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Abstract

The main objective of this paper is to calculate the perturbations of tide effect on
LEO's satellites (GEO11, GEO12,GEO13,NOAA2 and NOAA3). In order to achieve
this goal, the changes in the orbital elements which include the semi major axis (a)
eccentricity (e) inclination (i), right ascension of ascending nodes (Q2), and fifth
element argument of perigee (w) must be employed. In the absence of perturbations,
these element remain constant. The results show that the effect of tidal perturbation
on the orbital elements depends on the inclination of the satellite orbit. The variation
in the ratio (Ai/i) decreases with increasing the inclination of satellite, while it
increases with increasing the time.
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Introduction
Perturbations are deviations from a normal, idealized, or unperturbed motion. Tthe most accurate
method to analyze perturbations is via numerical analysis. The actual motion will vary from the
theoretical two-body path due to perturbations caused by other bodies (such as the Sun and Moon) and
additional forces not considered in Keplerian motion (such as a Non-spherical central body and drag).
There are three main approaches to examine the effects of perturbations, namely the special

techniques (using numerical methods), general perturbation techniques (using analytical
methods), and semi analytical techniques. Perturbations forces include the accelerations resulting from
the central body, drag, third body, solar-radiation pressure and many other forces affecting the
satellite's orbit, but most are very small and are usually neglected. Tide effects are becoming more
important as the expanding computational resources allowed to consider them as the perturbations
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force [1]. Tidal forces cause obvious changes in the low earth satellite orbit. The tidal effect is caused
by the variations in the external gravitational force by celestial bodies; the force is known as the tidal
force. At any point within or on the surface of earth, the external gravitational force by the celestial
body can be split into two components, the first is equal to the gravitational force effect at the center of
mass and the second is equal to the remainder. The tidal force tries to deform the equipotential surface
so that the shapes will be elongated in the direction of the resultant force exerted by the celestial
bodies (moon and sun). Astronomical observation imply that the solar potential is about 46% of the
lunar potential. Table-1 shows the relative tidal potential from different celestial bodies.

Table 1-Relative contributions to tidal potential from different celestial bodies [2]

body Tidal Potential
Moon 1.0

Sun 0.4618
\enus 0.000054
Jupiter 0.0000059
Mars 0.0000010

The tidal potential can be classified into three types, namely the tidal gravity variation g,, the tidal
tilt 6, of the equipotential surface which is related to tidal gravity, and the tidal uplift of equipotential
surface (Figure-1[2]).

Figure 1-Tidal tilt [2].

In astrodynamics, two main types of tides were analyzed which are the solid-Earth and the oceanic
tides. Although the two forms are different, they stem from many of the same sources. Solid-Earth
tides are the deformations of the Earth due to perturbing forces. Internal forces result from the Earth's
interior structure and involve complex models of the motions of the liquid and solid properties of the
matter within the Earth. These forces are in the beginning to be explored [1]. Earth tides (also known
as body tides, Ray1998) are more straightforward to calculate and do not require a model as the ocean
tide. Instead, it is calculated from the astronomical tide-generating potential (i.e., the direct
gravitational attraction of the Moon and Sun on Earth [3, 4]. The periodic tidal deformations of the
Earth give rise to small but significant perturbations in the motions of close satellites, as pointed out
by Kaula (1962). First attempts at analyzing orbits for these perturbations were reported by Newton,
R. R. (1965, 1968) and Kozai (1968). The formers, in 1968, analyzed Doppler observations of four
satellites collected by the Tranet network, while the latter analyzed camera observations of three
satellites collected with the Smithsonian Baker-Nunn network. However, more studies by Anderle
(1971), Smith, Kolenkiewicz & Dunn (1973) and Douglas, Klosko, Marsh & Williamson (1974)
resulted in values for the Love numbers k, of 0.25 and even smaller. Lambeck & Cazenave (1973)
pointed out that this apparently aberrant result was mainly the consequence neglecting the ocean tide
in these earlier studies. Kaula (1969) dependence made a generalized development of Love numbers in
terms of latitudinal and longitudinal dependencies. Lambeck, Cazenave & Balmino (1974) developed
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such a theory and gave a general review of the solid and fluid tidal effects on close Earth satellite
orbits [5]. Earth tides were calculated from the tide-generating potential by. Goring and Walters [4].
The effects of tidal deformation of earth, due to the sun and the moon, on close earth satellites were
discussed by Yoshihide Kozai (1965). These effects are about ten percent of the direct luni-solar
gravitational perturbations, and it is found that the eccentricity as well as the semi-major axis are not
perturbed by the tides when the short-periodic terms are neglected. Lambeck (1974)reviewed the
earth's tidal deformations which cause perturbations in the motions of close earth satellites,
observations of which give estimates of the Love number k, and phase lag & (In classical definition
the Love number defines the response of a radially symmetric perfectly elastic earth to the perturbing
potentials) . The earth's periodic tidal deformations were reviewed by Slichter (1972) for the solid
earth tides [6].

