Abbas and Hadi

Iraqi Journal of Science, 2024, Vol. 65, No. 12, pp: 7102 -7108 DOI: 10.24996/ijs.2024.65.12.24

ISSN: 0067-2904

Z-Small Monoform Modules

Muntaha Khudhair Abbas^{*1}, Inaam Mohammed Ali Hadi²

¹Technical College of Management/Baghdad, Middle Technical University, Baghdad, Iraq ²University of Baghdad, College of Education for Pure Science (Ibn Al-Haitham), Department of Mathematics, Baghdad, Iraq

Received: 5/5/2023 Accepted: 15/11/2023 Published: 30/12/2024

Abstract:

In this paper, a new proper generalization of small monoform modules, namely Z-Small monoform modules is introduced and studied. An R-module C is called Z-small monoform module (ZSM module; for short), if every non-zero partial endomorphism of C has Z-small kernel.

Keywords: Monoform modules, small submodule, small monoform modules, *Z*-small monoform modules.

المقاسات ذات الصيغة المتباينة الصغيرة من النمط – Z

منتهى خضير عباس^{1*}, انعام محمد علي هادي² ¹ الكلية التقنية الادارية – بغداد , الجامعة التقنية الوسطى – بغداد , العراق ² انعام محمد على هادى , كلية التربية – ابن الهيثم , قسم الرياضيات , جامعة بغداد , بغداد , العراق

الخلاصة:

في هذا البحث قدمنا ودرسنا تعميم جديد لمفهوم المقاسات ذات الصيغة المتباينة الصغيرة واطلقنا عليه اسم المقاسات ذات الصيغة المتباينة من النمط Z-. حيث ان المقاس C على R يسمى مقاس ذا صيغة متباينة صغيرة من النمط-Z (مقاسZSM- للاختصار) اذا كان كل تشاكل جزئي للمقاس C يمتلك نواة صغيرة من النمط-Z.

1.Introduction

Throughout this paper, all rings have identity and all modules are unitary right *R*-modules. Zelmanowitiz in [1] introduced the concept of monoform modules, where a module *C* is called monoform if every non-zero partial endomorphisms is monomorphisim. A partial endomorphisms of a module means an *R*-homomorphism if $g: A \rightarrow C$ where *A* is a submodule of *C* [1]. Inaam Hadi and Hassan Marhoon in [2] introduced and studied the notion of small monoform, where an *R*-module *C* is named small monoform if for each nonzero submodule *A* of *C* and for each non-zero $f \in Hom(A, C)$, ker *f* is small in *A*. Note that a submodule *A* of a module *M* is called small (shortly $A \ll M$), if whenever A + B = M and *B* is a submodule of *M*, then B = M [3]. Clearly, every monoform module is small monoform. But the converse is not true in general, see [2]. Amina and Alaa in [4] said that a submodule *A* of an *R*-module *M*

*Email:muntaha2018@mtu.edu,iq

is Z-small in M (briefly $A \ll_Z M$) if whenever A + B = M and $Z_2(M) \subseteq B$, then B = M where $Z_2(M)$ is defined by $\frac{Z_2(M)}{Z(M)} = Z\left(\frac{M}{Z(M)}\right)$ [3], where Z(M) is singular submodule of M. A module M is called singular (respectively, non-singular) if Z(M) = M (respectively Z(M) = 0) [3].

A module *M* is called Z_2 -torsion if $Z_2(M) = M$. Note that if *M* is singular, then *M* is Z_2 -torsion, and *M* is non-singular if and only if $Z_2(M) = 0$ [5].

For more information, one can see [5], [6].

Obviously, if A is a small submodule of a module C, then A is Z-small, but the converse is not true in general, see [4].

These works motivate us to introduce a new concept namely Z-small monoform module (denoted by ZSM module), where we call a module C is a ZSM module if every non-zero partial endomorphism of C has a Z-small kernel.

