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Abstract 

    In this work, the right coprime factor for balancing and truncating unstable systems 

is extended to parameter-varying multidimensional systems employing recent works 

on coprime factor model reduction of one-dimensional uncertain systems. Since the 

balanced truncation method cannot be applied directly to unstable systems, state 

feedback gains should be computed and incorporated in order to stabilize the given 

system and to be able to apply the balanced truncation technique via defining the so-

called stable coprime factor, as coprime factorization overcomes the stability 

condition required for model reduction. Parameter-dependent state feedback and 

parameter-dependent Gramians are considered in this work yielding less conservative 

techniques. In addition, the Gramians are defined as block diagonal matrices, which 

are partitioned according to the structure of the multidimensional systems. The 

application to a simulation example demonstrates the applicability and validity of the 

proposed reduction approach leading to small error bounds between the full and the 

reduced models. 

 

Keywords: Multidimensional systems; Linear parameter-varying systems; Model 

reduction; Coprime factor; Stabilizable systems. 

 

 كوبرايم  العاملتقليص انظمة متعددة الابعاد بطريقة 
 

 2عباس صديق, حسام ،*1لفاضل صبحي فاض  ،1، ابتسام كامل حنان1فاطمة صاحب الطائي

 قسم الرياضيات وتطبيقات الحاسوب، كلية العلوم، جامعة النهرين، بغداد، العراق 1
 , جامعة لوبيك, لوبيك, المانيا الكهربائية الطبيةهد الهندسة  مع2

 
 :الخلاصة 

في هذا العمل, تم عرض طريقة لتقليص الانظمة الغير مستقرة. حيث تم تطوير هذه الطريقة من الانظمة        
احادية الابعاد الى الانطمة المتعددة الابعاد والغير ثابتة. استخدمت طريقة الاستقطاع المتوازن والتي تعمل مع  

الى نظام مستقر )يعرف بأسم النظام القابل    الانظمة المستقرة فقط, لذلك تم تصميم النظام بشكل يمكن تحويله 
للتحول الى حالة الاستقرارية( و بالتالي امكانية تطبيق طريقة الاستقطاع المتوازن من اجل تقليص النظام المتحول  

في الحياة الواقعية لذلك فأن   الموجودة الى نظام مستقر. الانظمة المستخدمة غير ثابتة ومعتمدة على المتغيرات 
لات و الممثلات الخاصة بعملية التقليص والاستقطاع كلها تعتبر غيرثابتة ومعتمدة على المتغيرات مما  المعام

 

 

              ISSN: 0067-2904 

mailto:fadhel.subhi@nahrainuniv.edu.iq


Al-Taie et al.                                           Iraqi Journal of Science, 2024, Vol. 65, No. 4, pp: 2186-2197 

2187 

النظام الاصلي والنظام   اكثر مع حفظ نسبة خطأ قليلة جدا بين  ادق والنتائج واقعية  يجعل عملية الاستقطاع 
  المقلص. تم تطبيق الطريقة على مثال متعدد الابعاد واظهر نتائج جيدة. 

 

1. Introduction 

     Model reduction problem is of interest in many control system applications since it 

simplifies the systems to be used for designing controllers or/and studying systems’ physical 

properties, e.g. stability and performance of systems. The most popular and applicable method 

for reducing stable systems is the balanced truncation method [1] as it preserves the properties 

(the most important property is the stability) of the original system in the reduced system. In 

addition, it yields the reduced system as well as the original system balanced. Moreover, the 

balanced truncation method removes state variables that have less effect on both the 

controllability and observability of the system. Many authors considered a model reduction of 

linear time-invariant systems via the balanced truncation method in previous works [1]. Also, 

some authors extended the method to the case of linear parameter-varying systems, e.g., [2], 

because in reality, physical coefficients (and hence the dynamics of the system) vary with 

respect to some varying parameters, and then the resulting system is known as linear parameter-

varying system. In addition, the method has been extended to multidimensional systems in [3], 

while in [4] the method is applied to parameter-varying multidimensional systems defined in 

LFR (Linear Fractional Representation) form. The parameter-varying multidimensional 

systems are of interest due to their importance in many real-life applications, e.g., satellite 

communication systems, gyroscope systems, image processing, and several other applications. 

Such systems come with very high orders and are known as large-scale systems. Thus, in this 

work, model reduction of parameter-varying multidimensional systems is considered. Since the 

balanced truncation model reduction is applicable to stable systems only, which means that if 

the systems do not satisfy the stability condition, then the balanced truncation technique cannot 

be applied. Therefore, the system should be stabilized by constructing a state-feedback 

controller and defining a stable coprime factor such that the resulting realization is stable, thus, 

the balanced truncation method can be applied. This technique is known as coprime factor 

model reduction. A coprime factor model reduction for 1-dimensional and uncertain systems 

was stated in [5-8], where state feedback and coprime factorization are used in order to stabilize 

the considered system and define a stable coprime factor so that the balanced truncation model 

reduction method can be applied to the resulting stable system. The stability analysis of a 

nonlinear ordinary differential system is discussed in [9,10,11]. In [12] a contractive coprime 

factor for uncertain systems is guaranteed since it is difficult to define a normalized coprime 

factor for uncertain systems. In [13] the coprime factor model reduction has been applied to 

structured systems. The left coprime factorization was extended to parameter-varying one-

dimensional systems in [14] using the so-called Linear Fractional Representation (LFR). The 

results of [14] can help in applying the coprime factor model reduction of parameter-varying 

one-dimensional systems defined in LFRs. Structured coprime factor model reduction has been 

considered in [15]. Here, the method of the coprime factor model reduction is extended to the 

case of parameter-varying multidimensional systems where all system matrices depend on a 

variable referred to as scheduling parameter. Parameter-dependent Gramians are considered, 

which are defined as diagonal blocks partitioned according to the dimension of the system. The 

structure of the original system is preserved in the reduced system as well. Constant-order 

systems are considered, i.e. the order of the system is invariant with respect to the scheduling 

parameter. By gridding the scheduling parameter range, a finite number of conditions using 

linear matrix inequalities (LMIs) can be solved to determine the solution of the model order 

reduction problem. The error bound of the reduction problem is computed and determined at 

each grid point of the scheduling parameter range. 
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     The rest of this paper is organized as follows. The next section defines the considered 

parameter-varying multidimensional system as well as the main problem formulation of this 

work. Section 3 presents the main result of this work and gives the algorithm for reducing 

stabilizable parameter-varying multidimensional systems via the balanced truncation method 

(with guaranteed error bounds) after constructing the corresponding stable right coprime factor. 

