3. -WH modules and related concepts

Many relations between s -WH modules and other types of modules are introduced in this section, such as generalized hollow, semisimple and nonsingular uniform modules. We give a case that make the concepts WH, δ -weakly Hopfian and s -WH modules are identical, we give two cases that make the concepts Hopfian and s -WH are equivalent. Also, we put a condition on co-Hopfian ring to become an s-WH ring.

Recall that a module M is called generalized hollow if any proper submodule of M is an e small [21].

Proposition 3.1. Let M be a non-zero R -module, if M is a generalized Hollow module. Then M is an s-WH if and only if M is a Hopfian.

Proof. Let *M* be an *s*-WH *R*-module. Let $f \in End(M)$ be an *R*-epimorphism, so $ker f \subset M$ (since, if $ker f = M$ then $f = 0$, a contradiction), Then $ker f \ll_e M$, as M is generalized Hollow. Since *M* is s -WH, so $ker f = 0$. Hence, *M* is a Hopfian *R*-module, since *f* is an automorphism. Conversely, follows by Remarks and Examples 2.2(1). **□**

Proposition 3.2. Every s -WH module is a δ -weakly Hopfian.

Proof. Let M be a s-WH R-module. If $f \in End(M)$ is a δ -small R-epimorphism, then $ker f \ll_{\delta} M$, and then $ker f \ll_{\epsilon} M$, by ([2], p.1052). Since M is s-WH, then $ker f = 0$. Therefore, *M* is a δ -weakly Hopfian *R*-module, since *f* is an isomorphism. \Box

Corollary 3.3. Every *s*-WH module is WH.

Proof. Since every δ -weakly Hopfian is WH from [13]. Then the result is followed by Proposition 3.2. **□**

Now, we will give the case that makes the concepts WH, δ -weakly Hopfian and s-WH modules identical.

Proposition 3.4. If M is a non-zero indecomposable R -module. Then the following are equivalent.

 (1) *M* is *s*-WH; **(2)** M is δ -weakly Hopfian; **(3)** is WH. **Proof.** (1) \Rightarrow (2) By Proposition 3.2. $(2) \Rightarrow (3)$ By [13]. (3) \Rightarrow)(1) Assume that *M* is a WH *R*-module, let $f \in End(M)$ is an *e*-small epimorphism. If $ker f = M$, then $f = 0$, which it is a contradiction. Thus, $ker f$ is a proper e-small submodule of M, and since M is indecomposable, [15], implies $ker f \ll M$, that means $f \in End(M)$ is a small R-epimorphism. Since M is a WH R-module, then f is an automorphism. Hence, M is an -WH. **□**

Corollary 3.5. The following are equivalent for a non-zero uniform R -module M . (1) *M* is *s*-WH; **(2)** M is δ -weakly Hopfian;

(3) is WH.

Proof. Assume that M is a uniform module, thus M is an indecomposable module by ($[16]$,Examples 3.51(1)). Thus, Proposition 3.4 implying the result. **□**

Proposition 3.6. Let *M* be a uniform and torsion-free module. Then *M* is an *s*-WH.

Proof. Let $f: M \to M$ be an e-small R-epimorphism. Let $0 \neq x \in M \ker f$, $f(x) \neq 0$, so $-x \in$ M and $f(-x) = f(x) - 1 \neq 0$, i.e., $-x \in M\ker f$. For any $r \in R$, $f(xr) = f(x)r$. Since M is an torsion-free R-module, it follows that $f(x)r \neq 0$ and then $xr \in M\ker f$. Thus, $(M\ker f) \cup \{0\}$ is a submodule of M and so $(M\ker f) \cup \{0\} \leq M$, as M is uniform. As $(M\ker f) \cup \{0\} + ker f = M$ and f an e-small R-epimorphism, i.e., $ker f \ll_{\rho} M$, thus $(M\ker f) \cup \{0\} = M$, so $ker f = 0$. Hence, M is an s-WH. □

Example 3.7. The reverse of Proposition 3.6, is not true generally. Consider the \mathbb{Z} -module \mathbb{Z}_{na} where p,q are prime numbers. By Examples 2.3, \mathbb{Z}_{pq} is an s-WH, but nor uniform neither torsion-free ℤ-module.

Theorem 3.8. For a projective R -module M , the following are equivalent.

