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Abstract: 

     In this paper, a new proper generalization of small monoform modules, namely 

𝑍-Small monoform modules is introduced and studied. An 𝑅-module 𝐶 is called 𝑍-

small monoform module (ZSM module; for short), if every non-zero partial 

endomorphism of 𝐶 has 𝑍-small kernel. 
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 الخلاصة:
لمفهوم المقاسات ذات الصيغة المتباينة الصغيرة واطلقنا عليه         في هذا البحث قدمنا ودرسنا تعميم جديد 

النمط   من  المتباينة  الصيغة  ذات  المقاسات  المقاس  -Zاسم  ان  حيث   .𝐶    علىR    ذا صيغة مقاس  يسمى 
النمط من  صغيرة  للمقاس    -ZSM)مقاس  Z-متباينة  جزئي  تشاكل  كل  كان  اذا  نواة    𝐶للاختصار(  يمتلك 

 .Z-صغيرة من النمط
 

1.Introduction 

     Throughout this paper, all rings have identity and all modules are unitary right 𝑅-modules. 

Zelmanowitiz in [1] introduced the concept of monoform modules, where a module 𝐶  is 

called monoform if every non-zero partial endomorphisms is monomorphisim. A partial 

endomorphisms of a module means an R-homomorphism if 𝑔: 𝐴 ⟶C where 𝐴 is a submodule 

of C [1]. Inaam Hadi and Hassan Marhoon in [2] introduced and studied the notion of small 

monoform, where an 𝑅-module 𝐶 is named small monoform if for each nonzero submodule 𝐴 

of 𝐶 and for each non-zero 𝑓 ∈ 𝐻𝑜𝑚 (𝐴, 𝐶), 𝑘𝑒𝑟 𝑓 is small in 𝐴. Note that a submodule 𝐴 of 

a module 𝑀 is called small (shortly 𝐴 ≪ 𝑀), if whenever 𝐴 + 𝐵 = 𝑀 and B is a submodule of 

𝑀, then 𝐵 = 𝑀 [3]. Clearly, every monoform module is small monoform. But the converse is 

not true in general, see [2]. Amina and Alaa in [4] said that a submodule 𝐴 of an 𝑅-module 𝑀 
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is 𝑍-small in 𝑀 (briefly 𝐴 ≪𝑍 𝑀) if whenever 𝐴 + 𝐵 = 𝑀 and 𝑍2(𝑀) ⊆ B, then 𝐵 = 𝑀 

where 𝑍2(𝑀) is defined by 
𝑍2(𝑀)

𝑍(𝑀)
 =  𝑍 (

𝑀

𝑍(𝑀)
 ) [3], where Z(M) is singular submodule of M.  

A module M is called singular (respectively, non-singular) if 𝑍(𝑀) = 𝑀(respectively 

𝑍(𝑀) = 0) [3]. 

 

     A module 𝑀 is called 𝑍2-torsion if 𝑍2(𝑀) = 𝑀. Note that if 𝑀 is singular, then 𝑀 is 𝑍2-

torsion, and 𝑀 is non-singular if and only if 𝑍2(𝑀) = 0 [5].  

For more information, one can see [5], [6]. 

Obviously, if 𝐴 is a small submodule of a module 𝐶, then 𝐴 is 𝑍-small, but the converse is not 

true in general, see [4]. 

 

     These works motivate us to introduce a new concept namely 𝑍-small monoform module 

(denoted by ZSM module), where we call a module 𝐶 is a ZSM module if every non-zero 

partial endomorphism of 𝐶 has a 𝑍-small kernel. 

In this paper, our concern is to study these types of modules. Next, we use the following 

notations. For submodules 𝐴 and 𝐵 of a module 𝐶, 𝐴 ≤ 𝐵 denotes A is a submodule of 

𝐵,   𝐴 ≤⨁ 𝐶 denotes that 𝐴 is a direct summand of 𝐶, 𝐻𝑜𝑚 (𝐴, 𝐶) denotes the ring of all 

homomorphisms from 𝐴 into 𝐶. 𝐴 ≤𝑒𝑠𝑠 𝐶 denote 𝐴 is an essential in 𝐶, that is whenever 𝐴 ∩
𝐵 = 0 and 𝐵 ≤ 𝐶, then 𝐵 = (0) [3]. 

