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Abstract

Let R be a commutative ring with identity and M be a unitary R-module. In
this work we present almost pure ideal (submodule) concept as a generalization of
pure ideal (submodule). Also, we generalize some properties of almost pure
ideal (submodule). The study is almost regular ring (R-module).
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1. Introduction

Let M be a unitary R-module and let R be commutative ring with identity. A submodule N of
an R-module M is called pure if NNIM = IN, for each ideal I of aring R , E, Anderson and Fuller
[1]. Fieldhous (1969) in [2] defined N to be pure in M if rM N N = rN for each r € R. And defined a
ring R is regular if every ideal | is pure. Although Fieldhous generalize regular rings to regular
modules in [2], Ware (1971) in [3] and Zelmanowliz (1972) in [4], also study regular modules. Nuhad
S. Al-Mothafar and Ghaleb A. Humod in [5] study 2- pure submodules and 2- regular modules they
define N to be 2-pure in M if NNI?°M=I°N, for each ideal I in R.

In this paper we introduce an almost pure ideals (submodules) concept as a generalization of pure
ideals (submodules). An ideal I of aring R is said to be almost pure if I N ] (R) =1] (R), where J(R)
is the Jacobson radical of R. A submodule N of an R-module M is called almost pure if
NNJ(R)M=J(R)N, we study some properties of almost pure submodules. Also, we get some results of
almost pure submodules like a (Prop. 3.4) let M be an R-module and N be an almost pure submodule
of M. If S is a submodule of M containing N, then N is an almost pure submodule of S.

And we present almost regular rings (modules) concepts as generalization of regular rings
(modules) we generalize some properties of regular ideals (modules) to almost regular rings
(modules).

This work includes three sections. In section two, we introduce almost pure ideals and almost
regular rings concepts as a generalization of pure ideals and regular rings, we provided in (Prop. 2.9).
If R is A-regular integral domain such that J(R) # R, then R is semisimple ring.
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In section three, we introduce almost pure submodules and almost regular modules concepts as a
generalization of pure submodules and regular modules, we present (Prop. 3.16) let M be an almost
regular R-module contain a non torsion element, then R is almost regular ring.
Finally in section three, we see in proposition (3.15) that if M is almost regular R-module, then v 0#x
€M such that ann(x) < J(R), then R/ann(x) is almost regular ring.
2. Almost Pure Ideals and Almost Regular Rings

In this section, we introduce a generalization for pure ideals concept namely almost pure ideal.
First we recall that an ideal | of a ring R is called pure if In] = 1] for each ideal J of R. It is well
know that a ring R is (Von Neumann) regular if and only if every ideal of R is pure , equivalently for
every a € R thereexist b € R such that a = aba , [2]. We start by the following definition .
Definition (2.1):

An ideal I of a ring R is called almost pure ( for short A-pure ) ideal of R if I NnJ(R) =
IJ(R), where J(R)is the Jacobson radical of R.
Remarks and examples (2.2):
1. Itis clear that every pure ideal of a ring R is A-pure, but the converse is not true in general, for
example: Inaring Z, the ideal 1= <3 > is A-pure, since<3>N{0}=<3> {0}, but<3>isnot
pure in the ring Z.
2. Every ideal generated by idempotent is A-pure. Since every ideal that generated by idempotent is
pure [6], hence is A-pure by remark (1).
3. If I and ] are A-pure ideals of aring R, but 1N ] need not be A-pure ideal of R. To show that if
R=Z,®Z,and] = Z, @0, ] =Z( 1 ,1) are A-pure idealsof RbutInJ ={( 0, 0),( 2, 0)}
isnot A-pure inRsince I n ) NJR)={( 0, 0),( 2 0)}but(nj).j(R)={0, 0)}
4. ltis clear that if J(R) = {0}, then every ideal in R is A-pure. In the ring Z every ideal is A-pure.
5. ltisclear that {0} and R are always A-pure ideals of any ring R.
Recall that aring R is called regular if every ideal in R is pure , [2]. Now, we have the following:
Definition (2.3):