 (1) *M* is *s*-WH;

(2) if $f \in End(M)$ has a right inverse in $End(M)$ and $ker f$ is a semisimple, then f has a left inverse in $End(M);$

(3) if $f \in End(M)$ has a right inverse in $End(M)$ and $ker f \ll_e M$, then f has a left inverse in $End(M):$

(4) if $f \in End(M)$ has a right inverse in $End(M)$ and $(1 - gf)M \ll_e M$, then f has a left inverse in $End(M)$;

(5) if $f \in End(M)$ is a surjective and $ker f$ is semisimple, then f has a left inverse in $End(M)$. **Proof.** It is clear that $f \in End(M)$ is a surjective if and only if $fg = 1$ for some $g \in End(M)$. Thus, $ker f = (1 - gf)M$, to see this: let $x \in ker f \implies f(x) = 0 \implies (1 - gf)(x) = x$ $gf(x) = x - g(0) = x \implies x \in (1 - gf)M$. Now, assume that $y \in (1 - gf)M \implies y =$ $(1 - gf)(x)$ for some $x \in M \implies y = x - gf(x) \implies f(y) = f(x) - fgf(x) = f(x) - g(f(x))$ $1(f(x)) = f(x) - f(x) = 0 \implies y \in ker f$. So $M = ker f \bigoplus (af)M = ker f \bigoplus Im g$, since $ker f + (gf)M = (1 - gf)M + (gf)M = M$, also if $m \in ker f \cap Im g \implies f(m) = 0$ and $m = q(a)$, for some $a \in M \implies 0 = f(m) = f(q(a)) = f(q(a)) = 1(a) = a \implies m = q(a) = 0$ $q(0) = 0.$

 $(1) \implies (2)$ Assume that $f \in End(M)$ contain a right inverse with *kerf* is semisimple. Thus $fg = 1$ for some $g \in End(M)$. Then g is an injective, i.e., $\text{ker } g = 0$. From 1st isomorphism theorem, $M \cong M/0 = M/ker g \cong Im g$. By above argument, we have $M = Im g \bigoplus ker f \cong$ $M \oplus \text{ker } f$, i.e., $M \cong M \oplus \text{ker } f$ and $\text{ker } f$ is semisimple, thus $\text{ker } f = 0$, by Proposition 2.19, that is f is an automorphism. As $fg = 1$, then $g = f^{-1}$. Hence $gf = f^{-1}f = 1$, that mean g is a left inverse of f in $End(M)$.

(2) \Rightarrow (3) Assume that $f \in End(M)$ contain a right inverse in $End(M)$ and $ker f \ll_e M$. Since $M = kerf \oplus Img$, [2], implies $ker f$ is semisimple. From (2), f has a left inverse in $End(M).$

 $(3) \implies (4)$ Since $ker f = (1 - af)M$, (3) implies (4).

(4) \Rightarrow)(5) Let $f \in End(M)$ be a surjective and *kerf* is semisimple, then f has a right inverse in $End(M)$. By above argument, we have $ker f = (1 - af)M$ and $M = ker f \bigoplus Im g$. By [2], $ker f = (1 - gf)M \ll_e M$, then f has a left inverse in $End(M)$, by (4).

 $(5) \Rightarrow (1)$ Assume that if $f \in End(M)$ is a surjective and $ker f \ll_e M$. Hence, f has a right inverse in $End(M)$. By above argument, $M = kerf \bigoplus Im g$. $ker f$ is semisimple from [2], so f contain a left inverse in $End(M)$ by (5). That is $hf = 1$ for some $h \in End(M)$. Thus $f \in$ $End(M)$ is an injective. Hence, it is an automorphism. Therefore, (1) holds. \Box

Proposition 3.9. Let *M* be a semisimple module. Then *M* is *s*-WH if and only if it is Hopfian. **Proof.** Suppose that M is an s-WH module. Let $f: M \to M$ be an R-epimorphism. As M is a semisimple module, then by [22], we get $ker f \ll_e M$, i.e., f is an e-small R-epimorphism and so f is an automorphism. Hence, M is Hopfian. Conversely, follows by Remarks 2.2(1). \Box

Proposition 3.10. Every co-Hopfian quasi-projective module is an s -WH.

Proof. Suppose that M is a co-Hopfian quasi-projective module and let $\varphi: M \to M$ be an esmall epimorphism. Since M is quasi-projective, so there is an $f \in End(M)$ such that $\varphi f = I_M$. As I_M is a monomorphism, then so is f. As M is a co-Hopfian module, thus f is an epimorphism. Since $0 = kerI_M = ker(\varphi f) = f^{-1}(ker\varphi)$, then $0 = f(0) = f(f^{-1}(ker\varphi)) = ker\varphi$, that means φ is an automorphism. Hence, M is an s -WH. \Box

Example 3.11. The reverse of Proposition 3.10, need not be true in general. Examples 2.6(1) shows that the \mathbb{Z} -module \mathbb{Z} is s-WH. But we know that \mathbb{Z} -module \mathbb{Z} is quasi-projective not co-Hopfian see [11].

Corollary 3.12. Every projective co-Hopfian module is an s -WH. **Proof.** Clear by Proposition 3.10. **□**

Corollary 3.13. Every co-Hopfian ring is a s-WH ring.

Proof. Suppose that R is a co-Hopfian ring. As $R = \langle 1 \rangle$ is a free R-module, so it is projective. Then the result is followed by Corollary 3.12. **□**

Proposition 3.14. If M is a nonsingular uniform module, then M is an s -WH.