Section 4 shows the validation of the proposed method on a simulation example. Finally, the 

paper is concluded in Section 5.  

 

1.1 Notations 

     The set of all non-negative integers is represented as ℤ+. While the set of real numbers is 

defined as ℝ. The induced norm for parameter-varying multidimensional systems 𝐺(𝛿) which 

varies with the scheduling parameter 𝛿 within a given compact set 𝛺 is defined as follows: 

∥𝐺(𝛿)∥𝑖𝑛𝑑 = sup
𝛿∈𝛺

sup
0≠𝑢∈𝑙2

∥𝐺(𝛿)𝑢∥

∥𝑢∥
, 

where 𝑙2 is the space of the square summable sequences.  

Also, 𝑋∗ refers to the conjugate transpose of 𝑋, for a block diagonal matrix 𝑋 with blocks 𝑋𝑖,
𝑖 = 1,2, … , 𝑛 along its diagonal, we define 𝑋 = diag(𝑋1, 𝑋2, … , 𝑋𝑛). The determinant of 𝑋 is 

denoted as det(𝑋).  
 

2. Multidimensional Systems 

Let a discrete-domain multidimensional system be represented as 

                            
𝑥+ = 𝐴𝑥 + 𝐵𝑢,
𝑦 = 𝐶𝑥 + 𝐷𝑢,

                                               (1) 

where 𝑥 and 𝑥+ are the multidimensional state variable of the system and its successor, 

respectively, which are described as follows: 

𝑥 = [

𝑥1(𝑚1,𝑚2, … ,𝑚𝑙)

𝑥2(𝑚1,𝑚2, … ,𝑚𝑙)
⋮

𝑥𝑙(𝑚1,𝑚2, … ,𝑚𝑙)

] , 𝑥+ = [

𝑥1(𝑚1 + 1,𝑚2, … ,𝑚𝑙)

𝑥2(𝑚1, 𝑚2 + 1,… ,𝑚𝑙)
⋮

𝑥𝑙(𝑚1, 𝑚2, … ,𝑚𝑙 + 1)

], 

with 𝑚1, 𝑚2, … ,𝑚𝑙 ∈ ℤ+, and 𝑥 ∈ ℝ𝑛, 𝑥1(⋅) ∈ ℝ
𝑛1, 𝑥2(⋅) ∈ ℝ

𝑛2, ⋯, 𝑥𝑙(⋅) ∈ ℝ
𝑛𝑙, such that 

𝑛 = 𝑛1 + 𝑛2 +⋯+ 𝑛𝑙, where 𝑛 represents the order of (1). The system matrices 𝐴, 𝐵, 𝐶 are 

partitioned accordingly as follows: 

𝐴 = [

𝐴11 𝐴12 ⋯ 𝐴1𝑙
𝐴21 𝐴22 ⋯ 𝐴2𝑙
⋮ ⋮ ⋱ ⋮
𝐴𝑙1 𝐴𝑙2 ⋯ 𝐴𝑙𝑙

] , 𝐵 = [

𝐵1
𝐵2
⋮
𝐵𝑙

] , 𝐶 = [𝐶1 𝐶2 ⋯ 𝐶𝑙],                               (2) 

respectively, such that 𝐴𝑖𝑗 ∈ ℝ
𝑛𝑖×𝑛𝑗 , 𝐵𝑖 ∈ ℝ

𝑛𝑖×𝑛𝑢 , 𝐶𝑖 ∈ ℝ
𝑛𝑦×𝑛𝑖 , where 𝑖, 𝑗 = 1,2, … , 𝑙. 

Moreover, 𝑢 ∈ ℝ𝑛𝑢 and 𝑦 ∈ ℝ𝑛𝑦 are the system input and output, respectively, which are 

multidimensional variables given by: 

 𝑢 = 𝑢(𝑚1,𝑚2, ⋯ ,𝑚𝑙), 𝑦 = 𝑦(𝑚1,𝑚2, ⋯ ,𝑚𝑙).  
Moreover, let the transfer matrix   

                                            𝐺 = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷,                                 (3) 

where 𝑠 is a complex number, be an equivalent representation of (1). 

Next, consider linear parameter-varying multidimensional systems represented by: 

𝑥+ = 𝐴(𝛿)𝑥 + 𝐵(𝛿)𝑢,
𝑦 = 𝐶(𝛿)𝑥 + 𝐷(𝛿)𝑢,

                                                                       (4) 

       

       Where 𝐴(𝛿):ℝ𝑛𝛿
        
→ ℝ𝑛×𝑛, 𝐵(𝛿):ℝ𝑛𝛿

        
→ ℝ𝑛×𝑛𝑢, 𝐶(𝛿):ℝ𝑛𝛿

        
→ ℝ𝑛𝑦×𝑛 and 

𝐷(𝛿):ℝ𝑛𝛿
        
→ ℝ𝑛𝑦×𝑛𝑢, 𝑥, 𝑢, 𝑦 are multidimensional state, input and output, respectively, as 
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introduced in (1) and  

𝛿 = 𝜌(𝑚1,𝑚2, … ,𝑚𝑙) is the scheduling parameter with 𝜌(⋅) is a continuous mapping. Let 𝛿 ∈
𝛺𝛿, such that: 

𝛺𝛿 = {𝛿 ∈ ℝ
𝑛𝛿: 𝛿 ≤ 𝛿 ≤ 𝛿}, 

where 𝛺 is a compact set defining the variation range of 𝛿. Define the variation shift of 𝛿 as 

𝛿+ = 𝜌(𝑚1 + 1,𝑚2 + 1,… ,𝑚𝑙 + 1) − 𝜌(𝑚1, 𝑚2, … ,𝑚𝑙), such that 𝛿+ ∈ 𝛺𝛿+ , where: 

𝛺𝛿+ = {𝛿+ ∈ ℝ
𝑛𝛿: 𝛿+ ≤ 𝛿+ ≤ 𝛿+}, 

is a compact set with 𝛿+, 𝛿+ define the bounds on 𝛿+. Moreover, we introduce the set: 

