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Abstract:

In this paper, a new proper generalization of small monoform modules, namely
Z-Small monoform modules is introduced and studied. An R-module C is called Z-
small monoform module (ZSM module; for short), if every non-zero partial
endomorphism of € has Z-small kernel.
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1.Introduction

Throughout this paper, all rings have identity and all modules are unitary right R-modules.
Zelmanowitiz in [1] introduced the concept of monoform modules, where a module C is
called monoform if every non-zero partial endomorphisms is monomorphisim. A partial
endomorphisms of a module means an R-homomorphism if g: A —C where A is a submodule
of C [1]. Inaam Hadi and Hassan Marhoon in [2] introduced and studied the notion of small
monoform, where an R-module C is named small monoform if for each nonzero submodule A
of C and for each non-zero f € Hom (A, C), ker f is small in A. Note that a submodule A of
amodule M is called small (shortly A «< M), if whenever A + B = M and B is a submodule of
M, then B = M [3]. Clearly, every monoform module is small monoform. But the converse is
not true in general, see [2]. Amina and Alaa in [4] said that a submodule A of an R-module M
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is Z-small in M (briefly A «<; M) if whenever A+ B =M and Z,(M) < B, then B=M

where Z, (M) is defined by LM _ oz (%) [3], where Z(M) is singular submodule of M.

Z(M)
A module M is called singular (respectively, non-singular) if Z(M) = M(respectively
Z(M) = 0) [3].

A module M is called Z,-torsion if Z,(M) = M. Note that if M is singular, then M is Z,-
torsion, and M is non-singular if and only if Z,(M) = 0 [5].
For more information, one can see [5], [6].
Obviously, if A is a small submodule of a module C, then A is Z-small, but the converse is not
true in general, see [4].

These works motivate us to introduce a new concept namely Z-small monoform module
(denoted by ZSM module), where we call a module C is a ZSM module if every non-zero
partial endomorphism of C has a Z-small kernel.

In this paper, our concern is to study these types of modules. Next, we use the following
notations. For submodules A and B of a module C, A < B denotes A is a submodule of
B, A <® C denotes that A is a direct summand of C, Hom (4, C) denotes the ring of all
homomorphisms from A into C. A <., C denote A is an essential in C, that is whenever A N
B =0and B < C, then B = (0) [3].

Recall that an R-module is uniform if all its submodules are essential. An R - module M is
called a prime module if (0) is a prime submodule of M; that is whenever

r€R,m e M,rm = 0 implies that either m = 0 or r € annM = (0:x M)[7].

Some known results about monoform, small monoform modules are stated, as follows:

Remarks 1.1.

1. Let R be a commutative ring and C be a right R-module. Then C is monoform if and only
if C is a uniform prime module [8].

2. Let R be aring and C be a right R-module. Then C is a non-singular monoform if and
only if C is uniform [8].

3. ltis clear that every monoform module is small monoform, but the converse in general is

not true, for example Z, is small monoform Z-module but it is not monoform [2].

If C is a small monoform module, then C is uniform [2].

The epimorphic image of small monoform module is not necessarily small monoform [2].

Every non-zero submodule of small monoform module is small monoform [2].

If C is a small monoform R-module, then C is a small monoform R -module, where R =

21

annM

No ok

The following lemma give as some properties of Z -small submodules which will be used
in this paper.

Lemma 1.2.
1. Let E bean R-module, let A < B < E. Then B <, E implies A <, E and f <, % [4].

We see the converse will be satisfied under the condition, if Mj¢ =27, G)

2. LetA,,..., A, be submodules of a module E the A; <5 E (Vi =1, ...... ,n) if and only if
M1 A; L, E[4].

Let A and B be submodules of a module E with A < B. If A <, B, then A <, E [4].

4. Let f: E; — E, be an R-homomorphism and let A <, E;, then f(4) <, E; [4].

w
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5. Let E = E;®E, be an R-module, A; < E;, A, < E,. Then A;®A, <, E, if and only if
A, <, E;and A, <, E, [4].