Recall that an R-module is uniform if all its submodules are essential. An R - module M is 

called a prime module if (0) is a prime submodule of M; that is whenever 

 𝑟 ∈ 𝑅 ,𝑚 ∈ 𝑀 , 𝑟𝑚 = 0 implies that either 𝑚 = 0 or  𝑟 ∈ 𝑎𝑛𝑛𝑀 = (0:𝑅𝑀)[7]. 

Some known results about monoform, small monoform modules are stated, as follows: 

 

Remarks 1.1.  

1. Let 𝑅 be a commutative ring and 𝐶 be a right 𝑅-module. Then 𝐶 is monoform if and only 

if 𝐶 is a uniform prime module [8]. 

2. Let R be a ring and C be a right R-module. Then C is a non-singular monoform if and 

only if 𝐶 is uniform [8]. 

3. It is clear that every monoform module is small monoform, but the converse in general is 

not true, for example 𝑍4 is small monoform 𝑍-module but it is not monoform [2]. 

4. If 𝐶 is a small monoform module, then 𝐶 is uniform [2]. 

5. The epimorphic image of small monoform module is not necessarily small monoform [2].  

6. Every non-zero submodule of small monoform module is small monoform [2]. 

7. If 𝐶 is a small monoform 𝑅-module, then 𝐶 is a small monoform �̅� -module, where �̅� =
𝑅

𝑎𝑛𝑛𝑀
 [2]. 

 

     The following lemma give as some properties of  𝑍 -small submodules which will be used 

in this paper. 

 

Lemma 1.2. 

1. Let 𝐸 be an 𝑅-module, let 𝐴 ≤ 𝐵 ≤ 𝐸. Then 𝐵 ≪𝑧 𝐸 implies 𝐴 ≪𝑧 𝐸 and  
𝐵

𝐴 
≪𝑧

𝐸

𝐴
  [4]. 

       We see the converse will be satisfied under the condition, if 
𝑍2 (𝐸)+𝐴

𝐴
= 𝑍2 (

𝐸

𝐴
). 

2. Let 𝐴1, … , 𝐴𝑛 be submodules of a module 𝐸 the 𝐴𝑖 ≪𝑍 𝐸 (∀𝑖 = 1,…… , 𝑛) if and only if 
∑ 𝐴𝑖
𝑛
𝑖=1 ≪𝑧 𝐸 [4]. 

3. Let 𝐴 and 𝐵 be submodules of a module 𝐸 with 𝐴 ≤ 𝐵. If 𝐴 ≪𝑧 𝐵, then 𝐴 ≪𝑧 𝐸 [4]. 

4. Let 𝑓: 𝐸1 ⟶ 𝐸2 be an 𝑅-homomorphism and let 𝐴 ≪𝑧 𝐸1, then 𝑓(𝐴) ≪𝑧 𝐸2 [4]. 
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5. Let 𝐸 = 𝐸1⨁𝐸2  be an 𝑅-module, 𝐴1 ≤ 𝐸1, 𝐴2 ≤ 𝐸2. Then 𝐴1⨁𝐴2  ≪𝑧 𝐸 , if and only if 

𝐴1 ≪𝑧 𝐸1 and 𝐴2 ≪𝑧 𝐸2 [4]. 

6. Let 𝐸 be a non-singular module and 𝐻 ≤ 𝐸. Then 𝐻 ≪ 𝐸 if and only if 𝐻 ≪𝑧 𝐸 [4]. 

        Moreover, we notice that 

7. If 𝐸 is a singular module, then every submodule of 𝐸 is 𝑍-small. 

8. For any module 𝐸, 𝐸 ≪𝑧 𝐸 if and only if 𝑍2(𝐸) = 𝐸 . 

 

2. Z-Small monoform modules 

Definition 2.1. An 𝑅-module 𝐶 is called 𝑍-small monoform module (ZSM module; for short), 

if every nonzero partial endomorphism of 𝐶 has 𝑍-small kernel. 

 

Remarks and Examples 2.2. 

1) Every singular module (hence 𝑍2-torsion) is a ZSM module. 