In this paper, our concern is to study these types of modules. Next, we use the following notations. For submodules *A* and *B* of a module *C*, $A \leq B$ denotes *A* is a submodule of *B*, $A \leq^{\oplus} C$ denotes that *A* is a direct summand of *C*, Hom (*A*, *C*) denotes the ring of all homomorphisms from *A* into *C*. $A \leq_{ess} C$ denote *A* is an essential in *C*, that is whenever $A \cap B = 0$ and $B \leq C$, then B = (0) [3].

Recall that an *R*-module is uniform if all its submodules are essential. An R - module M is called a prime module if (0) is a prime submodule of M; that is whenever

 $r \in R$, $m \in M$, rm = 0 implies that either m = 0 or $r \in annM = (0:_R M)[7]$.

Some known results about monoform, small monoform modules are stated, as follows:

Remarks 1.1.

- 1. Let *R* be a commutative ring and *C* be a right *R*-module. Then *C* is monoform if and only if *C* is a uniform prime module [8].
- 2. Let *R* be a ring and *C* be a right *R*-module. Then *C* is a non-singular monoform if and only if *C* is uniform [8].
- 3. It is clear that every monoform module is small monoform, but the converse in general is not true, for example Z_4 is small monoform Z-module but it is not monoform [2].
- 4. If *C* is a small monoform module, then *C* is uniform [2].
- 5. The epimorphic image of small monoform module is not necessarily small monoform [2].
- 6. Every non-zero submodule of small monoform module is small monoform [2].
- 7. If *C* is a small monoform *R*-module, then *C* is a small monoform \overline{R} -module, where $\overline{R} = \frac{R}{annM}$ [2].

The following lemma give as some properties of Z -small submodules which will be used in this paper.

Lemma 1.2.

- 1. Let *E* be an *R*-module, let $A \le B \le E$. Then $B \ll_z E$ implies $A \ll_z E$ and $\frac{B}{A} \ll_z \frac{E}{A}$ [4]. We see the converse will be satisfied under the condition, if $\frac{Z_2(E)+A}{A} = Z_2\left(\frac{E}{A}\right)$.
- 2. Let $A_1, ..., A_n$ be submodules of a module E the $A_i \ll_Z E$ ($\forall i = 1, ..., n$) if and only if $\sum_{i=1}^n A_i \ll_Z E$ [4].
- 3. Let *A* and *B* be submodules of a module *E* with $A \le B$. If $A \ll_z B$, then $A \ll_z E$ [4].
- 4. Let $f: E_1 \to E_2$ be an *R*-homomorphism and let $A \ll_z E_1$, then $f(A) \ll_z E_2$ [4].

- 5. Let $E = E_1 \oplus E_2$ be an *R*-module, $A_1 \le E_1, A_2 \le E_2$. Then $A_1 \oplus A_2 \ll_z E$, if and only if $A_1 \ll_z E_1$ and $A_2 \ll_z E_2$ [4].
- 6. Let *E* be a non-singular module and $H \le E$. Then $H \ll E$ if and only if $H \ll_z E$ [4]. Moreover, we notice that
- 7. If E is a singular module, then every submodule of E is Z-small.
- 8. For any module $E, E \ll_z E$ if and only if $Z_2(E) = E$.

2. Z-Small monoform modules

Definition 2.1. An *R*-module *C* is called *Z*-small monoform module (ZSM module; for short), if every nonzero partial endomorphism of *C* has *Z*-small kernel.

Remarks and Examples 2.2.

1) Every singular module (hence Z_2 -torsion) is a ZSM module.

Proof. Let *C* be a module with $Z_2(C) = C$, let $A \le C, A \ne (0)$.

Then $Z_2(A) = Z_2(C) \cap A = C \cap A = A$, thus A is Z_2 -torsion.

Hence by Lemma 1.2 (7), every submodule of A is Z-small. So that for any non-zero homomorphism $f: A \rightarrow C$, $Kerf \ll_z A$. Therefore, C is a ZSM module. \Box

In particular for each positive integer n, \mathbb{Z}_n as \mathbb{Z} -module is a ZSM module.