6. Let E be anon-singular module and H < E. Then H < E ifand only if H <, E [4].
Moreover, we notice that

. If E is a singular module, then every submodule of E is Z-small.

. Forany module E, E <, E ifandonly if Z,(E) = E .

oo

2. Z-Small monoform modules
Definition 2.1. An R-module C is called Z-small monoform module (ZSM module; for short),
if every nonzero partial endomorphism of C has Z-small kernel.

Remarks and Examples 2.2.

1) Every singular module (hence Z,-torsion) is a ZSM module.

Proof. Let C be a module with Z,(C) = C, let A < C,A # (0).

Then Z,(A) = Z,(C)NA=CnA=A,thus A is Z,-torsion.

Hence by Lemma 1.2 (7), every submodule of A is Z-small. So that for any non-zero
homomorphismf: A — C, Kerf <, A. Therefore, C isa ZSM module. o

In particular for each positive integer n, Z,, as Z-module is a ZSM module.

2) It is clear that every small monoform module is a ZSM module, however the following
example shows that the converse may be not true:

and define f:A— E byf(0)=f(®6)=0, f(2)=/f(8)=4, f(4)=f(10)=8. Then
ker f = {0, 6} is not small in A. Thus E is not small monoform.

3) If C is a non-singular module (hence Z,(C) = 0), then C is a ZSM module if and only if C
is a small monoform module.

Proof. Let0 # A< C, let f € Home (4,C),f # 0. Since C is non-singular, so that A is
nonsingular and hence by Lemma 1.2 (6), every submodule of A is Z-small if and only if it is
small. Thus kerf «, A if and only if kerf <« A; thatis C is a ZSM module if and only if C is
a small monoform module. o

We conclude that each of the Z-modules Z, Q, and Z, (where p is a prime number) is a ZSM
module. Also, Z¢ as Zg-module is not a ZSM module, since it is not small monoform.

4) Every non-zero submodule of a ZSM module is a ZSM module.

Proof. Assume C is a ZSM module, 0 # A < C. To prove A is a ZSM module, let < A. If
f: B — A is a homomorphism, then i o f : B — C where i is the inclusion mapping. As B <
C, we have ker (iof )<,B. Butker (ieof )= kerf, so that ker f <, B and A is a ZSM
module. O

5) If C is a ZSM module over a ring R, then it is not necessarily that C is a ZSM as R__

annM
module for example the Z-module Z, is a ZSM module and Z¢ as é =~ Z¢-module is not a

ZSM module,

Recall that an R-module C is Z-hollow if every proper submodule of C is Z-small [4].
We have the following

Proposition 2.3. If C is a semisimple Z-hollow module, then C is a ZSM module.

Proof. Let0 # A< C, f € Home (A,C),f # 0. kerf < A < C. As C is a Z-hollow module,
kerf «, C.But A <® C and kerf < A, so that kerf «, A by [4, Lemma 2.8]. Thus C is a
ZSM module. o
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Abbas, Talebi and Hadi in [9] introduced that: A submodule A of an R-module C is
called Z-essential (A <., C, for short),if AnB =0and B < Z,(C), then B = (0), [9].

We say that a submodule B of an R-module C is called a Z-complement of submodule A
of C if B is a maximal submodule of C with the property An B = (0) and B < Z,(C) [9].

Proposition 2.4. An R-module C is a ZSM module if and only if for each A <, C and for
each f € Hom(A,C),f # 0,thenerf <, A.

Proof. (=) Itis clear.

(e);Let0+=A<Cand f € Hom (A4,C),f # 0.

If A<, C, then nothing to prove. If A £,., C, then there exists B<C, B is a Z-
complement of C. Then A®B <,., C. Define g:A®B — C by g(a+b) = f(a), Va €
A,b € B.

Then g # 0 and so that kerg <, A@B. But kerg = kerf@®B. ker f®B <, A®B , which
implies kerf «, A by Lemma 1.2(5). 0

Corollary 2.5. If C is a prime R-module with Z,(C) # 0, then C is a ZSM module.