A ring R is called almost regular (for short A-regular) if every ideal in R is A-pure. (i.e.) I N J(R)
=1J(R) VIcR.
Remarks and examples (2.4):
1- Every regular ring is A-regular. But the converse is not true in general the ring Z is A-regular.
Since J(Z) =0, but not regular.
2- Therings Q, Z,”, are not A-regular, since J(Q) =Q and J(Z,") = Z,".
Theorem (2.5):

A ring R is A-regular if and only if J(R) is pure ideal in R.
Proof

Let I be an ideal of R. Since R is A-regular, hence I is A-pure in R. (i.e) I N J(R) =1]J(R). Thus
J(R) is pureinR.
The converse is clear.
Proposition (2.6)

Let ¢ :R =R’ be an R-epimorphism such that kerp < J(R). If R is A-regular ring, then R’ is A-
regular ring .
Proof : Let I' be an ideal in a ring R’, we have to show I' N J(R" )=T" J(R"). Now, I' =@(l), where I is
an ideal in a ring R, since R is A-regular ring then I N J(R) = IJ(R). Since ¢ is an epimorphism
whith kerg < J(R), then o (1 0 J(R)) = ¢(I) N 9(J(R)). Now, ¢(I) N 9(J(R)) = o(I) N J(R))

= @(J(R))

o(D).o(J(R)) sinceg is epimorphism and kerg < J(R).
But @(J(R)) = J(R") since ¢ is epimorphism and kero < J(R),[7]. Thus I’ nJ(R") =1"J(R").
Proposition (2.7)

Let R be aring and I be an ideal of R contained in J(R). If R/l is A-regular ring, then R is A-
regular.
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Proof
To show R is A- regular ring, we have to show KN J(R)=KJ(R) for all ideal K of R, since R/l is

A-regular ring and ? is an ideal of R/I , then % n J(R/D) = (%)(](R/I)) since ¢ : R > R/I IS an

epimorphism and kerg < J(R) then ¢(J(R)) =J(9(R)), [7 1. hence (K/I) N (J(R))/D) = (K/D)
(JR))/D,  then (KN JR))/D) = (KJR))/D), since IcJ(R) . Thus KN J(R) = K]J(R).
Proposition (2.8):

A finite direct sum of A-regular rings R;such that R; ¢ J(R) Vi = 1,2, ...n is A-regular.
Proof

Let {Ri} , i=1,2,...,n be a finite number of A-regular ring. Let R=R; ®R,®...R, be their direct
sum, to show R is A-regular. Let n=2 , then R=R;®R,, It is clear then R/R; =R,, since R, is A-
regular by proposition(2.6) R/R; is A-regular, hence by proposition(2.7) R is A-regular.
Using mathematical induction. Assume that the statement is true for n=k to show that it is true for
k+1, (i.e) R=R;®...®Ry is A-regular, and to show that R= R;®...®R@®R.; is A-regular since

R/Rl@ .. @R, = Ryy1and Ry 44 is A-regular , then R/ R;®...®R / Ry is A-regular. proposition (2.7)

implies R=R;®R,®.. . ®R@Ry.; is A-regular.

Recall that if R is integral domain then R is pure simple, where R is pure simple if it has no pure
ideal exept {0} and R, [8]. We know that if R is regular integral domain , then R is a field. But this
is not true for A-regular, since Z is A-regular integral domain but not field.

Proposition (2.9)

If R is A-regular integral domain such that J(R) # R, then R is semisimple ring.
proof: Since R is A-regular, then by(2.8) J(R) is pure ideal in R. But R is integral domain, hence R
has no pure ideal exept {0} and R. Since J(R) # R, hence J(R) = 0. Thus R is semisimple
Proposition (2.10)

If Tis a prime ideal in R and R is A-regular ring such that J(R/I) # R/I, then R/ is semisimple
ring.

Proof

Since 1 is prime ideal in R/I integral domain, and by (2.6) R/T is A-regular. Since J(R/I) # R/I,
then by proposition (2.9 ) R/I is semisiple.