Proof.  Let 𝐶 be a module with 𝑍2(𝐶) = 𝐶, let  𝐴 ≤ 𝐶, 𝐴 ≠ (0). 
Then  𝑍2(𝐴) = 𝑍2(𝐶) ∩ 𝐴 = 𝐶 ∩ 𝐴 = 𝐴, thus 𝐴 is 𝑍2-torsion. 

Hence by Lemma 1.2 (7), every submodule of 𝐴 is 𝑍-small. So that for any non-zero 

homomorphism𝑓: 𝐴 ⟶ 𝐶, 𝐾𝑒𝑟𝑓 ≪𝑧 𝐴. Therefore,  𝐶 is a ZSM module. □  

In particular for each positive integer n, ℤ𝑛 as ℤ-module is a ZSM module.  

2) It is clear that every small monoform  module is  a ZSM module, however the following 

example shows that the converse may be not true: 

Let 𝐸 = ℤ12 as ℤ- modules. Then 𝐸 is a ZSM module by part (1). Let 𝐴 = {0̅, 2̅, 4,̅ 6̅, 8̅, 10̅̅̅̅ }, 
and define 𝑓: 𝐴 ⟶ 𝐸   by 𝑓(0̅) = 𝑓(6̅) = 0̅ ,   𝑓(2) = 𝑓(8̅) = 4̅, 𝑓(4̅) = 𝑓(10̅̅̅̅ ) = 8̅.  Then 

𝑘𝑒𝑟 𝑓 = {0̅, 6̅} is not small in 𝐴. Thus 𝐸 is not small monoform. 

3) If 𝐶 is a non-singular module (hence 𝑍2(𝐶) = 0), then 𝐶 is a ZSM module if and only if 𝐶 

is a small monoform module. 

Proof. Let 0 ≠ 𝐴 ≤ 𝐶, let 𝑓 ∈ 𝐻𝑜𝑚𝑒 (𝐴, 𝐶), 𝑓 ≠ 0. Since 𝐶 is non-singular, so that 𝐴 is 

nonsingular and hence by Lemma 1.2 (6), every submodule of 𝐴 is 𝑍-small if and only if it is 

small. Thus 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴 if and only if 𝑘𝑒𝑟𝑓 ≪ 𝐴; that is 𝐶 is a ZSM module if and only if 𝐶 is 

a small monoform module. □  

We conclude that each of the ℤ-modules ℤ, 𝑄, and 𝑍𝑝∞ (where p is a prime number) is a ZSM 

module. Also, ℤ6 as ℤ6-module is not a ZSM module, since it is not small monoform. 

4) Every non-zero submodule of a ZSM module is a ZSM module. 

Proof. Assume 𝐶 is a ZSM module, 0 ≠ 𝐴 ≤ 𝐶. To prove 𝐴 is a ZSM module, let  ≤ 𝐴. If   

f: 𝐵 ⟶ 𝐴 is a homomorphism, then 𝑖 ∘ 𝑓 ∶ 𝐵 → 𝐶 where 𝑖 is the inclusion mapping. As 𝐵 ≤
𝐶, we have ker ( 𝑖 ∘ 𝑓 )≪𝑧B. But ker ( 𝑖 ∘ 𝑓 ) = 𝑘𝑒𝑟 𝑓, so that ker f ≪𝑧 B and 𝐴 is a ZSM 

module. □  

5) If 𝐶 is a ZSM module over a ring 𝑅, then it is not necessarily that 𝐶 is a ZSM as 
𝑅

𝑎𝑛𝑛𝑀
-

module for example the ℤ-module  ℤ6 is a ZSM module and ℤ6 as 
𝑍

6𝑍
≃ ℤ6-module is not a 

ZSM module, 

 

Recall that an 𝑅-module 𝐶 is 𝑍-hollow if every proper submodule of C is 𝑍-small [4]. 

We have the following 

 

Proposition 2.3. If C is a semisimple 𝑍-hollow module, then 𝐶 is a ZSM module. 