Proof. Let 0+ A <., C and f € Hom(A,C),f # 0. Assume that Z,(A) = (0). Since
Z,(A) =AnZ,(C),we have An Z,(C) = (0). But A <, C, so that Z,(C) = (0) which is
a contradiction. Thus Z,(A) # (0). Also, A is a prime module (since A < C ). Hence by [10,
Proposition 2.1.11] every submodule of A is Z-small, so that kerf «, A. Thus C is a ZSM
module. O

The following is a characterization of a ZSM module in the class of Noetherian modules.
But first recall that a submodule of a module is called 3-generated submodule if it is generated
by 3- elements.
Theorem 2.6. Let C be a non-zero Noetherian R-module. Then C is a ZSM module if and
only if each non-zero 3-generated submodule of C is a ZSM module.
Proof. (=) Itis clear.
() Let 0 A< C and let f € Hom(A,C),f # 0. To show kerf «, A. If kerf = 0, then
nothing to prove. If kerf # 0, leta € kerf,a #0,b € Aand f(b) = c. Put L =<a,b,c >,
so L is a ZSM module by hypothesis. Let H =<a,b > and g = f|y: H — L, hence
kerg &, H<A and so kerg <, A. But a € kerf impliesa € kerg, hence <a >C
kerg <, A for any a € kerf. Since M is Noetherian, kerf = Ra; + ---+ Ra,, for some
aq, ...,an €A As (a;) K, Aforeachi=1,..,n,s0 kerf =Y, Ra; <, A by Lemma
1.2(3). Thus C is a ZSM module. o

Recall that M is called quasi-Dedekind (respectively, small quasi-Dedekind), if for each f €
End(M),f # 0,Ker f = 0 (kerf « M), respectively [11], [12].

It is known that every small monoform is small quasi-Dedekind [2]. M is called Z-small
quasi-Dedekind if for each f € End(M), f # 0, kerf <, M [13].

Remark 2.7. Every a ZSM module is Z-small quasi-Dedekind.

Recall that an R-module C is called fully retractable module, if for every 0 # A < C and
every g € Hom(A4,C), g # 0,then Hom(C,A)g # 0 [7].

Proposition 2.8. Let C be a fully retractable R-module such that for each0 # A < C, A'is Z-
small quasi-Dedekind. Then M is a ZSM module.
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Proof. Let 0 # A< C,f € Hom(A,C),f # 0. As C is fully retractable, Hom(C,A) f # 0.
Then there exists g € Hom(C,A) withgof #0. As A is Z-small quasi-Dedekind,
ker gof <, A.Butkerf € ker gof,sothat kerf <, A.o

I.M.A. Hadi and K. H. Marhoon proved that: Let M be a quasi-injective cosemisimple R-
module. Then M is small quasi-Dedekind if and only if M is small monoform [14, Proposition
1.1.11]. We state and prove an analogue result, but first,

Recall that a submodule A of a module C is Z-coclosed if whenever B < A, g K, % then
A= C[10].

Definition 2.9. An R-module C is called Z-cosemisimple if every submodule of Cis Z-
coclosed.

It is clear that every Z-coclosed submodule is coclosed. Hence every Z- cosemisimple is
cosemisimple, but Zg as Z -module is cosemisimple but it is not Z-cosemisimple.

Proposition 2.10. Let C be a quasi-injective and Z-cosemisimple module. Then M is Z-small
quasi-Dedekind if and only if M is a ZSM module.

Proof. (=) Let0+#A<C,f € Hom(A,C),f #0. Since M is quasi-injective, there
exists g € EndC, such that goi=f, where iis the inclusion mappingi:A — C.
Hence g(a) = f(a),Va € A, which implies that kerf < ker g. But C is Z-small quasi-
Dedekind, so kerg «, C. This implies kerf «, C. As kerf < A and A is Z-coclosed (since
C is Z-cosemisimple), so that by [10, Proposition, 2.2.17], kerf <, A. Thus M is a ZSM
module.

