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Abstract 

     Let R1be a commutative2ring with identity and M be a unitary R-module. In 

this6work we7present almost pure8ideal (submodule) concept as a9generalization of 

pure10ideal (submodule).  Also, we1generalize some9properties of8almost pure 

ideal (submodule). The 7study is almost regular6ring (R-module). 
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 قريبا)المقاسات( لمنتظمة  الحلقاتو  تقريباالنقية المقاسات الجزئية( (ليات المثا
 

 نهاد سالم المظفر عماد خليفة سلمان،
 قدم الرياضيات، كلية العلهم، جامعة بغداد، بغداد، العراق

  لخلاصةا
المثاليات النقية  مفههم   قدمناالعمل 7. في هذابمحايدR 8 مقاس Mبمحايد، ولتكن 4اليةدبا حلقة Rلتكن      

(. كذلك عممنا بعض ه النقيةجزئيال اتمقاسالم( تقريب ا كتعميم لمفههم المثاليات النقية )ة النقيهجزئيال اتمقاسال)
 ( تقريب ا.المنتظمة اتمقاسالالمنتظمة ) اتلحلقلالخصائص 

1. Introduction 

     Let M be a1unitary2R-module and let9R be commutative8ring with identity. A submodule N of 

an7R-module M is called6pure if N∩     , for each5ideal   of a ring4R", E, Anderson and Fuller 

[1]. Fieldhous (1969) in [2] defined N to be pure in M if         for each      And  defined a 

ring R is regular if every ideal I is pure. Although Fieldhous generalize regular rings to regular 

modules in [2], Ware (1971) in [3] and Zelmanowliz (1972) in [4], also study regular modules. Nuhad 

S. Al-Mothafar and Ghaleb A. Humod in [5] study 2- pure submodules and 2- regular modules they 

define N to be 2-pure in M if N∩I
2
M=I

2
N, for each ideal   in R. 

     In this paper we5introduce an almost pure ideals (submodules) concept as a generalization of pure 

ideals (submodules). An ideal   of6a ring R is said to be almost pure if   ∩       =          where      
is the Jacobson radical of R. A submodule N of an R-module M is called almost pure if 

N∩    M=     N, we study some properties of almost pure submodules. Also, we get some results of 

almost pure submodules like a (Prop. 3.4) let M be an R-module and N be an almost pure submodule 

of M. If S is a submodule of M containing N, then N is an almost pure submodule of S.  

     And we present almost regular rings (modules) concepts as generalization of regular rings 

(modules) we generalize some properties of  regular ideals (modules) to almost regular rings 

(modules). 

     This work includes three sections. In section two, we introduce almost pure ideals and almost 

regular rings concepts as a generalization4of pure ideals and regular rings, we provided in (Prop. 2.9). 

If R is A-regular integral domain such that         , then R is semisimple ring. 
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In section three, we introduce almost pure submodules  and almost regular modules concepts as a 

generalization of pure submodules and regular modules, we present (Prop. 3.16) let M be an almost 

regular R-module9contain a non torsion element, then R is almost regular ring.  

Finally in section three, we0see in proposition (3.15) that if M is almost regular R-module, then ∀ 0≠x 

 M such that ann(x)      , then  R/ann(x) is almost regular ring. 

2. Almost Pure Ideals
 
and Almost Regular Rings 

     In this section, we0introduce a generalization for pure ideals concept namely almost pure ideal. 

First we "recall that an ideal I of a ring R is called pure if         for each ideal   of R. It is well 

know that a ring R is (Von Neumann) regular if and only if every ideal of R is pure , equivalently for 

every      there exist     such that         [2]. We start by the following definition .    

Definition (2.1): 

     An ideal   of a ring R is called almost pure ( for short A-pure ) ideal of R if         
       where     is the Jacobson radical of  . 

Remarks and examples (2.2): 

1. It is clear0that every pure ideal of a ring   is A-pure,  but the3converse is not true in general, for 

example: In a ring Z, the ideal  I= < 3 >  is A-pure,  since < 3 > ∩ {0} = < 3 > .{ 0},  but < 3 > is not 

pure in the ring Z. 