The main objective of this paper is to determine the tidal effects on Low Earth Orbits (LEOS)
satellites, which are considered in satellite geodesy as mostly circular. Typically, they may
accommodate gravity field missions and are also used for communication satellite constellations such
as Global star and Iridium. The orbital period at these altitudes varies between 90 minutes and two
hours. The radius of the satellite footprint (i.e. the area on the surface from where the satellite is
visible above the horizon) is rather small and varies between 2000 and 4000 km. Geostationary Earth
Orbits (GEOs) are mainly used for communication satellites because the orbits are very stable, while
LEOs are required for global coverage [7].

In order to study the tidal effects on LEO satellites, the position and velocity are described while
changes in the orbital elements must be employed. This includes determining the shape of the orbital
semi major axis, a, eccentricity, e, inclination, i, and longitude of the pericenter or argument of
perigee.

In the absence of perturbation, these elements remain constant. The remaining elements that
determine the location of the satellite along its orbit can be described here by the mean anomaly, M,
time, t, true anomaly, v, eccentricity, e and right ascension of ascending nodes, Q.

Tidal Perturbation Theory

The expression “perturbed motion” implies that there is an unperturbed motion. In Celestial
Mechanics the unperturbed motion is the orbital motion of two spherically symmetric bodies
represented by the equations of motion, the solution of which is known in terms of simple analytical
functions [8].

The basic Keplerian equation of motion is
GM

¥ = r_3r + ks ......... (1)

where r being the geocentric position vector of the artificial satellite.

G is the universal constant of gravitation G = (6.67259 + 0.00085) - 10~ m3kg~1s72.

k is the perturbing vector and M is the mass.
The integration of this equation formally gives the solution
r(t) =r(t; a4, ... ,aq), r(t) =7(t; a, ... ,ag)
with a4, ... , ag being free selectable integration constants. Preferably, the Kepler
elements g, e, i, w,., M are used.

In reality, a certain number of additional forces act on the near-Earth satellite. To distinguish them
from the central force (central body acceleration) these are called the perturbing forces. The satellite
experiences additional accelerations because of these forces, which can be combined into a resulting
perturbing vector k . The extended equation of motion is applied in equation (1).

k, are perturbing forces that are in particular responsible for:

1. Accelerations due to the non-spherical and inhomogeneous mass distribution within Earth (central
body), 5.

2. Accelerations due to other celestial bodies (Sun, Moon and planets), mainly #g, 7.

3. Accelerations due to Earth and oceanic tides, ¥, ;.

4. Accelerations due to atmospheric drag, #p.

5. Accelerations due to direct and Earth-reflected solar radiation pressure, #gp, 4.

The perturbing forces causing the above effects in 1 to 3 are gravitational in nature, whereas the
remaining forces are non-gravitational. The total force is
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ks =¥ +is+iy+i,+ig+ip+igp+iyg-- (2)

Figure 2 provides an illustrative description of the perturbing forces and accelerations. The resulting
total acceleration depends on the location r of the satellite, i.e. a quantity which first has to be
determined from the solution of the equation 1 as a function of time. The perturbed satellite motion
can be interpreted to be a Keplerian motion with time variable elements of

a(t),e(t),i(t), w(t), (), M(t).