𝛺 = {𝛿 ∈ ℝ𝑛𝛿: 𝛿 ∈ 𝛺𝛿 ,  𝛿+ ∈ ℝ
𝑛𝛿: 𝛿+ ∈ 𝛺𝛿+}.                          (5) 

  

     We call (4) a system with constant-order when its order is invariant with respect to 𝛿 ∈ 𝛺 

and 𝑛 = ∑ 𝑛𝑖
𝑙
𝑖=1 . Note that we do not impose any special dependence of the system matrices 

on the scheduling parameter, so they can be with general dependence on the scheduling 

parameter, e.g., affine, fractional, polynomial, etc. The following input-output linear operator 

represents the LPV multidimensional state-space realization corresponding to (4): 

𝐺(𝛿) = [
𝐴(𝛿) 𝐵(𝛿)

𝐶(𝛿) 𝐷(𝛿)
]. 

 

     The problem statement of this work can be stated as follows: Given the system (4) with order 

𝑛 = ∑ 𝑛𝑖
𝑙
𝑖=1 , the goal is to construct a reduced order system represented by the following input-

output operator  

𝐺𝑟(𝛿) = [
𝐴𝑟(𝛿) 𝐵𝑟(𝛿)

𝐶𝑟(𝛿) 𝐷(𝛿)
], 

 

     with the order 𝑟 = (∑ 𝑟𝑖
𝑙
𝑖=1 ) < 𝑛, where 𝐴𝑟(𝛿),  𝐵𝑟(𝛿) and 𝐶𝑟(𝛿) are the reduced system 

matrices, without affecting the stability or changing the structure of the full order system and 

with the approximation error bound given as 

∥𝐺(𝛿) − 𝐺𝑟(𝛿)∥𝑖𝑛𝑑 ≤ 𝑒, 𝑒 = min
𝛿∈𝛺
∥𝐺(𝛿) − 𝐺𝑟(𝛿)∥𝑖𝑛𝑑, 

for all 𝛿 ∈ 𝛺. 

 

3. Balanced Truncation of Linear Parameter-Varying Multidimensional Systems 

For stable systems, balanced truncation is employed for solving the considered reduction 

problem in Section 2. In order to present the stability condition of a parameter-varying 

multidimensional system, consider the following definitions: 

Definition 3.1, [3]. The system (4) is stable if there exists 𝑋(𝛿) ∈ 𝑀, such that: 

𝐴(𝛿)𝑋(𝛿)𝐴∗(𝛿) − 𝑋(𝛿+) < 0, for all 𝛿 ∈ 𝛺,                                (6) 

Where: 

𝑀 = {𝑋(𝛿) > 0:  𝑋(𝛿) = diag(𝑋1(𝛿),⋯ , 𝑋𝑙(𝛿)), 𝑋𝑖(𝛿) ∈ ℝ
𝑛𝑖×𝑛𝑖 , 𝑖 = 1,⋯ , 𝑙, ∀ 𝛿 ∈ 𝛺}     (7) 

and the shifted version of 𝑋(𝛿) ∈ 𝑀 is defined as: 

𝑋(𝛿+) = 𝑑𝑖𝑎𝑔(𝑋1(𝜌(𝑚1 + 1,𝑚2, … ,𝑚𝑙)), 𝑋2(𝜌(𝑚1, 𝑚2 + 1… ,𝑚𝑙)),⋯ , 𝑋𝑙(𝜌(𝑚1, 𝑚2, … ,𝑚𝑙 + 1))). 

Definition 3.2 (Parameter-dependent Gramians), [3]. The matrices 𝑋(𝛿), 𝑌(𝛿) ∈ 𝑀, where 

     𝑀 is given in (7) are called the parameter-dependent controllability and observability 

Gramians, respectively, of the system (4) if they satisfy the following matrix inequalities 

                              
𝐴(𝛿)𝑋(𝛿)𝐴∗(𝛿) − 𝑋(𝛿+) + 𝐵(𝛿)𝐵∗(𝛿) < 0,

𝐴∗(𝛿)𝑌(𝛿+)𝐴(𝛿) − 𝑌(𝛿) + 𝐶∗(𝛿)𝐶(𝛿) < 0,
                    (8) 

respectively, for all 𝛿 ∈ 𝛺. 

     The balanced truncation model reduction method is applicable for stable systems only, i.e. 

the stability condition which is given in (6) should be satisfied, as stated in [3] and [4] for 
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parameter-varying spatially interconnected systems, which are a class of multidimensional 

systems. One can refer to [3] and [4] for more information and details about balanced realization 

and truncation for stable parameter-varying multidimensional systems. The focus of this work 

is on the model reduction of the parameter-varying multidimensional systems that do not satisfy 

the stability condition (6). In this case, the balanced truncation technique cannot be applied. 

Therefore, the system should be stabilized (see Definition 3.3 below), i.e., by constructing a 

state-feedback controller and defining a stable coprime factor such that the resulting realization 

is stable, thus, the balanced truncation method can be applied as in [7] for one-dimensional 

systems and [5] for uncertain systems. This work extends the result of [5] and [7] to the case of 

parameter-varying multidimensional system which is presented in (4). 

 

Definition 3.3 (Stabilizable System): The parameter-varying multidimensional system (4) is 

stabilizable by the parameter-dependent state feedback 𝐹(𝛿) for all 𝛿 ∈ 𝛺 if there exists 𝑄(𝛿) ∈
𝑀, such that 

 (𝐴(𝛿) + 𝐵(𝛿)𝐹(𝛿))𝑄(𝛿)(𝐴(𝛿) + 𝐵(𝛿)𝐹(𝛿))
∗
− 𝑄(𝛿+) < 0, for all 𝛿 ∈ 𝛺,      (9) 

where: 
𝑄(𝛿) = diag(𝑄1(𝛿), 𝑄2(𝛿), … , 𝑄𝑙(𝛿)),

𝑄(𝛿+) = diag(𝑄1(𝜌(𝑚1 + 1,𝑚2, … ,𝑚𝑙)), 𝑄2(𝜌(𝑚1, 𝑚2 + 1,… ,𝑚𝑙)),⋯ , 𝑄𝑙(𝜌(𝑚1, 𝑚2, … ,𝑚𝑙 + 1))) ,
 

                                                                                                                                             (10) 

 

3.1 Coprime factors 

     Consider a stabilizable system that is stabilized via a parameter-dependent state feedback 

𝐹(𝛿) for all 𝛿 ∈ 𝛺, such that a stable right coprime factor can be constructed. Then the resulting 

stable coprime factor realization can be reduced by applying the standard balanced truncation 

procedure. The next theorem is a standard result and it is well-known in many references. So, 

it is given here without proof since the proof steps are similar to the result in [7,5] for 1-

dimensional uncertain systems, but here it is applied for parameter-varying multidimensional 

systems. 