(&) It follows from Remark 2.7. o

Recall that an R-module C is called retractable if foreach 0 # A < C, Hom(C,A) # 0.
Proposition 2.11. Let C be a nonsingular retractable R-module. Then the following
statements are equivalent.

1) C is a monoform module.

2) C is a small monoform module.

3) C is a uniform module.

4) C is compressible (i.e., foreach A < C,A # 0, there exists a monomorphism f:C — A)
[15].

5) C is a ZSM module.

Proof. (1)&(2) <(3) <(4), see [14, Proposition, 1.2.9].

(2) ©(5) it follows from Remarks and Examples 2.2(3).

Recall that an R-module M is called multiplication R-module if for each N < M, N =
MI forsome I < R [16]. O
Proposition 2.12. If M is a faithful finitely generated multiplication module over a principle
ideal ring R. If M is a ZSM module, then R is a ZSM ring.
Proof. Let0O #1 <R, f € Hom(I,R),f # 0. Since R is a principle ideal ring, I = (a) for
some a € R. Let N = Ma. Define g:N — M by g(ma) = mf(a), g is a well-defined and
homomorphism. It is easy to see that M kerf € kerg. Butkerg <, N, since M is a ZSM
module. Hence M kerf «, N. To prove kerf <, I = (a). Let kerf + (b) = Ra and (b) 2
Z,(R). Then Mkerf +M <b>=M < a >. But M(b) 2 MZ,(R) = Z,(M).
Hence M(b) = Ma, since M kerf <, Ma. As M is a faithful finitely generated R-module,
then (b) = (a). Thus kerf <, (a). O
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Corollary 2.13. Let M be a cyclic faithful module over a principle ideal ring R. If M is a
ZSM module, then R is ZSM ring.

Remark 2.14. The direct sum of a ZSM modules need not be a ZSM module, for example:
M =17, as Z,-module is a ZSM module, let L =7, D 7Z, as Z,-module and let

f:Z,® < 2 >— L, defined by f(g,z) = (Q,X),v(g,z) €Zy DB< 2>, then f #0, and

ker f =7, ® (0). But Z,(0) <, Z,® < 2 >, since Z 4 is not Z-small in Za, since Z»(Za)
#+ 74 (see Lemma 1.2(8)). Thus L is not a ZSM module.

Recall that an R-module is called fully stable if for each N < M, N is stable; that is for
each f € Hom(N,M), f(N) € N, see [17].

Theorem 2.15. Let M be a fully stable R-module such that M = M;&®&M,, M; and M, are
submodules of M, and for each R-homomorphism. f: H{@®H, — M, f + 0 (H, < M, H, <
M,),f(Hy) # 0, f(H,) # 0. Then M; and M, are ZSN modules if and only if M is a ZSM
module.
Proof. LetH <M,H #0,f € Hom(H,M), f # 0. To prove Kerf <, H. Since M is fully
stable, H is stable and so that H = (H n M;)®(HNM,) [17, Proposition 4.5, p 29].
Consider HNM; iy - H f—-> M p; > M,

HNM,i,-> H f-> Mp,—> M,
Where iy, i, are inclusion mappings and p,, p, are projection mappings. Then p; o f o i;:HN
M; — My and pyof,0i,:HNM, — M,. Put HL = HNn M,, H, = H N M,. By hypothesis,
f(Hy) # 0, so there exists x; € H N My, x; # 0, f(x;) # 0. Similarly, there exists x, € H N
My, x, #0 and f(x,) # 0. On the other hand, foi;(x;) = f(x;) #0 and f o iy(x;) =
f(x;) #0. Since H, and H, are stable, f(H;) € Hyand f(H,) € H,. Butf(x;) €
Hy, f(xq) #0,s0that p; o fo ij(x;) = f(xqy) # 0. Similarly, p, o f o iy(x3) = f(x;) =0.
Thus p; ofo iy #0 and p, of o i(x;) #0. As M; and M, are ZSM modules, then
ker(p; o f o i;)®ker(pyofo i,) K, HHOH, = H. Let x = X, + X, € kerf where X; €
H, and X, € H,, hence f(x;) + f(x;) =0, and so f(¥;) = —f(x,) E H{LN H, = 0 and so
profo iy(x) =pg of(X) =f(¥)=0. Also p, o fo ir(x) = f(Xp) =0. Hence ¥; +
X, =x €Eker(py of o iy)®ker(py,ofo i) K, H So that, kerf € ker(p;ofoiy) @
ker(p, o f o i) <, H. Thus kerf «, H and M is a ZSM module.
(<) Itis clear from Remarks and Examples 2.2(4). o