Figure 2-Perturbation forces acting on a satellite [7]

The appropriate basic equations that were formulated by Lagrange are the relation between the
acting perturbing forces and the time dependent variations of the orbital elements. The total energy of
the satellite motion is determined by

v? GM GM

E — e e — L die eee e 3
M 2 r 2a ®)

The negative term of the total energy, GM /2a, is also named the force function F.
With the potential V as the negative value of the potential energy and the symbol T for the Kinetic
energy, we find the following form of the force function

F=v-T e (4)
In a non-central force field
GM
V = T +R e (5)
GM GM
F=_+R_T=Z+R ......... (6)

r

The function R contains all the components of V excluding the central term GM /r, and is called
the perturbation function or disturbing potential.

For the purpose of completeness, an alternative form of the equation of motion in a non-central
force field is given [7]

7';' — grad V — VV ......... (7)

With Lagrange’s perturbation equations, a relationship between the disturbing potential R and the

variation of the orbital elements is established [9, 10].

da B 2 OR g
dt na gpm (®)
de_l—e2 OR +V1—e2 0R 9
dt na’e gy nale dw ©)
do cosi 6R+\/1—62 O0R 10
dt na2Vl—eZsini 0i na’e Ode (10)
di _ cosi OR 1 OR (a1
dt na’V1 —e?sini 00 na?vV1 —e2sini 02
an 1 OR
R — (12)
B dt na?V1 —e?sini 9i
aM _ 1—e20R 2 OR "
dt na2e de na 0da (13).
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Where R is the perturbing potential cf, with the origin of the coordinate system is transferred to the
center of mass of the primary

GM SIR ,
R= T(Z z (T) (Cpum cosmA + Sy, SinmA) By (cos9)  eeveeees (14)
n=2m=0
The terms with n = 1 and m = 0,1 become zero. The coefficients are named zonal when
m = 0, tesseral when n = 0, and sectorial whenm = n.
In the first step the disturbing potential

o0 n
R = Z Z Ruym e (15)
n=2m=0
is re-formulated as a function of the orbital elements
GMa}
Rym = antt Z anp(l) Z anq(e)snmpq(w M Q, ®) """"" (16)

q=—o
O is the Greenwich sidereal time.
Result and Discussion

The equations of motion used in astrodynamics are not simple to solve because they're usually
coupled systems of first-order or second-order, nonlinear, differential equations which have resisted
direct solutions over the last 300 years. However, modern computers allow us to use numerical
techniques.

Numerical methods are distinguished by their simplicity and universal applicability when compared
with analytical methods. With the use of the modern computer technigues the numerical effort only
plays a minor role. This is why numerical methods are now used almost exclusively for orbit
computations in satellite geodesy.

The osculating orbital elements for GEOs satellite are given in Table-2. Figures- 3-5 show the
variation in the inclination of the above satellites due to the perturbation of the central body, including
tidal of the Solid Earth over a short period (2 days) corresponding to about 25 revolutions around the
earth with long periods of 100, 200 and 360 days. Note that the time axis in in the figures is given by
the Julian date.

Table 2- Osculating orbital elements for GEO satellites.

GEO (11) GEO (12) GEO (13)
i =5.2366 i = 6.8667 i =0.3022
0 =72.6334 0 =589713 0 =104.9249
e = 0.0007115 e = 0.0010975 e = 0.0000989
w = 167.8990 w = 226.3761 w = 6.2494
a = 7389 a = 7401 a = 7345

Figure 3-Change in inclination with time of GEO 11, GEO 12 and GEO 13 for 2 days.
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Figure 4-Change in inclination with time of GEO 11, GEO 12 and GEO 13.

Change for 100 day, right panel: changes for 200 day.
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Figure 5-Change in inclination with time of GEO 11, GEO 12 and GEO 13 for lyear.