Proof. Let 0 ≠ 𝐴 ≤ 𝐶, 𝑓 ∈ 𝐻𝑜𝑚𝑒 (𝐴, 𝐶), 𝑓 ≠ 0. 𝑘𝑒𝑟𝑓 ≤ 𝐴 ≤ 𝐶. As C is a 𝑍-hollow module, 

𝑘𝑒𝑟𝑓 ≪𝑧 𝐶 . But 𝐴 ≤⨁ 𝐶 and 𝑘𝑒𝑟𝑓 ≤ 𝐴, so that 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴 by [4, Lemma 2.8]. Thus 𝐶 is a 

ZSM module. □ 
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        Abbas, Talebi and Hadi  in [9] introduced that: A submodule 𝐴 of  an  𝑅-module 𝐶 is 

called 𝑍-essential (𝐴 ≤𝑍𝑒𝑠 𝐶, for short), if 𝐴 ∩ 𝐵 = 0 and 𝐵 ≤ 𝑍2(𝐶), then 𝐵 = (0), [9]. 

        We say that a submodule 𝐵 of an 𝑅-module 𝐶 is called a 𝑍-complement of submodule 𝐴 

of 𝐶 if 𝐵 is a maximal submodule of 𝐶 with the property 𝐴 ∩ 𝐵 = (0) and 𝐵 ≤ 𝑍2(𝐶) [9]. 

 

Proposition 2.4. An 𝑅-module 𝐶 is a ZSM module if and only if for each 𝐴 ≤𝑍𝑒𝑠 𝐶 and for 

each 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐶), 𝑓 ≠ 0, then 𝑒𝑟𝑓 ≪𝑧 𝐴 . 

Proof. (⇒) It is clear. 
(⇐); Let 0 ≠ 𝐴 ≤ 𝐶 and 𝑓 ∈ 𝐻𝑜𝑚 (𝐴, 𝐶), 𝑓 ≠ 0. 

If 𝐴 ≤𝑍𝑒𝑠 𝐶 , then nothing to prove. If 𝐴 ≰𝑍𝑒𝑠 𝐶, then there exists 𝐵 ≤ 𝐶, 𝐵 is a Z-

complement of 𝐶. Then 𝐴⨁𝐵 ≤𝑍𝑒𝑠 𝐶. Define 𝑔: 𝐴⨁𝐵 ⟶ 𝐶 by 𝑔(𝑎 + 𝑏) = 𝑓(𝑎), ∀𝑎 ∈
𝐴, 𝑏 ∈ 𝐵. 

Then 𝑔 ≠ 0 and so that  𝑘𝑒𝑟𝑔 ≪𝑧 𝐴⨁𝐵. But 𝑘𝑒𝑟𝑔 = 𝑘𝑒𝑟𝑓⨁𝐵. 𝑘𝑒𝑟 𝑓⨁𝐵 ≪𝑧 𝐴⨁𝐵 , which 

implies 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴 by Lemma 1.2(5). □ 

 

Corollary 2.5.  If 𝐶 is a prime 𝑅-module with 𝑍2(𝐶) ≠ 0, then 𝐶 is a ZSM module. 

Proof.  Let 0 ≠ 𝐴 ≤𝑍𝑒𝑠 𝐶  and 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐶), 𝑓 ≠ 0. Assume that  𝑍2(𝐴) = (0). Since 

𝑍2(𝐴) = 𝐴 ∩ 𝑍2(𝐶), we have 𝐴 ∩ 𝑍2(𝐶) = (0). But 𝐴 ≤𝑍𝑒𝑠 𝐶 , so that 𝑍2(𝐶) = (0) which is 

a contradiction. Thus 𝑍2(𝐴) ≠ (0). Also, 𝐴 is a prime module (since 𝐴 ≤ 𝐶 ). Hence by [10, 

Proposition 2.1.11] every submodule of 𝐴 is 𝑍-small, so that 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴. Thus 𝐶 is a ZSM 

module. □ 

 

        The following is a characterization of a ZSM module in the class of Noetherian modules. 

But first recall that a submodule of a module is called 3-generated submodule if it is generated 

by 3- elements. 

Theorem 2.6. Let 𝐶 be a non-zero Noetherian 𝑅-module. Then 𝐶 is a ZSM module if and 

only if each non-zero 3-generated submodule of 𝐶 is a ZSM module. 

Proof. (⇒) It is clear. 