Proof. Let M be a nonsingular uniform module. Suppose that $\varphi \in End(M)$ is an e-small epimorphism, i.e., $ker \varphi \ll_e M$. Assume $ker \varphi \neq 0$. We have $Ker \varphi \leq M$ because M is uniform. Thus $M/ker\varphi$ is singular by ([1], Proposition 1.21). From the First Isomorphism Theorem $M / ker \varphi \cong M$. This is a contradiction because $M / ker \varphi$ is singular and nonsingular. Hence, $ker(\varphi) = 0$, so φ is an automorphism. Therefore, M is an s-WH. \Box

Remarks 3.15.

(1) We note that Proposition 3.14, is another proof for Example 2.6(1), of ℤ-module ℤ being - WH, in fact $\mathbb Z$ as $\mathbb Z$ -module is nonsingular and uniform.

(2) The reverse of Proposition 3.14, need not be true in general. Examples 2.3 shows that the Z-module \mathbb{Z}_6 is s-WH. But we know that \mathbb{Z}_6 nor nonsingular neither uniform as Z-module.

4. Conclusions

We defined a new concept of modules called s -WH which is a proper generalized of Hopfian. It is shown and investigate some different properties and examples of this class.

References

- **[1]** K. R. Goodearl, "Ring theory, Nonsingular rings and modules," *Dekker,* New york 1976.
- **[2]** D. X. Zhou and X. R. Zhang, "Small-essential submodules and morita duality," *Southeast Asian Bulletin of Mathematics,* vol. 35, pp. 1051-1062, 2011.
- **[3]** R. Wisbauer, "Foundations of module and ring theory," *Gordon and Breach, Reading,* 1991.
- **[4]** Y. Q. Zhou, "Generalizations of perfect, semiperfect and semiregular rings," *Algebra Colloq,* vol. 7, no. 3, pp. 305-318., 2000.
- **[5]** A. C. Ozcan, A. Harmanci and P. F. Smith, "Duo modules," *Glasgow Math.J.,* vol. 48, no. 3, pp. 533-545, 2006.
- **[6]** F. D. Shyaa and H. A. Al-sada, "Z-small Quasi-Dedekind Modules," *Iraqi Journal of Science,* vol. 64, no. 6, pp. 2982-2990, 2023.
- **[7]** H. A. Shahad and N. S. Al-Muthafar, "Small-Essentialy Quasi-Dedekind R-Modules," *Iraqi Journal of Science,* vol. 63, no. 7, pp. 3135-3140, 2022.
- **[8]** M. S. Abbas and B. M. Hamad, "Duo Gamma Modules and Full Stability," *Iraqi Journal of Science,* vol. 61, no. 3, pp. 646-651, 2020.
- **[9]** V. A. Hiremath, "Hopfian rings and Hopfian modules," *Indian J. Pure Appl. Math,* vol. 17, pp. 895-900, 1986.
- **[10]** A. Ghorbani and A. Haghany, "Generalized Hopfian modules," *Journal of Algebra,* vol. 255, pp. 324-341, 2002.
- **[11]** K. Varadarajan, "Hopfian and co-Hopfian objects," *Publ. Mat,* vol. 36, pp. 293-317, 1992.
- **[12]** Y. Wang, "Generalizations of Hopfian and co-Hopfian modules," *Int. J. Math sci,* vol. 9, p. 1455– 1460, 2005.
- **[13]** S. E. Atani, M. Khoramdel and S. D. Pishhesari, "Modules in which every surjective endomorphism has a δ-small kernel," *Algebra and Discrete Mathematics,* vol. 26, no. 2, p. 170– 189, 2018.
- **[14]** P. Ribenboim, "Rings and modules," *Tracts in Mathematics , Interscience Publishers,* vol. 24, 1969.
- **[15]** I. M.-A. Hadi and S. H. Aidi, "On e-small submodules," *Ibn Al-Haitham Jour. for Pure & Appl. Sci,* vol. 28, no. 3, pp. 214-222, 2015.
- **[16]** T. Y. Lam, Lectures on modules and rings, 189 ed., New York: Graduate Texts in Mathematics 189, Springer, 1999.
- **[17]** M. S. Abbas, *On fully stable modules,Ph.D. Thesis,* Iraq: University of Baghdad, 1990.
- **[18]** M. D. Larsen and P. J. McCarthy, Multiplicative theory of ideals, New york and London: Academic press, 1971.
- **[19]** S. E. Atani and A. Y. Darani, "Notes on the primal submodules," *Chiang Mai J. Sci,* vol. 35, no. 3, pp. 399-410, 2008.
- **[20]** M. M. Obaid, *Principally g-supplemented modules and some related concepts, M. Sc. Thesis,* Iraq: College of Education, University of Al-Qadisiyah, 2022.
- **[21]** I. M.-A. Hadi and S. H. Aidi, "e-Hollow modules," *Int. J. of Advanced Sci. and Technical Research,* vol. 3, no. 5, pp. 453-461, 2015.
- **[22]** O. B. Mohammed and T. Y. Ghawi, "About e-gH module," *Journal of Al-Qadisiyah for Mathematics and Computer,* vol. 15, no. 1, pp. 121-126, 2023.