From these Figures -(3-5) we calculate the variation (Ai/i). The results given in Table- 3 show that
as the inclinations of satellites increase the (Ai/i) values decrease.

Table 3-Change in inclination of GEOs satellites for different times

satellite | i(degree) | 2 day (Ai/i) 1((’21.‘;‘;.‘3’5 2((’21.‘;";‘3’5 360 days (Ai/i)
GEO1l | 52366 0.000577 0.02291 0.02291 0.02291
GEO12 | 6.8667 0.000524 0.0262 0.0262 0.01747
GEO13 | 03022 0.00993 0.36399 0.36399 0.36399

Figures- 6-7 show the periodic perturbation on the semi major axis and that the variation in (Aa/a)
remains constant over periods of 100, 200 and 360 days, as given in Table- 4.
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Figure 7-Perturbations on the semi-major axis of GEO 11, GEO 12 and GEO 13 for 1 year.
Table 4-Changes in the semi-major axis of GEO satellites for different times

. 2 da 100 days 200 days 360 days (Aa/a
satellite | a(km) | ()90 %10° | (aaja) *10° | (haja)*10° A
GEO11 | 7389 0.257 5.413 5.413 5.819
GEO 12 | 7401 0.2297 7.161 7.161 7.161
GEO13 | 7345 0.2723 3.812 3.812 4.084

Figure-8 shows the perturbation effect on other satellites (NOAA2 and NOAAS3) over short periods
(2, 6 and 10 days), while their orbital elements are given in Table- 5. We found that the inclination of
the satellite orbit plays an important role in the effect of perturbation. The variation in (Ai/i) given in
Table- 6 shows a decrease as the inclination of the satellites increases.
Table 5-Osculating orbital elements for NOAA's satellites

NOAA (2) NOAA (3)

i =101.7882 i =101.9573
2 = 359.2863 2 = 263.1995
e =0.0031771 e =0.0006182

w = 14.3097 w = 196.7594

a = 6450 a = 6500
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Table 6-Change in inclination of NOAA's satellites for different times

Satellite i(degree) 2 day (Ai/i) 6 day (Ai/i) 10 day (Ai/i)
NOAA 2 101.7882 0.00006877 0.0000786 0.00008841
NOAA 3 101.9573 0.00005688 0.0000687 0.00005884
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Figure 8-Change in inclination of NOAA 2 and NOAA 3 for 2, 6 and 10 days.

Figure-9 shows the perturbation effect on NOAA's satellites for long periods (1,5 and 10 years) where
the results show that the variation in (Ai/i) increases with increasing the period of the orbit. The
detailed results are given in Table-7.

Table 7-Change in inclination of NOAA's satellites over a long period

Satellite i(degree) 1 year (Ai/i) 5 year (Ai/i) 10 year (Ai/i)
NOAA 2 101.7882 0.0001474 0.0005896 0.0010807
NOAA 3 101.9573 0.0002256 0.0005884 0.0009808
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Figure 9-Change in inclination of NOAA 2 and NOAA 3 for 1, 5 and 10 years.

Also, Figure-10 shows that (Aa/a) remains constant for NOAA's satellites over the long period
revolution (Table-8).
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Table 8-Perturbation on the semi-major axis of GEO satellites over long periods

Satellite a(Km) 1 year (Aa/a) 5 year (Aa/a) 10 year (Aa/a)
NOAA 2 6450 0.00001378 0.00001378 0.00001378
NOAA 3 6500 0.00000342 0.00000342 0.00000342
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Figure 10-Perturbation on semi-major axis of NOAA 2 and NOAA 3 for 1, 5 and 10 years.

Conclusions

The earth tides cause perturbations in the motion of the close earth satellite. Variations in the
inclination of GEO and NOAA satellites were computed. The results show that the variation in (Ai/i)
decreases with increasing the inclination of the satellite. We conclude that the tidal perturbation on the
orbital elements depends on the inclination of the satellite. We also found that the variation in (Ai/i)
increases with increasing the time.
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