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Abstract

For the solution of fractional-order two-dimensional Navier-Stokes equations
(FOTDNSES), the current work proposes a novel variant of the Laplace Adomian
decomposition approach with the Atangana-Baleanu fractional operator in the
Caputo sense (ABCFO). In this approach, the solution is considered as a Taylor
series expansion that converges rapidly to the exact solution. Only two components
are required for the new approximation analytical technique. When compared to
other strategies, the current method is very simple, requires less calculation, and is
extremely accurate.

Keywords: Navier-Stokes equations; Laplace transform; Adomian decomposition
method; Atangana-Baleanu fractional operator.

A L) d an) Ll (uSgionyid i alaal Allad Ak J5a

raiie,” ) alua ,00ls Jgm) , LS haisdas S it la , B ua daaa ,20an) Glaa, Taals s
7 b ABISSiiuyd
Gball Apalill, )l (53 dasls ,cilualll sl
Ol (g RSl Aalll Axalall claaliylly Gisulall psle aud”
Gball Sl (63 causll 8lyg ¢ JB (63 Aug Doy
gl ialy , JECRC dnala, cilaals )l o’
2l lialy , i)y Anala, Solaali )l s’
LW P FSVE PR A RS PORPRCR IER T (U
Gball B 63 cau sl Bylig ¢ ) (53 Auf dipad
Sadl, has ,ZUally slyeSl Auigl Lgill) duoyrall | sainal) Al jpa®
Al Dyl L sliSalg ahell dida gl dmalall , Al dusigl) 2087

*Email: mshirg@alayen.edu.iqg

5710


mailto:mshirq@alayen.edu.iq

Jassim et al. Iragi Journal of Science, 2024, Vol. 65, No. 10, pp: 5710-5726

AadAl
iia Jaall 138 2550 (FOTDNSES) el 250 <l sadl 4505 (Sies 5 colea Jal
dall (s daylall o2 & L (ABFO) il Ulal (gyusll 580 ae gDl (laasd) it dapylal aas
Loyl Aol dwll Jadh GisSe st L GAl dall ae dejen ol @A LG Al pwgS
bty A Al oes Allal) Ziplll o6 GAY) cladliaVl Lkl sl Al de .5yl

s ARy 8 el

1. Introduction

In recent years, fractional differential equations have sparked a lot of interest, and they
have been studied and applied to a lot of real-world situations in a variety of fields. One
reason for this unpopularity might be that fractional derivatives have numerous nonequivalent
definitions [1], [2]. Another issue is that, due to their nonlocal nature, fractional derivatives
have no obvious geometrical meaning. However, in the last 12 years, scientists have begun to
pay considerably more attention to the fractional calculus. With the use of fractional
derivatives, it was discovered that a variety of applications, particularly multidisciplinary
applications [3], [4] may be neatly described.

For the solution of linear and nonlinear FPDESs, a variety of numerical and analytical
strategies have been proposed. For example, the Adomian decomposition method (ADM) [5],
[6], homotopy analysis method (HAM) , variational iteration method (VIM) [7], [8],
homotopy analysis transform method (HATM) [9], reduced differential transform method
(RDTM) [9], Sumudu variational iteration method (SVIM) [10], [11], Laplace homotopy
perturbation method (LHPM) [12], Laplace variational iteration method (LVIM) [13],
Sumudu homotopy perturbation method (SHPM) [14], and other methods [15]-[22]. Our aim
is to present the coupling method of the Laplace transform (LT) and ADM, which is called
the Laplace Adomian decomposition method (LADM), and used to solve the fractional-order
two-dimensional Navier-Stokes equations. The fractional-order two-dimensional Navier-
Stokes equations (FOTDNSEs) are a modified version of the classical Navier-Stokes
equations that incorporate fractional derivatives. These equations are used to describe the
motion of fluid in a two-dimensional domain taking into account non-local and memory
effects.

The fractional-order two-dimensional Navier-Stokes equations with Atangana-Baleanu
fractional operator in the Caputo sense can be written as follows:

ABCDAU(x,t) = po A%u — U, — VU, + g,
ABCDEY(x,t) = pg A*V —uv, — vV, — g, (1)

with initial conditions
u(x,0) = f1(x,y),
v(x,0) = f2(x,¥), (2)

where p,,t, and g denote the constant density, time, and pressure, respectively. x, y are
the spatial components. The functions f;(x,y) and f,(x, y) are depending only on x, y.