3. Almost Pure Submodules and Almost Regular Modules

Recall that a sub module N of an R-module M is called pure if NN IM = IN, for each ideal I of a
ring R, [1]. We start this section by the following definition.
Definition (3.1)

A submodule N of an R-module M is called almost pure, (for short A-pure), if N N J (R) M =J (R)
N, where J (R) is the Jacobson radical of a ring R.

Remarks and Examples (3.2)

1. Itsclear that every pure submodule is A-pure, but the converse is not true in general. For example
the submodule { 0, 2 } in Z, as Z-module is A-pure,since{ 0, 2} NJ(2)Z,=J(2){ 0, 2}{ 0
, 23N {0}yz,={0}{ 0, 2} ={ 0}.But{ O, 2}isnot purein Z, as Z-module.

2. If N and K are A-pure sub modules in an R-module M, then N N K need not be A-pure, as the
following example show. If M=Z,8Z, as Z, -module and A= Z,® 0, B = Z,(1, 1) are A-pure
submodules of M but ANB= {(0, 0), (2, 0)} is not A-pure in M. Since (2,0)e(ANB) NJ(Z4)( Z,BZ,)
but (2,0) ¢ J(Zs)(ANB).

3. ltisclear that every submodule in Z as Z-module is A-pure.

4. It's clear that every direct summand of any R-module M is A-pure submodule of M since every
direct summand is pure summodule, hence is A-pure by Remark(1), but the converse is not true, for
example the submodule { 0, 3, 6}of the module Zy as Z-module is A-pure since { 0, 3, 6}N
J(2)Z2y=3(Z2) { 0, 3, 6} but not direct summand.

Proposition (3.3)

Let M be an R-module and N be an A-pure submodule of M. If S is A-pure in N, then S is an A-
pure submodule of M.

Proof

Since N is A-pure in M, then NNJ(R) M=J(R) N and S is A-pure in N, then SNJ(R) N =J(R) S.
Now, S < N, implies J(R) S = SNJ(R) N=SN (NNJ(R) M) = (SNN) NJ(R) M= SNJ(R) M.
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Proposition (3.4)

Let M be an R-module and N be an A-pure submodule of M. If S is a submodule of M containing
N, then N is an A-pure submodule of S.
Proof

Since N is A-pure submodule in M, then NNJ(R)M=J(R)N and since Nc S <M implies
NNJ(R)S=NN (J(R)SNI(R)M) =(NNI(R)M) N J(R)S = J(R)NN J(R)S = J(R)N.
Proposition (3.5): Let M be an R-module and N be an A-pure submodule of M. If K is a submodule
of N, then % is a A-pure submodule of %

Proof

()ﬂJ(R)(—) ( )ﬂ(

Nn(](R)M+K) _ (Nn](R)M)+K

](R)N+K ](R)( )

Recall that an R-module M is called an F-regular module if every submodule of M is pure , [9].

Now, we have the following definition.
Definition (3.6)
An R-module M is called A-regular module if every submodule of M is A-pure.
Remarks and Examples (3.7):
1. Itis clear that every F-regular is A-regular R-module but the convers is not true in general. For
example Z, as Z-module is A-regular since every submodule of Z, is A-pure but Z, is not F-regular,
see remark and examples (3.2) (1).
2. The Z-module Z is A-regular since every submodules of Z is A-pure. But Z as Z-module is not F-
regular.
3. The Zy as Z-module is A-regular since every submodule of Z, is A-pure. But Zg is not F-regular
since { 0, 3, 9}isnot pure, see remark and examples (3.2) (1).
4. The Z;, as Z-module is A-regular since every submodule of Z;, is A-pure, but Z;, is not F-regular
since the submodule < 2> is not pure.
5. Q as Z-module is A-regular since QN J(Z2)Q=](2)Q, but Q as Z-module is not F-regular.
Theorem (3.8):

Let M be an R-module. The following statements are equivalent:
1. M is A-regular module.
2. Every cyclic submodule of M is A-pure in M.
3. Every finitely generated submodule of M is A-pure in M.
Proof
(1) —(2) it follows by definition (3.6).
(2) = (1) Assume that every cyclic submodule of M is A-pure and let N be any submodule of M. Let
xeNNJ(R) M, then x eN and x € J(R) M then xe<x> N J(R) M =J(R) <x> < J(R) N.
(1) = (3). It follows by definition (3.6).
(3) - (2). ltisclear.