Conclusion

Most of properties of a ZSM module are analogous to that of small monoforms. However ,
if C is a small monoform R-module, then C is a small monoform R/ann M-module by [14,
Remarks and Examples 1.1.2(5)], but this property can’t be transfer to ZSM modules, see
Remarks and Examples 2.2.(5).

References

[1] J.M. Zelmanowitze, “Representation of rings with faithful polyform modules”, Comm. In
Algebra, vol.14, no. 6, pp.1141-1169, 1986.

[2] 1. M. A. Hadi and K.H. Marhoon, “Small monoform modules®, Ibn Al-Haitham Journal for pure
and applied science, vol.27, no.,2 , pp.229-240, 2014.

[3] K.R. Goodearl, “Ring theory, nonsingular rings and modules*, Marcel Dekkel, Inc. New York and
Basel ,1976 .

[4] A. T. Hamad and A. A. Elewi, “Z-small submodules and Z-hollow modules*, Iragi Journal of
science, vol.62, no.8, 2021.

[5] Sh. Asgari and A.K. Haghany, “t-Extending modules and t-Baer modules*, comm. Algebra, 39,
pp.1605-1623, 2011.

7107



Abbas and Hadi Iragi Journal of Science, 2024, Vol. 65, No. 12, pp: 7102 -7108

[6] L.H. Shihab, “Extending, injectivity and chain conditions on y- closed submodules®, M.Sc.
Thesis, University of Baghdad, 2012.

[71 Sh.J. Dauns, “Prime modules and one sided ideals in ring theory and algebra III*, Proceeding of
Thrid Okfahoma conference, B.R.McDonald (editor), Dekkes, NewYork, pp.301 344, 1980.

[8] V.S. Rodrigues and A.A. Santana, “A note on problem due to Zelmanowitz, Algebra”, Discrete
Math. 3, pp.85-93, 2009.

[9] M.K. Abbas, Y. Talebi and I.M.A. Hadi, “Z-essential submodules®, Iragi Journal of science . In
press.

[10] A.T. Hamad, “Z-small submodules and Z-hollow modules*, M.Sc. thesis, University of Baghdad,
Iraq, 2021.

[11] A.S. Mijbas, “Quasi-invertible submodules and Quasi-Dedekind modules”, Ph.D dissertation,
University of Baghdad, 1997.

[12] 1. M. A. Hadi and Tha’ar Y.Ghawi, “Small Quasi-Dedekind Modules®, J. of Al-Qadisyah for
computer science and Mathematics, vol.3, Issue 2, pp.1-10, 2011.

[13] S.A.S. Hawra, “Small essentially quasi dedekind modules”, M.Sc. Thesis, University of Al-
Qadisiyah, 2022.

[14] K.H. Marhoon, “Some generalization of monoform modules”, M.Sc. thesis, University of
Baghdad, 2014.

[15] P. F. Smith, “Compressible and related modules. In Abelian Groups, Rings, Modules, and
Homological Algebra” , pp. 331-350, Chapman and Hall/CRC, 2016.

[16] Z.A. El-Bast and P.F..Smith, “Multiplication modules“, Comm. In Algebra, vol. 16, pp.755-779,
1988.

[17] M.S. Abbas, “On fully stable modules®, Ph.D. dissertation, University of Baghdad, 1991.

7108