2) It is clear that every small monoform module is a ZSM module, however the following example shows that the converse may be not true:

Let $E = \mathbb{Z}_{12}$ as \mathbb{Z} - modules. Then *E* is a ZSM module by part (1). Let $A = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$, and define $f: A \to E$ by $f(\overline{0}) = f(\overline{6}) = \overline{0}$, $f(2) = f(\overline{8}) = \overline{4}$, $f(\overline{4}) = f(\overline{10}) = \overline{8}$. Then $ker f = \{\overline{0}, \overline{6}\}$ is not small in *A*. Thus *E* is not small monoform.

3) If C is a non-singular module (hence $Z_2(C) = 0$), then C is a ZSM module if and only if C is a small monoform module.

Proof. Let $0 \neq A \leq C$, let $f \in Home(A, C), f \neq 0$. Since *C* is non-singular, so that *A* is nonsingular and hence by Lemma 1.2 (6), every submodule of *A* is *Z*-small if and only if it is small. Thus $kerf \ll_z A$ if and only if $kerf \ll A$; that is *C* is a ZSM module if and only if *C* is a small monoform module. \Box

We conclude that each of the \mathbb{Z} -modules \mathbb{Z} , Q, and $Z_{p^{\infty}}$ (where p is a prime number) is a ZSM module. Also, \mathbb{Z}_6 as \mathbb{Z}_6 -module is not a ZSM module, since it is not small monoform.

4) Every non-zero submodule of a ZSM module is a ZSM module.

Proof. Assume *C* is a ZSM module, $0 \neq A \leq C$. To prove *A* is a ZSM module, let $\leq A$. If $f: B \to A$ is a homomorphism, then $i \circ f : B \to C$ where *i* is the inclusion mapping. As $B \leq C$, we have ker $(i \circ f) \ll_z B$. But ker $(i \circ f) = ker f$, so that ker $f \ll_z B$ and *A* is a ZSM module. \Box

5) If *C* is a ZSM module over a ring *R*, then it is not necessarily that *C* is a ZSM as $\frac{R}{annM}$ -module for example the \mathbb{Z} -module \mathbb{Z}_6 is a ZSM module and \mathbb{Z}_6 as $\frac{Z}{6Z} \simeq \mathbb{Z}_6$ -module is not a ZSM module,

Recall that an *R*-module *C* is *Z*-hollow if every proper submodule of C is *Z*-small [4]. We have the following

Proposition 2.3. If C is a semisimple *Z*-hollow module, then *C* is a ZSM module. **Proof.** Let $0 \neq A \leq C$, $f \in Home(A, C)$, $f \neq 0$. $kerf \leq A \leq C$. As C is a *Z*-hollow module, $kerf \ll_z C$. But $A \leq^{\oplus} C$ and $kerf \leq A$, so that $kerf \ll_z A$ by [4, Lemma 2.8]. Thus *C* is a ZSM module. \Box Abbas, Talebi and Hadi in [9] introduced that: A submodule A of an R-module C is called Z-essential ($A \leq_{Zes} C$, for short), if $A \cap B = 0$ and $B \leq Z_2(C)$, then B = (0), [9].

We say that a submodule B of an R-module C is called a Z-complement of submodule A of C if B is a maximal submodule of C with the property $A \cap B = (0)$ and $B \leq Z_2(C)$ [9].

Proposition 2.4. An *R*-module *C* is a ZSM module if and only if for each $A \leq_{Zes} C$ and for each $f \in Hom(A, C), f \neq 0$, then $erf \ll_{Z} A$.

Proof. (\Rightarrow) It is clear.

(⇐); Let $0 \neq A \leq C$ and $f \in Hom(A, C), f \neq 0$.

If $A \leq_{Zes} C$, then nothing to prove. If $A \not\leq_{Zes} C$, then there exists $B \leq C$, B is a Z-complement of C. Then $A \oplus B \leq_{Zes} C$. Define $g: A \oplus B \to C$ by $g(a + b) = f(a), \forall a \in A, b \in B$.