 
Theorem 3.4. There exists a parameter-dependent state-feedback gain 𝐹(𝛿) and 𝑄(𝛿) ∈ 𝑀 that 

satisfies (9) with (10) for all 𝛿 ∈ 𝛺 if and only if there exists 𝑃(𝛿) ∈ 𝑀, which satisfies: 

 

 𝐴(𝛿)𝑃(𝛿)𝐴∗(𝛿) − 𝑃(𝛿+) − 𝐵(𝛿)𝐵∗(𝛿) < 0,                           (11) 

for all 𝛿 ∈ 𝛺. Then, a stabilizing choice of 𝐹 is given by: 

 𝐹(𝛿) = −(𝐵∗(𝛿)𝑃−1(𝛿+)𝐵(𝛿))
−1
𝐵∗(𝛿)𝑃−1(𝛿+)𝐴(𝛿), for all 𝛿 ∈ 𝛺.                       (12) 

 

Remark 1. Due to the general dependence of the matrices 𝐴, 𝐵 on 𝛿, the conditions in Theorem 

3.4 should be applied infinitely many times along all 𝛿(𝑚1,𝑚2, … ,𝑚𝑙) ∈ 𝛺. Therefore, to have 

a finite number of conditions to be solved, we grid the range of 𝛿 ∈ 𝛺, as shown below, on 

which the inequality conditions in Theorem 3.4 can be verified.  

Now, if condition (11) is satisfied for all 𝛿 ∈ Ω, then one can construct a right coprime 

factorization (see definition 3.5, below) for the system realization as shown in Theorem 3.6 

below. 

 

Definition 3.5 (Right Coprime Factor). A stabilizable realization 𝐺(𝛿) has stable right 

coprime factors 𝑁(𝛿) and 𝑆(𝛿), for all 𝛿 ∈ 𝛺, if 𝐺(𝛿) = 𝑁(𝛿)𝑆−1(𝛿),  ∀𝛿 ∈ 𝛺, where: 

𝑆(𝛿) = 𝐼 + 𝐹(𝛿) (𝐼 − (𝐴(𝛿) + 𝐵(𝛿)𝐹(𝛿)))
−1

𝐵(𝛿), 

and 
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𝑁(𝛿) = 𝐷(𝛿) + (𝐶(𝛿) + 𝐷(𝛿)𝐹(𝛿)) (𝐼 − (𝐴(𝛿) + 𝐵(𝛿)𝐹(𝛿)))
−1

𝐵(𝛿), 

for all 𝛿 ∈ 𝛺 and 𝐹(𝛿) is the parameter-dependent stabilizing feedback. Note that the left 

coprime factor is the dual version of the right coprime factor. Also, a right coprime factorization 

of 𝐺(𝛿) = 𝑁(𝛿)𝑆−1(𝛿) is said to be contractive if 𝑁∗(𝛿)𝑁(𝛿) + 𝑆(𝛿)𝑆∗(𝛿) ≤ 𝐼, for all 𝛿 ∈ 𝛺. 

Theorem 3.6. For a stabilizable realization 𝐺(𝛿) with the stabilizing feedback 𝐹(𝛿) (12), for 

all 𝛿 ∈ Ω, the contractive right coprime factor of 𝐺(𝛿) is: 

𝐺(𝛿) = 𝑁(𝛿)𝑆−1(𝛿) =

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

A B F B

F I

C D F D

   



   

+ 
 
 
 + 

=
( ) ( )

( ) ( )

F F

F F

A B

C D

 

 

 
 
  

, for all 𝛿 ∈ 𝛺,           (13) 

such that 𝑁∗(𝛿)𝑁(𝛿) + 𝑆(𝛿)𝑆∗(𝛿) ≤ 𝐼, where: 

𝑆(𝛿) = 𝐼 + 𝐹(𝛿) (𝐼 − (𝐴(𝛿) + 𝐵(𝛿)𝐹(𝛿)))
−1

𝐵(𝛿), 

and 

𝑁(𝛿) = 𝐷(𝛿) + (𝐶(𝛿) + 𝐷(𝛿)𝐹(𝛿)) (𝐼 − (𝐴(𝛿) + 𝐵(𝛿)𝐹(𝛿)))
−1

𝐵(𝛿). 

Proof. The proof follows the same line as that of Theorem (5) in [7], and Proposition (6) in [5], 

which are considered for 1-dimensional uncertain systems defined in LFR (Linear Fractional 

Representation) form.  ◻ 

 

Remark 2. Theorem 3.6 is stated for parameter-varying multidimensional system which is 

varying with respect to the scheduling parameter 𝛿(𝑚1,𝑚2, … ,𝑚𝑙) ∈ 𝛺, i.e., to satisfy the 

conditions of the theorem, one needs to solve infinity many times LMIs, which is not possible, 

therefore one needs to base on gridding the range of the scheduling parameter 𝛿 ∈ 𝛺, in order 

to have finite conditions rather than infinite ones.  

Now, the realization in (13) is clearly stable. Therefore, the balanced truncation can be applied 

to reduce the system. Let the resulting reduced realization with the reduced-order 𝑟 = ∑ 𝑟𝑖
𝑙
𝑖=1 <

𝑛 = ∑ 𝑛𝑖
𝑙
𝑖=1  be denoted as: 

               𝐺𝑟(𝛿) = 𝑁𝑟(𝛿)(𝑆−1)𝑟(𝛿) =
( ) ( )

( ) ( )

r r
F F

r
FF

A B

C D

 

 

 
 
  

, for all 𝛿 ∈ 𝛺.                             (14) 

     Then the error bound between the full-order realization 𝐺(𝛿) and the reduced-order version 

𝐺𝑟(𝛿) can be examined and determined via induced norms as stated in the following theorem. 