(⇐) Let 0 ≠ 𝐴 ≤ 𝐶 and let 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐶), 𝑓 ≠ 0. To show 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴. If 𝑘𝑒𝑟𝑓 = 0, then 

nothing to prove. If 𝑘𝑒𝑟𝑓 ≠ 0, let 𝑎 ∈ 𝑘𝑒𝑟𝑓, 𝑎 ≠ 0, 𝑏 ∈ 𝐴 and 𝑓(𝑏) = 𝑐. Put  𝐿 =< 𝑎, 𝑏, 𝑐 >, 

so 𝐿 is a ZSM module by hypothesis. Let 𝐻 =< 𝑎, 𝑏 > and 𝑔 = 𝑓|𝐻: 𝐻 ⟶ 𝐿, hence 

𝑘𝑒𝑟𝑔 ≪𝑧 𝐻 ≤ 𝐴 and so 𝑘𝑒𝑟𝑔 ≪𝑧 𝐴. But 𝑎 ∈ 𝑘𝑒𝑟𝑓 implies 𝑎 ∈ 𝑘𝑒𝑟𝑔, hence < 𝑎 >⊆
𝑘𝑒𝑟𝑔 ≪𝑧 𝐴 for any 𝑎 ∈ 𝑘𝑒𝑟𝑓. Since 𝑀 is Noetherian, 𝑘𝑒𝑟𝑓 = 𝑅𝑎1 +⋯+ 𝑅𝑎𝑛 for some 

𝑎1, … . , 𝑎𝑛 ∈ 𝐴. As ⟨𝑎𝑖⟩ ≪𝑧 𝐴 for each 𝑖 = 1,… , 𝑛, so 𝑘𝑒𝑟𝑓 = ∑𝑛
𝑖=1 𝑅𝑎𝑖 ≪𝑧 𝐴 by Lemma 

1.2(3). Thus 𝐶 is a ZSM module. □ 

 

Recall that 𝑀 is called quasi-Dedekind (respectively, small quasi-Dedekind), if for each 𝑓 ∈
𝐸𝑛𝑑(𝑀), 𝑓 ≠ 0, 𝐾𝑒𝑟 𝑓 = 0 (𝑘𝑒𝑟𝑓 ≪ 𝑀), respectively [11], [12]. 

It is known that every small monoform is small quasi-Dedekind [2]. 𝑀 is called 𝑍-small 

quasi-Dedekind if for each 𝑓 ∈ 𝐸𝑛𝑑(𝑀), 𝑓 ≠ 0, 𝑘𝑒𝑟𝑓 ≪𝑧 𝑀 [13]. 

 

Remark 2.7. Every a ZSM module is 𝑍-small quasi-Dedekind. 

 

        Recall that an 𝑅-module 𝐶 is called fully retractable module, if for every 0 ≠ 𝐴 ≤ 𝐶 and 

every 𝑔 ∈ 𝐻𝑜𝑚(𝐴, 𝐶), 𝑔 ≠ 0, then 𝐻𝑜𝑚(𝐶, 𝐴)𝑔 ≠ 0 [7]. 

 

Proposition 2.8. Let 𝐶 be a fully retractable 𝑅-module such that for each0 ≠ 𝐴 ≤ 𝐶, A is 𝑍-

small quasi-Dedekind. Then 𝑀 is a ZSM module. 
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Proof. Let 0 ≠ 𝐴 ≤ 𝐶, 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐶), 𝑓 ≠ 0. As 𝐶 is fully retractable, 𝐻𝑜𝑚(𝐶, 𝐴) 𝑓 ≠ 0. 

Then there exists 𝑔 ∈ 𝐻𝑜𝑚(𝐶, 𝐴) with 𝑔𝑜𝑓 ≠ 0. As 𝐴 is 𝑍-small quasi-Dedekind, 

𝑘𝑒𝑟 𝑔𝑜𝑓 ≪𝑧 𝐴. But 𝑘𝑒𝑟𝑓 ⊆ 𝑘𝑒𝑟 𝑔𝑜𝑓, so that 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴. □         

 

       I.M.A. Hadi and K. H. Marhoon proved that: Let 𝑀 be a quasi-injective cosemisimple 𝑅-

module. Then 𝑀 is small quasi-Dedekind if and only if 𝑀 is small monoform [14, Proposition 

1.1.11]. We state and prove an analogue result, but first,  

        Recall that a submodule 𝐴 of a module 𝐶 is 𝑍-coclosed if whenever 𝐵 ≤ 𝐴, 
𝐴

𝐵
≪𝑧

𝐶

𝐴
  then 

𝐴 = 𝐶 [10]. 