Then $g \neq 0$ and so that $kerg \ll_z A \oplus B$. But $kerg = kerf \oplus B$. $kerf \oplus B \ll_z A \oplus B$, which implies $kerf \ll_z A$ by Lemma 1.2(5). \Box

Corollary 2.5. If C is a prime R-module with $Z_2(C) \neq 0$, then C is a ZSM module.

Proof. Let $0 \neq A \leq_{Zes} C$ and $f \in Hom(A, C)$, $f \neq 0$. Assume that $Z_2(A) = (0)$. Since $Z_2(A) = A \cap Z_2(C)$, we have $A \cap Z_2(C) = (0)$. But $A \leq_{Zes} C$, so that $Z_2(C) = (0)$ which is a contradiction. Thus $Z_2(A) \neq (0)$. Also, A is a prime module (since $A \leq C$). Hence by [10, Proposition 2.1.11] every submodule of A is Z-small, so that $kerf \ll_Z A$. Thus C is a ZSM module. \Box

The following is a characterization of a ZSM module in the class of Noetherian modules. But first recall that a submodule of a module is called 3-generated submodule if it is generated by 3- elements.

Theorem 2.6. Let *C* be a non-zero Noetherian *R*-module. Then *C* is a ZSM module if and only if each non-zero 3-generated submodule of *C* is a ZSM module. **Proof.** (\Rightarrow) It is clear.

(⇐) Let $0 \neq A \leq C$ and let $f \in Hom(A, C), f \neq 0$. To show $kerf \ll_z A$. If kerf = 0, then nothing to prove. If $kerf \neq 0$, let $a \in kerf, a \neq 0, b \in A$ and f(b) = c. Put $L = \langle a, b, c \rangle$, so L is a ZSM module by hypothesis. Let $H = \langle a, b \rangle$ and $g = f|_H: H \rightarrow L$, hence $kerg \ll_z H \leq A$ and so $kerg \ll_z A$. But $a \in kerf$ implies $a \in kerg$, hence $\langle a \rangle \subseteq$ $kerg \ll_z A$ for any $a \in kerf$. Since M is Noetherian, $kerf = Ra_1 + \cdots + Ra_n$ for some $a_1, \ldots, a_n \in A$. As $\langle a_i \rangle \ll_z A$ for each $i = 1, \ldots, n$, so $kerf = \sum_{i=1}^n Ra_i \ll_z A$ by Lemma 1.2(3). Thus C is a ZSM module. \Box

Recall that *M* is called quasi-Dedekind (respectively, small quasi-Dedekind), if for each $f \in End(M)$, $f \neq 0$, Ker f = 0 ($ker f \ll M$), respectively [11], [12].

It is known that every small monoform is small quasi-Dedekind [2]. *M* is called *Z*-small quasi-Dedekind if for each $f \in End(M)$, $f \neq 0$, $kerf \ll_z M$ [13].

Remark 2.7. Every a ZSM module is *Z*-small quasi-Dedekind.

Recall that an *R*-module *C* is called fully retractable module, if for every $0 \neq A \leq C$ and every $g \in Hom(A, C), g \neq 0$, then $Hom(C, A)g \neq 0$ [7].

Proposition 2.8. Let *C* be a fully retractable *R*-module such that for each $0 \neq A \leq C$, A is *Z*-small quasi-Dedekind. Then *M* is a ZSM module.

Proof. Let $0 \neq A \leq C, f \in Hom(A, C), f \neq 0$. As *C* is fully retractable, $Hom(C, A) f \neq 0$. Then there exists $g \in Hom(C, A)$ with $gof \neq 0$. As *A* is *Z*-small quasi-Dedekind, ker $gof \ll_z A$. But ker $f \subseteq ker gof$, so that ker $f \ll_z A$. \Box

I.M.A. Hadi and K. H. Marhoon proved that: Let M be a quasi-injective cosemisimple R-module. Then M is small quasi-Dedekind if and only if M is small monoform [14, Proposition 1.1.11]. We state and prove an analogue result, but first,

Recall that a submodule A of a module C is Z-coclosed if whenever $B \le A$, $\frac{A}{B} \ll_{Z} \frac{C}{A}$ then A = C [10].