 
Theorem 3.7. Let the conditions in Theorems 3.4 and 3.6 be satisfied, such that a reduced 

realization 𝐺𝑟(𝛿) with the reduced order 𝑟 = ∑ 𝑟𝑖
𝑙
𝑖=1  (see (14)) exists for the full realization 

𝐺(𝛿) with the full order 𝑛 = ∑ 𝑛𝑖
𝑙
𝑖=1 , see (13), for all 𝛿 ∈ 𝛺, where 𝑟 < 𝑛, then the error bound 

between 𝐺(𝛿) and 𝐺𝑟(𝛿) satisfies: 

 

 ∥𝐺(𝛿) − 𝐺𝑟(𝛿)∥𝑖𝑛𝑑 ≤ 2(∑ ∑ 𝜎𝑖𝑗(𝛿)
𝑛𝑖
j=𝑟𝑖+1

l
i=1 ), for all 𝛿 ∈ 𝛺,               (15) 

 

        where 𝜎𝑖𝑗(𝛿) are the diagonal entries of the truncated parts of the balanced Gramians. 

Proof. The proof is similar to that in [6,7,5], so it is omitted here.  ◻ 

 

Remark 3. Note that the realization here depends on the scheduling parameter 

𝛿(𝑚1,𝑚2, … ,𝑚𝑙) ∈ 𝛺, which means that the stable right coprime factor is parameter-

dependent with respect to 𝛿 ∈ 𝛺, and the condition of Theorem 3.7 follows by the application 

infinitely many times over the scheduling parameter range. For practical implementation, by 

gridding the scheduling parameter range, we can apply these conditions with a finite number as 
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shown below. In contrast to the work in [6], [7], and [5] where the considered system is a 1-

dimensional uncertain system, the considered system here is a multidimensional system and all 

realization matrices are partitioned according to this dimension.  

 

      Next, in order to illustrate our proposed approach for reducing stabilizable parameter-

varying multidimensional systems. First, we introduce an algorithm to verify the conditions in 

Theorems 3.4, and 3.6 on grid points over the parameter range of the scheduling parameter. 

 

Remark 4. It is important before applying the proposed algorithms to define the functional 

dependence of 𝑃 on 𝛿. A plausible choice of such a function is to be similar to the functional 

dependence of the system matrices on 𝛿, see [16] for other choices. 

Algorithm 1: Gridding Algorithm. 

1. Define grid points over the parameter range of 𝛿(𝑚1,𝑚2, … ,𝑚𝑙) ∈ 𝛺 with a grid size of 𝑛𝑔, 

such that 𝛿 = [𝛿1, 𝛿2, … , 𝛿(𝑛𝑔)]. 

2.  Construct and solve all the conditions in Theorems 3.4, and 3.6 (as illustrated in Algorithm 

2 below) at each grid point 𝛿𝑘,  𝑘 = 1,… , 𝑛𝑔. 

3.  Define denser grid points 𝑛𝑔𝑟 which considers points between the grid points 𝑛𝑔 (for 

verification). 

4.  Check the validity of the solution from step 2 over the denser grid points, if it is valid then 

go to the next step. If not, then increase the grid points 𝑛𝑔 and 𝑛𝑔𝑟 accordingly and go to step 

2. 

 

Now, in order to stabilize the system (i.e., applying Theorem 3.4 and Theorem 3.6), construct 

a stabilizing feedback (at each grid point, as stated in Algorithm 1) by following the next 

algorithm. 

 

Algorithm 2: Stabilizing Feedback Construction Algorithm. 

1.  At each grid point of 𝛿 ∈ 𝛺, solve (11) for 𝑃(𝛿) ∈ 𝑀 and compute 𝐹(𝛿), ∀𝛿 ∈ 𝛺  from 

(12). 

2.  Given 𝐹(𝛿), the stable right coprime factor of 𝐺(𝛿),  𝛿 ∈ 𝛺 as in (13), can be computed at 

each grid point of 𝛿 ∈ 𝛺 as: 

 

                        𝐺𝑠(𝛿) = 𝑁(𝛿)𝑆
−1(𝛿) = [

𝐴𝐹(𝛿) 𝐵𝐹(𝛿)

𝐶𝐹(𝛿) 𝐷𝐹(𝛿)
] ,  𝛿 ∈ 𝛺. (16) 

 

      Now, the resulting realization 𝐺𝑠(𝛿), 𝛿 ∈ 𝛺 in (16) is stable, so the balanced truncation 

method can be applied to get the reduced system. Before applying the balanced realization and 

balanced truncation for the resulting stabilized realization (16), we need first to define the set 

of parameter-dependent balanced transformation 𝑇(𝛿) ∈ Ʈ, ∀ 𝛿 ∈ 𝛺, as presented in the next 

subsection. 

 

3.2 Balanced realization  

     In order to transform the stabilized realization 𝐺𝑠(𝛿) (defined in (16)) into the balanced 

realization 𝐺𝑏𝑎𝑙(𝛿) for all 𝛿 ∈ 𝛺, such that 
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 𝐺𝑏𝑎𝑙(𝛿) = [
𝐴𝐹
𝑏𝑎𝑙(𝛿) 𝐵𝐹

𝑏𝑎𝑙(𝛿)

𝐶𝐹
𝑏𝑎𝑙(𝛿) 𝐷𝐹

𝑏𝑎𝑙(𝛿)
] , ∀ 𝛿 ∈ 𝛺, (17) 

 

and also to transform the parameter-dependent Gramians 𝑋(𝛿), 𝑌(𝛿) ∈ 𝑀 into the balanced 

versions 𝑋𝑏𝑎𝑙(𝛿) = 𝑌𝑏𝑎𝑙(𝛿) = ∑(𝛿), ∀ 𝛿 ∈ 𝛺, we need to define the set of parameter-

dependent balanced transformation 𝑇(𝛿) ∈ Ʈ, ∀ 𝛿 ∈ 𝛺, where the set Ʈ is defined as:  

 
Ʈ = {𝑇(𝛿) ∈ ℝ𝑛×𝑛: det(𝑇(𝛿)) ≠ 0, 𝑇(𝛿) = 𝑑𝑖𝑎𝑔(𝑇1(𝛿), … , 𝑇𝑙(𝛿)), 𝑇𝑖(𝛿) ∈ 𝑅

𝑛𝑖×𝑛𝑖 , 𝑖 = 1, … , 𝑙, ∀𝛿 ∈ 𝛺}. 