 

Definition 2.9. An 𝑅-module 𝐶 is called 𝑍-cosemisimple if every submodule of 𝐶 is 𝑍-

coclosed. 

        It is clear that every 𝑍-coclosed submodule is coclosed. Hence every 𝑍- cosemisimple is 

cosemisimple, but ℤ6 as ℤ -module is cosemisimple but it is not 𝑍-cosemisimple. 

 

Proposition 2.10. Let 𝐶 be a quasi-injective and 𝑍-cosemisimple module. Then 𝑀 is 𝑍-small 

quasi-Dedekind if and only if 𝑀 is a ZSM module. 

Proof. (⇒) Let 0 ≠ 𝐴 ≤ 𝐶, 𝑓 ∈ 𝐻𝑜𝑚(𝐴, 𝐶), 𝑓 ≠ 0. Since 𝑀 is quasi-injective, there 

exists 𝑔 ∈ 𝐸𝑛𝑑𝐶, such that 𝑔 ∘ 𝑖 = 𝑓, where 𝑖 is the inclusion mapping 𝑖: 𝐴 ⟶  𝐶. 

Hence 𝑔(𝑎) = 𝑓(𝑎), ∀𝑎 ∈ 𝐴, which implies that 𝑘𝑒𝑟𝑓 ⊆ 𝑘𝑒𝑟 𝑔. But 𝐶 is 𝑍-small quasi-

Dedekind, so 𝑘𝑒𝑟𝑔 ≪𝑧 𝐶. This implies 𝑘𝑒𝑟𝑓 ≪𝑧 𝐶. As 𝑘𝑒𝑟𝑓 ⊆ 𝐴 and 𝐴 is 𝑍-coclosed (since 

𝐶 is 𝑍-cosemisimple), so that by [10, Proposition, 2.2.17], 𝑘𝑒𝑟𝑓 ≪𝑧 𝐴. Thus 𝑀 is a ZSM 

module. 

(⇐) It follows from Remark 2.7.    □  
 

        Recall that an 𝑅-module 𝐶 is called retractable if for each 0 ≠ 𝐴 ≤ 𝐶, 𝐻𝑜𝑚(𝐶, 𝐴) ≠ 0. 

Proposition 2.11. Let 𝐶 be a nonsingular retractable 𝑅-module. Then the following 

statements are equivalent. 

1) 𝐶 is a monoform module. 

2) 𝐶 is a small monoform module. 

3) 𝐶 is a uniform module. 

4) 𝐶 is compressible (i.e.,  for each 𝐴 ≤ 𝐶, 𝐴 ≠ 0, there exists a monomorphism 𝑓: 𝐶 ⟶ 𝐴) 

[15]. 

5) 𝐶 is a ZSM module. 

Proof. (1)⇔(2) ⇔(3) ⇔(4), see [14, Proposition, 1.2.9]. 

(2) ⇔(5) it follows from Remarks and Examples 2.2(3). 

 

        Recall that an 𝑅-module 𝑀 is called multiplication 𝑅-module if for each 𝑁 ≤ 𝑀, 𝑁 =
𝑀𝐼 for some 𝐼 ≤ 𝑅 [16]. □       

Proposition 2.12. If 𝑀 is a faithful finitely generated multiplication module over a principle 

ideal ring 𝑅. If 𝑀 is a ZSM module, then 𝑅 is a ZSM ring. 