Definition 2.9. An R-module C is called Z-cosemisimple if every submodule of C is Z-coclosed.

It is clear that every Z-coclosed submodule is coclosed. Hence every Z- cosemisimple is cosemisimple, but \mathbb{Z}_6 as \mathbb{Z} -module is cosemisimple but it is not Z-cosemisimple.

Proposition 2.10. Let C be a quasi-injective and Z-cosemisimple module. Then M is Z-small quasi-Dedekind if and only if M is a ZSM module.

Proof. (\Rightarrow) Let $0 \neq A \leq C, f \in Hom(A, C), f \neq 0$. Since *M* is quasi-injective, there exists $g \in EndC$, such that $g \circ i = f$, where *i* is the inclusion mapping $i: A \to C$. Hence $g(a) = f(a), \forall a \in A$, which implies that $kerf \subseteq ker g$. But *C* is *Z*-small quasi-Dedekind, so $kerg \ll_z C$. This implies $kerf \ll_z C$. As $kerf \subseteq A$ and *A* is *Z*-coclosed (since *C* is *Z*-cosemisimple), so that by [10, Proposition, 2.2.17], $kerf \ll_z A$. Thus *M* is a ZSM module.

(\Leftarrow) It follows from Remark 2.7. \Box

Recall that an *R*-module *C* is called retractable if for each $0 \neq A \leq C$, $Hom(C, A) \neq 0$. **Proposition 2.11.** Let *C* be a nonsingular retractable *R*-module. Then the following statements are equivalent.

- 1) *C* is a monoform module.
- 2) *C* is a small monoform module.
- 3) *C* is a uniform module.
- 4) C is compressible (i.e., for each $A \le C, A \ne 0$, there exists a monomorphism $f: C \rightarrow A$) [15].
- 5) *C* is a ZSM module.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4), see [14, Proposition, 1.2.9].

(2) \Leftrightarrow (5) it follows from Remarks and Examples 2.2(3).

Recall that an *R*-module *M* is called multiplication *R*-module if for each $N \le M$, N = MI for some $I \le R$ [16]. \Box

Proposition 2.12. If M is a faithful finitely generated multiplication module over a principle ideal ring R. If M is a ZSM module, then R is a ZSM ring.

Proof. Let $0 \neq I \leq R$, $f \in Hom(I, R)$, $f \neq 0$. Since R is a principle ideal ring, $I = \langle a \rangle$ for some $a \in R$. Let N = Ma. Define $g: N \to M$ by g(ma) = mf(a), g is a well-defined and homomorphism. It is easy to see that $M \ker f \subseteq \ker g$. But $\ker g \ll_z N$, since M is a ZSM module. Hence $M \ker f \ll_z N$. To prove $\ker f \ll_z I = \langle a \rangle$. Let $\ker f + \langle b \rangle = Ra$ and $\langle b \rangle \supseteq Z_2(R)$. Then $M \ker f + M < b \ge M < a >$. But $M\langle b \rangle \supseteq MZ_2(R) = Z_2(M)$. Hence $M\langle b \rangle = Ma$, since $M \ker f \ll_z Ma$. As M is a faithful finitely generated R-module, then $\langle b \rangle = \langle a \rangle$. Thus $\ker f \ll_z \langle a \rangle$. \Box

Corollary 2.13. Let M be a cyclic faithful module over a principle ideal ring R. If M is a ZSM module, then R is ZSM ring.