    

  Then construct the balanced realization (at each grid point of 𝛿 ∈ 𝛺) by using the steps in the 

next Algorithm. Note that all steps in Algorithm 3 should be applied at each grid point of 𝛿 ∈ 𝛺 

as given in Algorithm 1. 

 

Algorithm 3: Balanced Realization Algorithm. 

1. Solve the two conditions in (8) for 𝑋(𝛿), 𝑌(𝛿) ∈ 𝑀, ∀ 𝛿 ∈ 𝛺, (on the stabilizable 

realization (16)) by solving 

 
𝐴𝐹(𝛿)𝑋(𝛿)𝐴𝐹

∗ (𝛿) − 𝑋(𝛿+) + 𝐵𝐹(𝛿)𝐵𝐹
∗(𝛿) < 0

𝐴𝐹
∗ (𝛿)𝑌(𝛿+)𝐴𝐹(𝛿) − 𝑌(𝛿) + 𝐶𝐹

∗(𝛿)𝐶𝐹(𝛿) < 0
, ∀𝛿 ∈ 𝛺. 

Note that, a trace heuristic approach [3] can be used here for solving the above conditions. 

2. Factorize each block of 𝑋(𝛿) ∈ 𝑀 and 𝑌(𝛿) ∈ 𝑀,  ∀𝛿 ∈ 𝛺 as: 

𝑋1(𝛿) = 𝑅1
∗(𝛿)𝑅1(𝛿), 𝑋2(𝛿) = 𝑅2

∗(𝛿)𝑅2(𝛿), . . . , 𝑋𝑙(𝛿) = 𝑅𝑙
∗(𝛿)𝑅𝑙(𝛿), 

and  

𝑌1(𝛿) = 𝐿1
∗ (𝛿)𝐿1(𝛿),  𝑌2(𝛿) = 𝐿2

∗ (𝛿)𝐿2(𝛿), . . . , 𝑌𝑙(𝛿) = 𝐿𝑙
∗(𝛿)𝐿𝑙(𝛿). 

3. Decompose the blocks 𝐿𝑖(𝛿)𝑅𝑖
∗(𝛿), 𝑖 = 1,… , 𝑙, ∀𝛿 ∈ 𝛺,  by using the SVD, such that 

𝐿1(𝛿)𝑅1
∗(𝛿) = 𝑈1(𝛿)𝛴1(𝛿)𝑉1(𝛿), 𝐿2(𝛿)𝑅2

∗(𝛿) = 𝑈2(𝛿)𝛴2(𝛿)𝑉2(𝛿), …,  
𝐿𝑙(𝛿)𝑅𝑙

∗(𝛿) = 𝑈𝑙(𝛿)𝛴𝑙(𝛿)𝑉𝑙(𝛿), ∀ 𝛿 ∈ 𝛺.  
4. Define 

𝑇1(𝛿) = 𝑅1
∗(𝛿)𝑉1(𝛿)𝛴1

(−1/2)(𝛿), 𝑇2(𝛿) = 𝑅2
∗(𝛿)𝑉2(𝛿)𝛴2

(−1/2)(𝛿),…,  

  𝑇𝑙(𝛿) = 𝑅𝑙
∗(𝛿)𝑉𝑙(𝛿)𝛴𝑙

(−1/2)(𝛿), 
and  

𝑇1
−1(𝛿) = 𝛴1

(−1/2)(𝛿)𝑈1
∗(𝛿)𝐿1(𝛿), 𝑇2

−1(𝛿) = 𝛴2
(−1/2)(𝛿)𝑈2

∗(𝛿)𝐿2(𝛿),…,  

𝑇𝑙
−1(𝛿) = 𝛴𝑙

(−1/2)(𝛿)𝑈𝑙
∗(𝛿)𝐿𝑙(𝛿). 

Then, set: 

𝑇(𝛿) = diag(𝑇1(𝛿), 𝑇2(𝛿),… , 𝑇𝑙(𝛿)), 
and 

𝑇−1(𝛿) = diag(𝑇1
−1(𝛿), 𝑇2

−1(𝛿),… , 𝑇𝑙
−1(𝛿)), ∀ 𝛿 ∈ 𝛺, where 𝑇(𝛿) ∈ Ʈ. 

5.  Use the parameter-dependent balanced transformation 𝑇(𝛿) ∈ Ʈ, ∀𝛿 ∈ 𝛺 to define the 

balanced realization 𝐺𝑏𝑎𝑙(𝛿), ∀𝛿 ∈ 𝛺 (which is defined in (17) above) as follows: 

𝐴𝐹
𝑏𝑎𝑙(𝛿) = 𝑇−1(𝛿+)𝐴𝐹(𝛿)𝑇(𝛿), 𝐵𝐹

𝑏𝑎𝑙(𝛿) = 𝑇−1(𝛿+)𝐵𝐹(𝛿), 𝐶𝐹
𝑏𝑎𝑙(𝛿) = 𝐶𝐹(𝛿)𝑇(𝛿), and 

𝐷𝐹
𝑏𝑎𝑙(𝛿) = 𝐷𝐹(𝛿). 

Also, define the balanced Gramians as: 

𝑋𝑏𝑎𝑙(𝛿) = 𝑇−1(𝛿)𝑋(𝛿)𝑇−∗(𝛿)   and   𝑌𝑏𝑎𝑙(𝛿) = 𝑇∗(𝛿)𝑌(𝛿)𝑇(𝛿), 
such that: 

𝑋𝑏𝑎𝑙(𝛿) = 𝑌𝑏𝑎𝑙(𝛿) = 𝛴(𝛿) = diag(𝛴1(𝛿), 𝛴2(𝛿),… , 𝛴𝑙(𝛿)), ∀𝛿 ∈ 𝛺, see Remark 5, below.  