Proof.  Let 0 ≠ 𝐼 ≤ 𝑅, 𝑓 ∈ 𝐻𝑜𝑚(𝐼, 𝑅), 𝑓 ≠ 0. Since 𝑅 is a principle ideal ring, 𝐼 = ⟨𝑎⟩ for 

some 𝑎 ∈ 𝑅. Let  𝑁 = 𝑀𝑎. Define 𝑔:𝑁 ⟶ 𝑀 by 𝑔(𝑚𝑎) = 𝑚𝑓(𝑎), 𝑔 is a well-defined and 

homomorphism. It is easy to see that 𝑀 𝑘𝑒𝑟𝑓 ⊆ 𝑘𝑒𝑟𝑔. But 𝑘𝑒𝑟𝑔 ≪𝑧 𝑁, since M is a ZSM 

module. Hence 𝑀 𝑘𝑒𝑟𝑓 ≪𝑧 𝑁. To prove 𝑘𝑒𝑟𝑓 ≪𝑧 𝐼 = ⟨𝑎⟩. Let 𝑘𝑒𝑟𝑓 + ⟨𝑏⟩ = 𝑅𝑎 and ⟨𝑏⟩ ⊇
𝑍2(𝑅). Then  𝑀 𝑘𝑒𝑟𝑓 + 𝑀 < 𝑏 >= 𝑀 < 𝑎 >. But 𝑀⟨𝑏⟩ ⊇ 𝑀𝑍2(𝑅) = 𝑍2(𝑀). 
Hence 𝑀⟨𝑏⟩ = 𝑀𝑎, since 𝑀 𝑘𝑒𝑟𝑓 ≪𝑧 𝑀𝑎. As 𝑀 is a faithful finitely generated R-module, 

then ⟨𝑏⟩ = ⟨𝑎⟩. Thus  𝑘𝑒𝑟𝑓 ≪𝑧 ⟨𝑎⟩. □ 
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Corollary 2.13. Let 𝑀 be a cyclic faithful module over a principle ideal ring 𝑅. If 𝑀 is a 

ZSM module, then 𝑅 is ZSM ring. 

 

Remark 2.14.  The direct sum of a ZSM modules need not be a ZSM module, for example: 

𝑀 = ℤ4 as ℤ4-module is  a ZSM module, let 𝐿 = ℤ4 ⊕ℤ4  as ℤ4-module and let                   

𝑓: ℤ4⨁ < 2 >⟶ 𝐿, defined by 𝑓 (𝑥, 𝑦) = (0, 𝑦) , ∀ (𝑥, 𝑦) ∈ ℤ4 ⊕< 2 >, then 𝑓 ≠ 0, and 

𝑘𝑒𝑟 𝑓 = ℤ4 ⊕ (0). But ℤ4⨁(0) ≪𝑧  ℤ4⨁ < 2 >, since ℤ 4 is not Z-small in ℤ4, since Z2(ℤ4) 

≠ ℤ4 (see Lemma 1.2(8)). Thus 𝐿 is not a ZSM module.  

 

        Recall that an 𝑅-module is called fully stable if for each 𝑁 ≤ 𝑀, 𝑁 is stable; that is for 

each 𝑓 ∈ 𝐻𝑜𝑚(𝑁,𝑀), 𝑓(𝑁) ⊆ 𝑁, see [17]. 

 

Theorem 2.15. Let 𝑀 be a fully stable 𝑅-module such that 𝑀 = 𝑀1⨁𝑀2, 𝑀1 and 𝑀2 are 

submodules of 𝑀, and for each 𝑅-homomorphism. 𝑓:𝐻1⨁𝐻2 ⟶𝑀, 𝑓 ≠ 0 (𝐻1 ≤ 𝑀1, 𝐻2 ≤
 𝑀2), 𝑓(𝐻1) ≠ 0, 𝑓(𝐻2) ≠ 0. Then 𝑀1 and 𝑀2 are ZSN modules if and only if 𝑀 is a ZSM 

module. 

Proof.   Let 𝐻 ≤ 𝑀,𝐻 ≠ 0, 𝑓 ∈ 𝐻𝑜𝑚(𝐻,𝑀), 𝑓 ≠ 0. To prove 𝐾𝑒𝑟𝑓 ≪𝑧 𝐻. Since 𝑀 is fully 

stable, 𝐻 is stable and so that 𝐻 = (𝐻 ∩𝑀1)⨁(𝐻⋂𝑀2) [17, Proposition 4.5, p 29]. 