The fractional derivatives in the FOTDNSES introduce memory effects into the fluid flow,

accounting for the history of the system. The fractional orders a and  determine the degree
of memory and non-locality incorporated into the equations. Different choices of fractional
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orders lead to different physical behaviours of the fluid flow. Solving the FOTDNSESs
requires specialized techniques for handling fractional derivatives, such as fractional calculus
or numerical methods that are specifically designed for the fractional-order equations. The
FOTDNSEs have been studied in various research fields, including fluid dynamics,
viscoelastic fluids, and complex systems. To better understand the behaviour of fluids with
memory effects, see [23]-[27]. The current work proposes a novel variant of the Laplace
Adomian decomposition approach with the Atangana-Baleanu fractional operator in the
Caputo sense (ABCFO). The paper has been organized as follows: The basic definitions of
the fractional calculus are given in Section 2. An analysis of the used method is given in
Section 3. An illustrative two examples that show the effectiveness of the proposed method
are given in Section 4. Finally the conclusion is given in Section 5.

2. Preliminaries
Definition 2.1. The Atangana-Baleanu fractional derivative in the Caputo sense (ABCFD) of
order « is defined as follows [28], [29]:

D U(E) = f (2 war, ®

where 0 < a <1 and M(0) = M(l) = 1. M(a) is anormalization function.
The characteristics of eq.(3) are defined as follows:
1. 4BEDE ¢ = 0, where c is a constant.
ABCa _ s®Lu(x,t) s 1Lu(x,0)
2. L{TaD u (x,£)} = sfl—a)+a s*(1-—-a)+a
Definition 2.1. The Atangana-Baleanu fractional integral (ABFI) of order a is defined as
follows [18], [30]:

AB1
150 = (O e T
The properties of eq.(5) is defined as follows [31]-[33]:
1. 4By ABpe 4 (t) = u(t)—u(O)
AB —
2. °21¢ —M()(l—a+r()
3. The Laplace-Adomian Decomposition Technique.
The LADM is discussed in this section for the solution of nonhomogeneous fractional
nonlinear PDES

Atha u (x:y’t) + Rl (u,v) + Nl (u:v) =01 (X:y't),

Ath('xv(xry't)-l_RZ (u,v)+N2 (u'v):gz (X,y,t), (5)
where 0 <a <1, t>0,48D%u and 48D¥ v are Atangana-Baleanu operators, R,, R, and
N;, N, are linear and nonlinear operators, respectively.

With the initial conditions
u(x,y,0) = fi(x,y),
V(x’y,o)zfz(x»)’) (6)
Using the Laplace transform (LT) differentiation property to eq.(5), we get
L{?3DZ u (x,y,t )} + L{R;(w,v) + N; (u,v)} = L{g, (x,y,t)},

j( t—x)*tu(x)dx. (4)

L{AgD;Z v (x;y,t )} + L{Rz(u, v) + NZ (u, v)} = L{gz (x;y,t )}1 (7)
These are equivalent to
sCL{u(x,y, t)} st u(x,y,0)
S“(l—a)+a - S“(l—a)+0( = L{gl}_L{Rl [(ulv)]+N1[(ulv)]}l
s?L {v(x,y,t)} s v (x,y,0)
S“(l—a)+a - S“(l—a)+a L{gz}_L{RZ [(ulv)]-I_NZ[(qu)]}J (8)
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Now applying the inverse of LT of (8), we have
u(x,y,t) = fi + L (( 1- a+5) L{g1}>
—17 (1= @+ ) LR () |+ M @ wl}),
v(x,y,t) = fo + L7 (( 1- a+<) L{g2}>
o ((1 — @+ L) LR [ v) |+ Nl v)]}) ©)

The infinite series that are shown here reflects the LADM solution of u (x,y,t) and v(x,y, t)
as follows:

o

u(x,y,t) = z up(x,y,t),

n=0
(00

V(7,0 = ) w0, (10)
n=0

the problem's nonlinear terms may be written as an Adomian polynomial as follows:
(o]

L@l =) 4,
n=0

MWl =) B, (1)
n=0
By adding eq.(10) and eq.(11) into eq.(9), we get

Z uy(5y,0) = f, + L1 (( li—a+ ls—“a) L{g1}>

ni=0

(o]

z v, (x,y,t) = fo, + L7t (( 1—ia+ %) L{g2}>
in=0
1 <(1—ia+%)L{R2 <zun,2vn>+23n} . (12)