Remark 2.14. The direct sum of a ZSM modules need not be a ZSM module, for example: $M = \mathbb{Z}_4$ as \mathbb{Z}_4 -module is a ZSM module, let $L = \mathbb{Z}_4 \bigoplus \mathbb{Z}_4$ as \mathbb{Z}_4 -module and let $f: \mathbb{Z}_4 \bigoplus \langle \underline{2} \rangle \longrightarrow L$, defined by $f(\underline{x}, \underline{y}) = (\underline{0}, \underline{y}), \forall (\underline{x}, \underline{y}) \in \mathbb{Z}_4 \bigoplus \langle \underline{2} \rangle$, then $f \neq 0$, and $ker f = \mathbb{Z}_4 \bigoplus (\underline{0})$. But $\mathbb{Z}_4 \bigoplus (0) \ll_{\mathbb{Z}} \mathbb{Z}_4 \bigoplus \langle \underline{2} \rangle$, since \mathbb{Z}_4 is not Z-small in \mathbb{Z}_4 , since $\mathbb{Z}_2(\mathbb{Z}_4)$ $\neq \mathbb{Z}_4$ (see Lemma 1.2(8)). Thus *L* is not a ZSM module.

Recall that an *R*-module is called fully stable if for each $N \le M$, *N* is stable; that is for each $f \in Hom(N, M)$, $f(N) \subseteq N$, see [17].

Theorem 2.15. Let *M* be a fully stable *R*-module such that $M = M_1 \bigoplus M_2$, M_1 and M_2 are submodules of *M*, and for each *R*-homomorphism. $f: H_1 \bigoplus H_2 \longrightarrow M$, $f \neq 0$ ($H_1 \leq M_1, H_2 \leq M_2$), $f(H_1) \neq 0, f(H_2) \neq 0$. Then M_1 and M_2 are ZSN modules if and only if *M* is a ZSM module.

Proof. Let $H \le M, H \ne 0, f \in Hom(H, M), f \ne 0$. To prove $Kerf \ll_z H$. Since M is fully stable, H is stable and so that $H = (H \cap M_1) \bigoplus (H \cap M_2)$ [17, Proposition 4.5, p 29].

Consider $H \cap M_1$ $i_1 \rightarrow H$ $f \rightarrow M$ $\rho_1 \rightarrow M_1$ $H \cap M_2$ $i_2 \rightarrow H$ $f \rightarrow M$ $\rho_2 \rightarrow M_2$

Where i_1, i_2 are inclusion mappings and ρ_1, ρ_2 are projection mappings. Then $\rho_1 \circ f \circ i_1: H \cap M_1 \to M_1$ and $\rho_2 \circ f_2 \circ i_2: H \cap M_2 \to M_2$. Put $H_1 = H \cap M_1$, $H_2 = H \cap M_2$. By hypothesis, $f(H_1) \neq 0$, so there exists $x_1 \in H \cap M_1, x_1 \neq 0$, $f(x_1) \neq 0$. Similarly, there exists $x_2 \in H \cap M_2, x_2 \neq 0$ and $f(x_2) \neq 0$. On the other hand, $f \circ i_1(x_1) = f(x_1) \neq 0$ and $f \circ i_2(x_2) = f(x_2) \neq 0$. Since H_1 and H_2 are stable, $f(H_1) \subseteq H_1$ and $f(H_2) \subseteq H_2$. But $f(x_1) \in H_1, f(x_1) \neq 0$, so that $\rho_1 \circ f \circ i_1(x_1) = f(x_1) \neq 0$. Similarly, $\rho_2 \circ f \circ i_2(x_2) = f(x_2) = 0$. Thus $\rho_1 \circ f \circ i_1 \neq 0$ and $\rho_2 \circ f \circ i_2(x_1) \neq 0$. As M_1 and M_2 are ZSM modules, then $ker(\rho_1 \circ f \circ i_1) \oplus ker(\rho_2 \circ f \circ i_2) \ll_z H_1 \oplus H_2 = H$. Let $x = x_1 + x_2 \in kerf$ where $x_1 \in H_1$ and $x_2 \in H_2$, hence $f(x_1) + f(x_2) = 0$, and so $f(x_1) = -f(x_2) \in H_1 \cap H_2 = 0$ and so $\rho_1 \circ f \circ i_1(x_1) = \rho_1 \circ f(x_1) = f(x_1) = 0$. Also $\rho_2 \circ f \circ i_2(x_2) = f(x_2) = 0$. Hence $x_1 + x_2 \in ker(\rho_1 \circ f \circ i_1) \oplus ker(\rho_2 \circ f \circ i_2) \ll_z H$. So that, $kerf \subseteq ker(\rho_1 \circ f \circ i_1) \oplus ker(\rho_2 \circ f \circ i_2) \ll_z H$. Thus $kerf \ll_z H$ and M is a ZSM module. (\Leftarrow) It is clear from Remarks and Examples 2.2(4). \Box