2. Every8ideal generated by idempotent is A-pure. "Since every ideal that generated by idempotent is 

pure [6],  hence is A-pure by remark (1). 

3. If         are A-pure ideals of a ring R, but       need not be A-pure ideal of R. To show that if 

          and                       are A-pure ideals of R but       (       ) (     )  

is not A-pure in R since            {(       ) (      )} but             (      )  
4. It is clear that if            then every ideal in R is A-pure.  In the ring Z every ideal is A-pure. 

5. It is clear that      and   are always A-pure  ideals of any ring R. 

"Recall0that a ring R is called regular if every ideal in R is pure", [2].  Now,  we have the following: 

Definition (2.3):  

     A ring R is called almost regular (for short A-regular) if every ideal in R is A-pure. (i.e.)   ∩      

=   (R)  ∀    R. 

Remarks and examples (2.4):  
1- Every0regular ring is A-regular. But the converse is not true in general the ring Z is A-regular. 

Since  (Z) =0,  but not regular. 

2- The rings Q, Zp

, are  not A-regular, since  (Q) =Q and  (Zp


) = Zp


. 

Theorem (2.5): 

     A7ring R is A-regular if and only if      is pure ideal in R. 

Proof  

     Let   be an ideal of R.  Since R  is A-regular,  hence   is A-pure in R.  (i.e)   ∩      =       . Thus 

   ) is pure in R. 

 The converse is clear. 

Proposition (2.6) 

     Let   :R  Rʹ be an R-epimorphism such that             If R is A-regular ring,  then Rʹ is A-

regular ring . 

Proof : Let Iʹ be an ideal in a ring Rʹ, we have to show Iʹ ∩ J(Rʹ )= Iʹ J(Rʹ). Now,  Iʹ = (I),  where I is 

an ideal in a ring R,  since R is A-regular ring then               Since   is an epimorphism 

whith            then  (      )        (    )    ,                          

                                                                                                                                  ) 

                
      (    ) since  is epimorphism and            

But                since   is epimorphism and          , [7 ]. Thus                                                                                                                                           
Proposition (2.7)  
     Let R be a ring and I be an9ideal of R contained in J(R).  If R/I is A-regular ring, then R is A-

regular. 
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Proof   

     To show R is A- regular ring,  we have to show K∩    )=K     for all ideal K of R,  since     is 

A-regular ring and 
 

 
 is an ideal of      , then 

 

 
         ) =  

 

 
       )) since      

 ⁄  is an 

epimorphism and            then  (    )   (    )  [7 ].  hence       ∩            =       

          ,    then              =               s             .                   . 

Proposition (2.8): 

     A finite direct sum of A-regular rings Ri such that  i  J(R) ∀         is A-regular. 

Proof  

     Let {Ri} ,  i=1,2,…,n be a finite number of A-regular ring. Let R=R1  R2 …Rn be their direct 

sum,  to show R is A-regular. Let n=2 ,  then R=R1 R2,  It is clear then R/R1 R2,  since R2 is A-

regular by proposition(2.6) R/R1 is A-regular,  hence by proposition(2.7) R is A-regular.  

Using8mathematical induction.  Assume that the statement is true for n=k to show that it is true for 

k+1, (i.e) R=R1 … Rk is A-regular,  and to show that R= R1 … Rk Rk+1  is A-regular since 
 

         
⁄      and      is A-regular ,  then R/ R1 … R / Rk is A-regular.  proposition (2.7) 

implies R=R1 R2 … Rk Rk+1 is A-regular. 

"   Recall8that if R is integral domain then R is pure simple, where R is pure simple if it has no pure 

ideal exept {0} and R , [8]. We know that  if  R is regular integral domain , then R is a field.  But this 

is not true for A-regular, since Z is A-regular integral domain but not field. 

Proposition (2.9)  

     If R is A-regular integral domain such that         , then R is semisimple ring. 

proof: Since8R is A-regular, then by(2.8)      is pure ideal in R.  But R is integral domain,  hence R 

has no pure ideal exept {0} and R. Since        , hence        . Thus R is semisimple 

Proposition (2.10) 

     If   is a prime ideal in R and R is A-regular ring such that             , then R/  is semisimple 

ring. 