 



Al-Taie et al.                                           Iraqi Journal of Science, 2024, Vol. 65, No. 4, pp: 2186-2197 

2194 

 

Remark 5. In Algorithm 3, note that  

𝛴1(𝛿) = diag (𝜎11(𝛿), 𝜎12(𝛿),… , 𝜎1𝑛1(𝛿)), 

𝛴2(𝛿) = diag (𝜎21(𝛿), 𝜎22(𝛿), … , 𝜎2𝑛2(𝛿)), 

⋮ 

           𝛴𝑙(𝛿) = diag (𝜎𝑙1(𝛿), 𝜎𝑙2(𝛿),… , 𝜎𝑙𝑛𝑙(𝛿)) , ∀ 𝛿 ∈ 𝛺. 

The values of 𝜎𝑖𝑗(𝛿), 𝑖 = 1,⋯ , 𝑙, 𝑗 = 1,⋯ , 𝑛𝑖 , ∀ 𝛿 ∈ 𝛺, (see (15) as well) are ordered in 

descending order along the diagonal of 𝛴𝑖(𝛿), for all 𝑖 and 𝑗, i.e., 

𝜎11(𝛿) > 𝜎12(𝛿) > ⋯ > 𝜎1𝑛1(𝛿), 

𝜎21(𝛿) > 𝜎22(𝛿) > ⋯ > 𝜎2𝑛2(𝛿), 

⋮ 
𝜎𝑙1(𝛿) > 𝜎𝑙2(𝛿) > ⋯ > 𝜎𝑙𝑛𝑙(𝛿). 

The smallest values represent the less significant ones. 

 

3.3 Balanced truncation 

In the previous subsection, after balancing the realization, we determine the less significant 

parts of the balanced system according to the singular values 𝜎𝑖𝑗(𝛿), 𝑖 = 1,2,⋯ , 𝑙,  

𝑗 = 1,2,⋯ , 𝑛𝑖 , ∀ 𝛿 ∈ 𝛺. 

Here, we partition the balanced Gramians and the balanced system realization according to the 

significant and non-significant parts, respectively. Then, we can truncate the parts which are 

related to the non-significant ones, such that we end up with the reduced version realization. 

Therefore, one could partition 𝛴(𝛿) into two blocks according to the significant 𝛴𝑠(𝛿) and the 

non-significant ones 𝛴𝑛𝑠(𝛿), ∀𝛿 ∈ 𝛺, such that: 

 

𝛴(𝛿) = [
𝛴𝑠(𝛿)

𝛴𝑛𝑠(𝛿)
] , ∀ 𝛿 ∈ 𝛺, 

where: 

𝛴𝑠(𝛿) = diag(𝛴1
𝑠(𝛿), 𝛴2

𝑠(𝛿),… , 𝛴𝑙
𝑠(𝛿))  and  𝛴𝑛𝑠(𝛿) = diag(𝛴1

𝑛𝑠(𝛿), 𝛴2
𝑛𝑠(𝛿),… , 𝛴𝑙

𝑛𝑠(𝛿)), 

such that: 

𝛴1
𝑠(𝛿) = diag (𝜎11(𝛿), 𝜎12(𝛿),… , 𝜎1𝑟1(𝛿))  and  𝛴1

𝑛𝑠(𝛿) = diag (𝜎1 𝑟1+1(𝛿), … , 𝜎1𝑛1(𝛿)), 

𝛴2
𝑠(𝛿) = diag (𝜎21(𝛿), 𝜎22(𝛿),… , 𝜎2𝑟2(𝛿))  and  𝛴2

𝑛𝑠(𝛿) = diag (𝜎2 𝑟2+1(𝛿), … , 𝜎2𝑛2(𝛿)), 

⋮ 

𝛴𝑙
𝑠(𝛿) = diag (𝜎𝑙1(𝛿), 𝜎𝑙2(𝛿),… , 𝜎𝑙𝑟𝑙(𝛿))  and  𝛴𝑙

𝑛𝑠(𝛿) = diag (𝜎𝑙 𝑟𝑙+1(𝛿),… , 𝜎𝑙𝑛𝑙(𝛿)), 

where 𝑟𝑖, 𝑖 = 1,2, … , 𝑙 are the order of the reduced blocks such that the resulting reduced order 

is 𝑟 = ∑ 𝑟𝑖
𝑙
𝑖=1 , as already defined in Section 2. 

Then, we give the following Algorithm for constructing the reduced version realization 𝐺𝑟(𝛿), 
(at each grid point of ∀ 𝛿 ∈ 𝛺, see Algorithm 1). 

 

Algorithm 4: Balanced Truncation and Reduced System Construction. 

 1. Partition 𝐴𝐹
𝑏𝑎𝑙(𝛿), 𝐵𝐹

𝑏𝑎𝑙(𝛿), and, 𝐶𝐹
𝑏𝑎𝑙(𝛿) (defined in Algorithm 3) according to the 

significant, and non-significant blocks of 𝛴(𝛿) = [
𝛴𝑠(𝛿)

𝛴𝑛𝑠(𝛿)
] , ∀𝛿 ∈ 𝛺, such that: 

𝐴𝐹
𝑏𝑎𝑙 = [

𝐴𝐹
𝑟 (𝛿) 𝐴𝐹

12(𝛿)

𝐴𝐹
21(𝛿) 𝐴𝐹

22(𝛿)
] , 𝐵𝐹

𝑏𝑎𝑙 = [
𝐵𝐹
𝑟

𝐵𝐹
2]  and  𝐶𝐹

𝑏𝑎𝑙 = [𝐶𝐹
𝑟 𝐶𝐹

2]. 
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2. Truncate the blocks which are related to the non-significant parts, and define the reduced 

versions as: 𝐴𝐹
𝑟 (𝛿), 𝐵𝐹

𝑟(𝛿), and 𝐶𝐹
𝑟(𝛿). 

3. Finally, (see equation (13)) since 𝐴𝐹
𝑟 (𝛿) = 𝐴𝑟(𝛿) + 𝐵𝑟(𝛿)𝐹𝑟(𝛿) we can compute 𝐴𝑟(𝛿) =

𝐴𝐹
𝑟 (𝛿) − 𝐵𝑟(𝛿)𝐹𝑟(𝛿), also 𝐵𝑟(𝛿) = 𝐵𝐹

𝑟(𝛿) and 𝐶𝐹
𝑟(𝛿) = [

𝐹𝑟(𝛿)

𝐶𝑟(𝛿) + 𝐷(𝛿)𝐹𝑟(𝛿)
] can determine 

𝐶𝑟(𝛿), ∀ 𝛿 ∈ 𝛺. So, the reduced realization 𝐺𝑟(𝛿),  ∀𝛿 ∈ 𝛺 is constructed. 