When both sides of eq.(12) are compared, we get:
uo(x;y:t) =f1+L_1 <( 1l_a+_ L{g1}>r

vo(x,y,t) = fo + L7t (( li—a + — L{gz}

a
u; (x,y,t) = —L71 < 1i—a+ ?) L{ R, (ug,vy) + A0}>

a
! 1i - Sa L{R1(u1ﬂh)4‘A ),

(

v (x,y,t) =—-L1 (( 1—ia+ %) L{ R, (uy,vy) + BO}>,
u,(x,y,t) = —L" (
(

a
vy(x,y,t) = —L li—a+— pr L{ R, (uq,vy) + Bl}>

[
d
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a
Uppq(x,y,8) = —L71 (( 1li—a+ ?) L{R; (up,v,) + An}>,

B G0 ,0) = =17 (10 = @+ ) LR, Gy v) + By}, (13)
Thus, the approximate solution of eq.(5) is:
u(x,t) = Uy + Uuq + U, + .-
v(x,t) = vy + vy + vy + (14)

Theorem 1 . Suppose that u,, (x,t) and u (x,t) are defined in a Hilbert space (H,||.||). Then
the FLADM series solution Yo, u,, (x, t) converges to the solution of eq.(1), if0< A < 1.
Proof: Assume that {A,}is a sequence of partial sums of the series u (x,t) = Yo uUn(x,t)
we assume the following:
An+1(x, t) = Ap(x, t) [ = [lutpsa (x, D)l

< Aluy (0l

< Allup-1 (Ol

< A e (Dl
Now, forevery, m € N,n >m, we have

”An — 4; | = ”(An — Ap-) + (Apy — Ap2)+ ...+ (Aj+1 - Am) ”
< |(Ap — A DI + I(Ap—y — Al + oo + ”(Aj+1'_ Anl)”
S (A" + A4 4 2D ()|
KA M2 bl 4+ 2+ D)
1 —Arm

< — L .

Since 0< A <1, then we have lim ||An — 4 || =0.

n,m-oo

Therefore, {4,,}7=, is a Cauchy sequence in the Hilbert space H and it implies that the series
solution u(x,t) = Yoo un(x, t) is convergent. This completes the proof of Theorem.
Theorem 2. The maximum absolute truncated error of the series solution (9) of the nonlinear

fractional differential equation (5) is estimated as follows:
o 1
e, ) = Tio () Il < (775—) A4 lluo I

Proof:

1 — n—m

”An - Am ” < 1 — A Am+1 ”uo ”

Forn>m, Now,asn — oo then A, - u(x,t), so
m

1 — pn—m
w0 = D w0 || < = A" g |l
n=0
Since0< 1 <1,wehavel —A"™™ < 1.
Therefore, the above inequality becomes
m
w8 = ) un(68) || < A" oIl
n=0

4. lllustrate Examples

Example 4.1. Consider the time fractional-order two dimensional Navier-Stokes equation:
ABCDEU + uy + vy, = P [we + uyy] +q,
ABCDEY + uvy + Vv = P [V + vy ] — 4, (15)

with initial conditions
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u(x,y,0) = —e**Y,

v(x,y,0) = e, (16)
Equation (15) is obtained using the iterative technique according to eq.(13)
uO(x' Y, t) = _ex+y’

Vo(x,% t) = ex+y,
ul(xJ Y, t) = L_l {(1 —a+ ;ia) L{p[(uo)xx + (uo)yy] + q-— AO - BO}};

vi(x,y,t) =Lt {(1 —a+ ;ia) L{ P[(Uo)xx + (Vo)yy ] —q—Cy— Ho}};
where
Ap = Uy, = 2 V),
By = voligy = —e?0Y),
Co = UgVpx = —e2(ty),
Hy = vovox = e2(+y),
then, we have

u;(x,y,t) = L1 {(1 —a+ 1) L{-2pe**V} + q}

= — x+y _ t%
2pe F()]+q[1 a+r(a)_
vy (x,y,t) =Lt {(1 —a+ s_“) L{2p e**Y — q}}
te ta
liear - ehoer
Pe F@l 1 @

U (x,y,t) = L {(1 —a+ s%) L{p[(ul)xx + (ul)yy] +q—A4; — Bl}}:

vy(x,y,t) = L {(1 —a+ s%‘) L{ p[(vl)xx + (vl)yy ] —q—C - Hl}}:
where
A1 = UgUpy + UgUyy