Proof  

     Since9  is prime ideal in R/  integral domain,  and by (2.6) R/  is A-regular. Since           , 
then by proposition (2.9 ) R/  is semisiple. 

3. Almost Pure Submodules and Almost Regular Modules 

"    Recall9that a sub module N of an R-module M is called pure if         ,  for each ideal   of a 

ring R, [1]. We start this section by the following definition. 

Definition (3.1) 
     A submodule N of an R-module M is called almost pure, (for short A-pure), if N ∩ J (R) M = J (R) 

N, where J (R) is the Jacobson radical of a ring R. 

Remarks and Examples (3.2) 

1. It
’
s clear9that every pure submodule is A-pure, but the converse is not true in general. For example 

the submodule { 0 , 2 } in  Z4 as Z-module is A-pure, since { 0 , 2 } ∩ J (Z) Z4 = J (Z) { 0 , 2 } { 0 

, 2 } ∩ {0} Z4 = {0}.{ 0 , 2 }  = { 0 }. But { 0,  2} is not pure in Z4 as Z-module. 

2. If N and K are A-pure sub modules in an R-module M, then N ∩ K need not be A-pure, as the 

following example show. If M=Z4 Z2 as Z4 -module and A= Z4  0, B =   (1, 1) are A-pure 

submodules of M but A∩B= {(0, 0), (2, 0)} is not A-pure in M.  Since (2,0)(A∩B) ∩J(Z4)( Z4 Z2) 

but (2,0)  J(Z4)(A∩B). 

3. It is clear9that every submodule in Z as Z-module is A-pure. 

4. It
’
s clear9that every direct summand of any R-module M is A-pure submodule of M since every 

direct summand is pure summodule, hence is A-pure by Remark(1), but the converse is not true, for 

example the submodule { 0 , 3 , 6}of the module Z9 as Z-module is A-pure since { 0 , 3 , 6}∩ 

J(Z)Z9=J(Z) { 0 , 3 , 6} but not direct summand. 

Proposition (3.3) 

     Let M be an R-module and N be an8 A-pure submodule of M. If S is A-pure in N,  then S is an A-

pure submodule of M. 

Proof 
     Since N is A-pure in M, then N∩J(R) M=J(R) N and S is A-pure in N,  then S∩J(R) N =J(R) S. 

Now, S  N,  implies J(R) S = S∩J(R) N= S∩ (N∩J(R) M) = (S∩N) ∩J(R) M= S∩J(R) M. 
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Proposition (3.4) 

     Let M be an R-module and N be an A-pure submodule9of M. If S is a submodule of M containing 

N, then N is an A-pure submodule9of S. 

Proof  

     Since N is A-pure submodule9in M,  then N∩J(R)M=J(R)N and since N S M implies 

N∩J(R)S=N∩ (J(R)S∩J(R)M) =(N∩J(R)M) ∩ J(R)S = J(R)N∩ J(R)S = J(R)N. 

Proposition (3.5): Let M be an R-module and N be an A-pure submodule9of M.  If K is a submodule 

of N,  then 
 

 
 is a A-pure submodule of  

 

 
 .  

Proof 

(
 

 
 ∩J(R) ( 

 

 
  = ( 

 

 
  ∩ ( 

       

 
   

= 
           

 
 

           

 
                         

= 
       

 
     (

 

 
). 

 
"    Recall9that an R-module M is called an F-regular module if every submodule of M is pure", [9]. 

Now, we have the following definition. 

Definition (3.6) 
An9R-module M is called A-regular module if every submodule of M is A-pure. 

Remarks and Examples (3.7): 

1. It is clear9that every F-regular is A-regular R-module but the convers is not true in general. For 

example Z4 as Z-module is A-regular since every submodule of Z4 is  A-pure but Z4 is not F-regular, 

see remark  and examples (3.2 ) (1). 

2. The Z-module Z is A-regular since every submodules9of Z is A-pure. But Z as Z-module is not F-

regular. 

3. The Z9 as Z-module is A-regular since every submodule of Z9 is A-pure. But Z9 is not F-regular 

since { 0,  3,  9} is not pure, see remark and examples (3.2) (1). 