Consider 𝐻 ∩𝑀1  𝑖1 →   𝐻  𝑓 →   𝑀  𝜌1 →  𝑀1 

               𝐻 ∩𝑀2  𝑖2 →  𝐻  𝑓 →   𝑀  𝜌2 →  𝑀2 

Where 𝑖1, 𝑖2 are inclusion mappings and 𝜌1, 𝜌2 are projection mappings. Then 𝜌1 ∘ 𝑓 ∘  𝑖1: 𝐻 ∩
𝑀1 ⟶𝑀1 and 𝜌2 ∘ 𝑓2 ∘ 𝑖2: 𝐻 ∩ 𝑀2 ⟶𝑀2. Put 𝐻1 = 𝐻 ∩𝑀1,  𝐻2 = 𝐻 ∩𝑀2. By hypothesis, 

𝑓(𝐻1) ≠ 0, so there exists 𝑥1 ∈ 𝐻 ∩𝑀1, 𝑥1 ≠ 0, 𝑓(𝑥1) ≠ 0. Similarly, there exists 𝑥2 ∈ 𝐻 ∩
𝑀2, 𝑥2 ≠ 0 and 𝑓(𝑥2) ≠ 0. On the other hand, 𝑓 ∘ 𝑖1(𝑥1) = 𝑓(𝑥1) ≠ 0 and 𝑓 ∘ 𝑖2(𝑥2) =
𝑓(𝑥2) ≠ 0. Since 𝐻1 and 𝐻2 are stable, 𝑓(𝐻1) ⊆ 𝐻1 and 𝑓(𝐻2) ⊆ 𝐻2. But 𝑓(𝑥1) ∈
𝐻1, 𝑓(𝑥1) ≠ 0, so that 𝜌1  ∘ 𝑓 ∘  𝑖1(𝑥1) = 𝑓(𝑥1) ≠ 0. Similarly, 𝜌2  ∘ 𝑓 ∘  𝑖2(𝑥2) = 𝑓(𝑥2) = 0. 

Thus 𝜌1  ∘ 𝑓 ∘  𝑖1 ≠ 0 and 𝜌2  ∘ 𝑓 ∘  𝑖2(𝑥1) ≠ 0. As 𝑀1 and 𝑀2 are ZSM modules, then 

𝑘𝑒𝑟(𝜌1  ∘ 𝑓 ∘  𝑖1)⨁𝑘𝑒𝑟(𝜌2 ∘ 𝑓 ∘  𝑖2) ≪𝑧 𝐻1⨁𝐻2 = 𝐻. Let 𝑥 = 𝑥 1 + 𝑥 2 ∈ 𝑘𝑒𝑟𝑓 where 𝑥 1 ∈
𝐻1 and 𝑥 2 ∈ 𝐻2, hence 𝑓(𝑥 1) + 𝑓(𝑥 2) = 0, and so 𝑓(𝑥 1) = −𝑓(𝑥 2) ∈ 𝐻1 ∩ 𝐻2 = 0 and so 

𝜌1 ∘ 𝑓 ∘  𝑖1(𝑥 1) = 𝜌1  ∘ 𝑓(𝑥 1) = 𝑓(𝑥 1) = 0. Also 𝜌2  ∘ 𝑓 ∘  𝑖2(𝑥 2) = 𝑓(𝑥 2) = 0. Hence 𝑥 1 +
𝑥 2 = 𝑥 ∈ 𝑘𝑒𝑟(𝜌1  ∘ 𝑓 ∘  𝑖1)⨁𝑘𝑒𝑟(𝜌2 ∘ 𝑓 ∘  𝑖2) ≪𝑧 𝐻. So that, 𝑘𝑒𝑟𝑓 ⊆ 𝑘𝑒𝑟(𝜌1 ∘ 𝑓 ∘ 𝑖1) ⊕
𝑘𝑒𝑟(𝜌2  ∘ 𝑓 ∘  𝑖2) ≪𝑧 𝐻. Thus 𝑘𝑒𝑟𝑓 ≪𝑧 𝐻 and M is a ZSM module.  

(⇐) It is clear from Remarks and Examples 2.2(4). □ 

 

Conclusion 

     Most of properties of a ZSM module are analogous to that of small monoforms. However , 

if C is a small monoform R-module, then C is a small monoform R/ann M-module by [14, 

Remarks and Examples 1.1.2(5)], but this property can’t be transfer to ZSM modules, see 

Remarks and Examples 2.2.(5).  
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