The following proposition shows that the factor module of A-regular module is A-regular.
Proposition (3.9):

Let M be an R-module, then M is A-regular if and only if M/N is A-regular for every submodule N
of M.
Proof

Let N be a submodule of an R-module M and K be any submodule of M containg N. Since M is A-
regular, then K is A-pure in M, hence K/N is A-pure in M/N proposition (3.5). Thus M/N is A-regular.
The converse is easily by taking N=0.
Corollary (3.10)

Let M and M’ be R-modules and f: M — M’ is an R- epimorphisim. If M is A-regular R-module,
then M’ is A-regular.

](R)M+K

)

by module low
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Proof

Since f:M — M’ be an R- epimorphisim and M is A-regular R-module, then M/kerf is A-regular R-
module by proposition (3.9). But M/kerf is isomorphic to M’ by the first isomorphism theorem. Thus
M’ is A-regular.
Corollary (3.11)]
Every submodule of A-regular module is A-regular module.
Proof

Let N be a submodule of an A-regular M. To show that N is A-regular R-module, let K be any
submodule of N. Since M is A-regular. Hence we have:

KNJ(R) N =KN (NNJ(R) M) since N is A-pure in M
=(KNN)NJR) M

=KNJ(R) M since K is A-pure in M

=J(R) N

Therefor K is A-pure in N which implies that N is A-regular.
Recall that an R-module M is called F-regular if and only if v xéM and V r €R, 3 t €R such that
rx=rtrx , [6].
Preposition (3.12):

If M is A-regular R-module, then for every nonzero element x in M and for each r €]J(R), there exit
teR such that rx = rtrx.
Proof

Let0#x e Mandr € J(R).Sincerx € J(R)M andrx € <rx >impliesrx € J(RIM N < rx >
.ButMis A-regular. <rx > n J(R)M =J(R) <rx > . Hence rx € J(R) < rx >, which implies
that rx = rtrx wheret € R
Preposition (3.13):

let M be an R-module is each nonzero element x in M and for every r €]J(R), rx = rtrx for some
t € R, then M is A-regular.
Proof

let N be a submodule of a module M, to show N nJ(R)M =J(R)N. Lety € NnJ(R)M, then
y € Nand y € J(R)M, hence y = rm where r €J(R) and me M, y = rm = rtrm, for some t € R.
Thus y € J(R)N, which implies that M is A-regular.
corollary (3.14)

let R be an A-regular ring, then for each r € J(R), r = rtr forsomet € R
Proposition (3.15)

If M is A-regular R-module, then Vv 0#x €M such that ann(x) < J(R),then R/ann(x) is A-regular
ring.
Proof 3

Let 0£x€M and r € J(R/ann(x)) =¢J(R)) where ¢ : R — R/ann(x) is an epimorphism, then ther
exist r € J(R) such that ¢(r)= r. Since M is A-regular R-module , re J(R), 3 t € R such that rx=rtrx,
then (r-rtr)x=0, then r-rtreann(x), hence r + ann(x) = rtr + ann(x), which implise that r= r t r. Thus
R/ann(x) is A-regular ring.

Recall that T(M)={meM:ther exit reR such that r.m=0}, T(M)=the set of all torsion elements. If
T(M)=M, then M is called torsion R-module , [10].
Proposition (3.16)

Let M be an A-regular R-module contains a non torsion element, then R is A-regular ring.
Proof

Let xeM be a non torsion element, then [0:x]=0=ann(x), so by(3.15), R/ann(x) = R is A-regular by
(3.10)
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