— 2(x+y) — | — pxty —
4e [1 a+r() e [q](l a+r( ))
By = viupy + volUsy

= —42(**Y) [1 —a+ %] +e*V[q] (1 —at rt(z))*

C1 = W Vox + UgVsx
_ _482(x+y) [1 _
Hy = v100x + VU1

— 4ez(x+y) [

then, we have

] + e**Y|[q] (1 —a+ rt(z)),

el (1 mar rt(Z))'

1"()

1"()

Uy (x, y, t) =L‘1{(1—a+;ia)L[ 4e x+y](1—a+li—c;>—q}

a

I'(a) F(Za + 1)]
v,(x,y,t) = L1 {(1 —a+ ;ia) L {4p2 e*ty (1 @ )) q}}
= 4p? e*X*y <(1 —a)’+2(1-a) a + @t )

'@ "Ta+ 1)
1 e
—1 ( Cat r(a))

= —4‘p2 ex+y [(1 - a)Z + 2(1 - (Z) * q [1 F(a) .
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The exact solution of eq.(15) ata = 1 and q = 0,
u(x, ¥y, t ) — _ex+y+ 2pt,
v(x, ¥, t) — ex+y+2p t_

The behavior of solutions to the exact and analytical findings using the beginning
circumstances that is given in eq.(1) is shown in Figures 1 and 6. (16). The exact and
approximate solutions of u at a = 1 are shown in Figure 1 in proximity. For alternative values
of a = 0.8 and,0.9 for u, see Figures 2 and 3. The graphs of the approximate and exact
solutions of u for various values of and when x is constant are shown in Figure 4. The exact
and approximate solutions of v at « = 1 are shown in Figure 6. For alternative values of a =
0.8 and,0.9 for v, see Figures 7 and 8. The graphs of the approximate and exact solutions of v
for various values of and when x is fixed are shown in Figure 9. Each problem's fractional
outcomes are examined to see if they converge to an integer-order result.

2\‘(,\;.;...:
~10

Figure 1: The precise and approximate solutions of u for a =1 for eq (15).

‘\“\- < ,‘_,'_I_,.,\_”.\_...)'.,.,;,,or-o
PN g5 :
_1-0

Figure 2: The surface graph of the approximate solution of u when a = 0.9 for eq.(15).
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Figure 4: Plots of the exact and approximate solutions u for different values of a with fixed
value x = 1 for eq.(15).

—e—abslute error at 0=0.8
——abslute error at «=0.9
—abslute error at a=1

abslute error of U

0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
t

Figure 5: Plots of the absolute error of solutions u for different values of o for eq.(15).
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Figure 6: The surface graph of the exact and approximate solutions of when o =1 for
eq.(15).

Figure 7: The surface graph of the approximate solution of v when a = 0.9 for eq.(15).

150 [
100

50

Figure 8: The surface graph of the approximate solution of v when a = 0.8 for eq.(15).
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Figure 9: Plots of the exact and approximate solutions v for different values of a with fixed
value x = 1 for eq.(15).

4

35

3

—e—abslute error at «=0.8
——abslute error at «=0.9
—abslute error at a=1

Figure 10: Plots of the absolute error of solutions v for different values of a for eq.(15).

Example 4.2. Consider the time fractional-order two dimensional Navier-Stokes equation:
ABCDEU + uuy + vuy = Py, + Uyy | + g,
ABEDEU + uvy 4 VU, = vy + vyy ] — @, (17)
with the initial conditions
u(x,y,0) = —sin(x + y),
v(x,y,0) = sin(x +y), (18)
Using the iterative method according to eq.(13) in eq.(17), we get
uy(x,y,t) = —sin (x + y)
vo(x,y,t) =sin(x + )

uy(x,y,t) =L71 {(1 —a+ ;ia) L{[(uo)xx + (uo)yy] +q—A4,— BO}},

Ul(xr Y, t) = L_l {(1 —a+ ;i“) L{[(vo)xx + (Uo)yy] —q—- CO - HO}}'

where
Ag = UglUgy = Sin(x + y) cos(x + y),
By = voug, = —sin(x + y) cos(x +y),
Co = UgVpy = —Sin(x + y) cos (x + y),
Hy = vyvoy = sin(x + y) cos (x + ),
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then, we have
u (x,y,t) = L‘l{(l —a+ )L{Zpsm(x +y) + q}}
=17 {[2p sine + )] (A-0):+ =) + @A - )3 + =)}

td

= 2pSi‘I’l(X+_’V)[ _a+1—-( +1)]+q[1_a+1"(a+1)