 

Now, summarize the right coprime factor reduction scheme (from Algorithm 1 to Algorithm 4) 

in the following algorithm, which has to be applied at each grid point of ∀ 𝛿 ∈ 𝛺 as given in 

Algorithm 1. 

 

Algorithm 5: Right Coprime Factor Reduction Scheme. 

Consider the stabilizable parameter-varying multidimensional system realization 𝐺(𝛿),  𝛿 ∈ 𝛺 

given in (13) with order 𝑛 = ∑ 𝑛𝑖
𝑙
𝑖=1 , a reduced realization version 𝐺𝑟(𝛿), ∀ 𝛿 ∈ 𝛺 with 

reduced order 𝑟 = ∑ 𝑟𝑖
𝑙
𝑖=1 , such that 𝑟 < 𝑛 can be constructed via balanced truncation by 

applying the following steps: 

1. Define grid points over the parameter range of the scheduling parameter (𝛿 ∈ 𝛺) via applying 

Algorithm 1. 

2. At each grid point of 𝛿 ∈ 𝛺, stabilize the realization via constructing a stabilizing feedback 

by following the steps in Algorithm 2. 

3. At each grid point of 𝛿 ∈ 𝛺, transform the stabilizable realization 𝐺𝑠(𝛿), ∀ 𝛿 ∈ 𝛺 (defined in 

(16)) to the balanced realization 𝐺𝑏𝑎𝑙(𝛿), ∀ 𝛿 ∈ 𝛺, (defined in (17)) by the parameter-

dependent balanced transformation 𝑇(𝛿) ∈ Ʈ, ∀ 𝛿 ∈ 𝛺 as presented in Algorithm 3. 

4. Finally, follow Algorithm 4 to construct the reduced system 𝐺𝑟(𝛿), ∀ 𝛿 ∈ 𝛺. 

 

Following the above steps in Algorithm 5 leads to the desired reduced system with a small error 

bound as shown in Theorem 3.7. 

Next, we show the application of our results on a simulation example, where (for simplicity) 

the considered system is a 2-dimensional system varying with respect to one variable. 

 

4. Application Example 

     This section demonstrates the validity and applicability of our proposed method in 

Algorithm 5 in the previous section, where it is applied to a modified version of the numerical 

example of [6]. 

Consider the parameter-varying two-dimensional system (to be stabilizable by computing 

parameter-dependent state feedback): 

[

𝑥1(𝑚1 + 1,𝑚2)
𝑥2(𝑚1, 𝑚2 + 1)
𝑦(𝑚1,𝑚2)

]

=

[
 
 
 
 
 
0.5034 0.1768 −0.2340 −0.1406 𝛿(𝑚1) 0.1700
0.0096 0.5498 −0.0362 −0.6744 2.2496 0.3442
0.0337 0.2546 0.0984 −0.4051 1.3599 0.2143
−0.2709 0.1470 0.3249 0.0484 0.6356 0.8821
−0.0909 0.0491 0.1075 −0.1019 0.5681 0.4479
3.0396 −0.9913 −0.7073 5.2369 −8.4887 0 ]

 
 
 
 
 

[

𝑥1(𝑚1, 𝑚2)
𝑥2(𝑚1, 𝑚2)
𝑢(𝑚1,𝑚2)

], 

where 𝛿(𝑚1), 𝑚1 ∈ ℤ+, is defined such that: 

−0.6 ≤ 𝛿(𝑚1)  ≤ 0.6, and 𝑥1(𝑚1,𝑚2) ∈ ℝ
3×1, 𝑥2(𝑚1, 𝑚2) ∈ ℝ

2×1. 

So, the system has constant-dimension 𝑛 = 𝑛1 + 𝑛2 = 3 + 2 = 5. 
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Algorithm 5 is applied to the given system by gridding the parameter range of 𝛿(𝑚1), with a 

grid size of 𝑛g = 25, such that:  𝛿 = [−0.60     − 0.55     − 0.50    − 0.45     − 0.40     

−0.35      − 0.30   − 0.25     − 0.20    − 0.15   …      0.45      0.50       0.55       0.60].        (18) 

 

     The order of the reduced system is r = 2 < 5, where 𝑟1 = 1 and 𝑟2 = 1. 

The value of the error bound over the whole parameter range is 0.0193, which is the maximum 

(the worst) error bound over the whole range, where the value of the error bound at different 

values of 𝛿 (see (18)), e.g., 𝛿 = −0.45 is 0.0022 and at 𝛿 = 0.05 is 0.0010 and at 𝛿 = 0.45 is 

0.0193, and at 𝛿 = 0.55 is 0.0151. 

Figure 1 shows the impulse response of the system 𝐺(𝛿) and 𝐺𝑟(𝛿) at two different values of 

𝛿, where the values are taken at the boundaries of the grid points as 𝛿 = −0.45 and 

𝛿 = 0.55. As mentioned above the error bound at the value of 𝛿 = −0.45 is 0.0022 and at 𝛿 =
0.55 is 0.0151 which means that the difference error between these two values is  

(0.0151)-(0.0022) = 0.0129. 

 

 
Figure 1: Impulse response for system 𝐺(𝛿) and 𝐺𝑟(𝛿) at 𝛿 = −0.45, Left, and at 𝛿 = 0.55, 

Right. 

 

5. Conclusions 

     In this work, a coprime factor model reduction approach is applied to unstable (stabilizable) 

parameter-varying multidimensional systems. Thus, a balanced truncation technique can be 

used after stabilizing the system using parameter-dependent state feedback and by defining a 

stable coprime factor. Moreover, a minimized error bound over the whole parameter range is 

guaranteed. In order to reduce the conservatism of the reduction problem to be solved, 

parameter-varying Gramians are considered in this paper instead of the parameter-invariant 

ones. Gridding the range of the scheduling parameter allows a finite number of LMIs to be 

solved to determine the reduced order system or to solve the model reduction problem. A 

numerical example has been used to show the validation of our result, where Algorithm 5 has 

been applied successfully on a parameter-varying two-dimensional system.  
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