Conclusion

Most of properties of a ZSM module are analogous to that of small monoforms. However, if *C* is a small monoform *R*-module, then *C* is a small monoform *R*/ann *M*-module by [14, Remarks and Examples 1.1.2(5)], but this property can't be transfer to ZSM modules, see Remarks and Examples 2.2.(5).

References

- [1] J.M. Zelmanowitze, "Representation of rings with faithful polyform modules", *Comm. In Algebra*, vol.14, no. 6, pp.1141-1169, 1986.
- [2] I. M. A. Hadi and K.H. Marhoon, "Small monoform modules", *Ibn Al-Haitham Journal for pure and applied science*, vol.27, no.,2, pp.229-240, 2014.
- [3] K.R. Goodearl, "Ring theory, nonsingular rings and modules", *Marcel Dekkel, Inc. New York and Basel*, 1976.
- [4] A. T. Hamad and A. A. Elewi, "Z-small submodules and Z-hollow modules", *Iraqi Journal of science*, vol.62, no.8, 2021.
- [5] Sh. Asgari and A.K. Haghany, "t-Extending modules and t-Baer modules", *comm. Algebra*, 39, pp.1605-1623, 2011.

- [6] L.H. Shihab, "Extending, injectivity and chain conditions on y- closed submodules", M.Sc. Thesis, *University of Baghdad*, 2012.
- [7] Sh.J. Dauns, "Prime modules and one sided ideals in ring theory and algebra III", Proceeding of Thrid Okfahoma conference, B.R.McDonald (editor), Dekkes, *NewYork*, pp.301 344, 1980.
- [8] V.S. Rodrigues and A.A. Santana, "A note on problem due to Zelmanowitz, Algebra", Discrete Math. 3, pp.85-93, 2009.
- [9] M.K. Abbas, Y. Talebi and I.M.A. Hadi, "Z-essential submodules", *Iraqi Journal of science*. *In press*.
- [10] A.T. Hamad, "Z-small submodules and Z-hollow modules", M.Sc. thesis, *University of Baghdad*, *Iraq*, 2021.
- [11] A.S. Mijbas, "Quasi-invertible submodules and Quasi-Dedekind modules", Ph.D dissertation, *University of Baghdad*, 1997.
- [12] I. M. A. Hadi and Tha'ar Y.Ghawi, "Small Quasi-Dedekind Modules", J. of Al-Qadisyah for computer science and Mathematics, vol.3, Issue 2, pp.1-10, 2011.
- [13] S.A.S. Hawra, "Small essentially quasi dedekind modules", M.Sc. Thesis, University of Al-Qadisiyah, 2022.
- [14] K.H. Marhoon, "Some generalization of monoform modules", M.Sc. thesis, University of Baghdad, 2014.
- [15] P. F. Smith, "Compressible and related modules. In Abelian Groups, Rings, Modules, and Homological Algebra", pp. 331-350, Chapman and Hall/CRC, 2016.
- [16] Z.A. El-Bast and P.F..Smith, "Multiplication modules", *Comm. In Algebra*, vol. 16, pp.755-779, 1988.
- [17] M.S. Abbas, "On fully stable modules", Ph.D. dissertation, University of Baghdad, 1991.