:2psin(x+y)[1—a+r)]+q[1 r()
vy (x,y,t)= L—l{(l - a+s—a)L{—2psm(x+y) —q}}
=1 {(1-a+Z) (-2psinGe + y)E - (@D}
=17 {=2p sine + 0} (( - D54 535) = @A -+ )

:_zpsin(x+y)[ _“+T)] q[l r()

Uy (x,y,t) = Lt {(1 —a+ ;ia) L{[(ul)xx + (ul)yy] +q—4;— Bl}}:
a
v(x,y,t) = L1 {(1 —a+ s_“) L{[(vl)xx + (171)yy] —q—C — H1}}'

where
A = UgUpy + UglUyy

t(l’
- r( ) r@r
By = vupy + volUsy
= 4psin(x + y) cos(x +y) [1 -« +F( )] +qcos(x+y) [1 -« +F(a)]
C1 = Wy Vpx + UgV1x
, t* t*
= 4psin(x + y) cos(x + y) [1 (@) +qgcos(x+y) [1 @)
Hy = v10py + Vo1 . .
t t
- rl r@/

then, we have
u, = L™ {(1 —a+ ;ia) L[-4p? sin(x + y)] [1 —at+ia )] + CI}

~ . ra+1 1 1
S e e ettt

= L1 {—4p2 sin(x +y) “(1 - a)2§ sa+1 ~—(1-a)+ 52a+1] +q((1 - a) n

)

= 4p?sin(x +y) [(1 —a)?+2(1 - Q) —

0_’2 tZa
r(a) F(2a+1)

v, =L71 {(1 -« +S—a)L [4pzsin(x+y) [1 — a+r( )] CI]}

) r 1 1 1
o {(1mar St s fa-oi e )
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_ . 2 2
= I 1{4pzsm(x+y) I[(l—a)2§+ﬂ%(1—a)+szi—+l]—q[(l—a)%+

1]}

, t a?e?® t
= 4p25m(x+y)[(1—a)2+2(1—a)m+m] -q (1—a+r(a)).
The exact solution of eq.(14) ata = 1 and q = 0,
u(x,y, t) = —e?Ptsin(x + y),

v(x, y,t) = e?Ptsin(x + ).

The behavior of solutions of the exact and approximate findings utilizing the beginning
circumstances that are given in equation 10 and 15 is shown in Figures 12 and 18. The exact
and approximate solutions of u at a = 1 are shown in Figure 10 in proximity. In Figures 12
and 13 for different values of a = 0.8 and ,0.9 for u. Figure 14 show the graphs of the
approximate and the exact solutions of u among different values of and when x is fixed. In
Figure 16, at the value of a =1, we show the exact and approximate solutions of v. In Figures
17 and 18 for different values of a = 0.8 and, 0.9 for v. Figure 19 shows the graphs of the
approximate and the exact solutions of v among different values of and when x is fixed. Each
problem's fractional outcomes are examined to see if they converge to an integer-order result.

Figure 11: The surface graph of the exact and approximate solutions of u when a = 1 for
eq.(17).

AR

S
o

9
=)

|
=
o
T ot R PN

Figure 12: The surface graph of the approximate solution of u when o = 0.9 for eq.(17).
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Figure 14: Plots of the exact and approximate solutions u for different values of a with fixed
value x = 1 for eq.(17).

—e—abslute error at «=0.8
- |—=—abslute error at a=0.9
—abslute error at a=1

Figure 15: Plots of the absolute error of solutions u for different values of o for eq.(17).
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-2
Figure 16: The surface graph of the exact and approximate solutions of when a =1 for
eq.(17).

Figure 18: The surface graph of the approximate solution of v when a = 0.8 for eq.(17).
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Figure 19: Plots of the exact and approximate solutions v for different values of a with fixed
value x = 1 for eq.(17).

1.2

—e—abslute error at ¢=0.8
——abslute error at «=0.9
——abslute error at a=1

pov.
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 20: Plots of the absolute error of solutions v for different values of a for eq.(17).

5. Conclusions

The LADM with ABCFO is used to evaluate the fractional-order two-dimensional Navier—
Stokes equations in this paper. The present technique is used to demonstrate the solutions to
cases. The LADM result closely resembles the precise solution to the provided issues. The
convergence of the fractional-order answers to integer-order solutions was confirmed by a
graphical examination of the results. Furthermore, the proposed method is clear, simple, and
low-cost to implement. It may be extended to solve additional fractional-order partial
differential equations.
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