4. The Z12 as Z-module is A-regular since every submodule of Z12 is A-pure, but Z12 is not F-regular 

since the submodule < 2> is not pure. 

5. Q as Z-module is A-regular since Q∩  (Z)Q= (Z)Q, but Q as Z-module is not F-regular. 

Theorem (3.8): 

     Let M be an9R-module. The following statements are equivalent: 

1. M is A-regular module. 

2. Every cyclic submodule of M is A-pure in M. 

3. Every finitely generated submodule of M is A-pure in M. 

Proof  

(1)   (2) it follows by definition (3.6). 

(2)   (1) Assume that every cyclic submodule of M is A-pure and let N be any submodule of M. Let 

xN∩J(R) M, then x N and x  J(R) M then x<x> ∩ J(R) M = J(R) <x>  J(R) N. 

(1)   (3). It follows by definition (3.6).  

(3)   (2). It is clear. 

     The following proposition shows that the factor module of A-regular module is A-regular. 

Proposition (3.9): 

     Let M be an R-module, then M is A-regular if and only if M/N is A-regular for every submodule9N 

of M. 

Proof  
     Let N be a submodule9of an R-module M and K be any submodule of M containg N. Since M is A-

regular, then K is A-pure in M, hence K/N is A-pure in M/N proposition (3.5). Thus M/N is A-regular. 

The converse is easily by taking N=0. 

Corollary (3.10) 

     Let M and Mʹ be R-modules and ƒ: M   Mʹ is an R- epimorphisim. If M is A-regular R-module, 

then Mʹ is A-regular. 
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Proof  

     Since9ƒ:M   Mʹ be an R- epimorphisim and M is A-regular R-module, then M/kerf is A-regular R-

module by proposition (3.9). But M/kerf is isomorphic to Mʹ by the first isomorphism theorem. Thus 

Mʹ is A-regular. 

Corollary (3.11)] 

Every9submodule of A-regular module is A-regular module. 

Proof  
     Let N be a submodule of an A-regular M. To show that N is A-regular R-module, let K be any 

submodule of N. Since M is A-regular. Hence we have: 

K∩J(R) N = K∩ (N∩J(R) M)                                       since N is A-pure in M 

 = (K∩ N) ∩ J(R) M 

 = K∩J(R) M                                                  since K is A-pure in M 

 = J(R) N 

Therefor K is A-pure in N which implies that N is A-regular. 

Recall9that an R-module M is called F-regular if and only if ∀ x M and ∀ r     ∃ t  R such that 

rx=rtrx", [6]. 

Preposition (3.12): 

     If  M is A-regular R-module, then for every nonzero element x in M and for each r   (R), there exit 

t R such that rx = rtrx. 

Proof  

     Let        and         Since          and           implies                
          A-regular.                        . Hence              , which implies 

that           where      

Preposition (3.13):  

      let M be an R-module is each nonzero element x in M and for every r   (R),           for some 

      then M is A-regular. 

Proof  

     let N be a submodule of a module M, to show                . Let             then 

    and         , hence      where r   (R) and m  ,               for some      
Thus          which implies that M is A-regular. 

corollary (3.14) 

     let R be an A-regular ring, then for each               for some      

Proposition (3.15) 

     If M is A-regular R-module, then ∀ 0≠x  M such that ann(x)      ,then R/ann(x) is A-regular 

ring. 

Proof  

     Let o≠x M and r      /ann(x)) =     ) where                 is an epimorphism, then ther 

exist r   J(R) such that  (r)= r. Since M is A-regular R-module , rϵ    ), ∃ t ϵ R such that rx=rtrx, 

then (r-rtr)x=0, then r-rtr ann(x), hence r + ann(x) = rtr + ann(x), which implise that  r = r t r. Thus 

R/ann(x) is A-regular ring. 

"   Recall9that T(M)={m M:ther exit r R such9that r.m=0}, T(M)=the set of all torsion elements. If 

T(M)=M, then M is called torsion R-module", [10]. 

Proposition (3.16)  
     Let M be an A-regular R-module contains a9non torsion element, then R is A-regular ring. 

Proof   

     Let xM be a non torsion element, then [0:x]=0=ann(x), so by(3.15), R/ann(x)   R is A-regular by 

(3.10) 
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