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Abstract 

       The effect of fear, the hunting cooperative process, and Allee's impact on the 

behavior of an ecological system are investigated and discussed. The impact of the 

delay of the prey's response to the predation risk is included. The Leslie-Gower 

growth is used to describe the growth of the predator population. Firstly, the solutions' 

existence, positivity, and boundedness within the limits of a suitable region in the 

parametric space for all time are studied. The stability of all equilibrium points under 

the surrounding environmental effects is established. Moreover, the occurrence of a 

Hopf bifurcation is discovered. The stability of the bifurcating periodic dynamic and 

their dynamical properties are studied. Finally, the obtained theoretical results are 

confirmed and validated utilizing numerical simulation. It is observed that the system 

possesses a bi-stable behavior and a Hopf bifurcation. 

 

Keywords: Time delay, Fear, Allee effect, hunting cooperation, Leslie-Gower, Bi-

stability.  

 

المفترس التباطئي بوجود تأثير الخوف والصيد التعاوني وتأثير  -الفريسةلنظام  وتشعب هوبفالاستقرار 
 آلي 
 

 كرار قحطان الجبوري 1 ، رائد كامل ناجي2*
 العراق   ، قسم هندسة الإنتاج والمعادن الجامعة التكنولوجية   1
 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق  2

 
  الخلاصة 

التباطؤ  تم التحقيق ومناقشة تأثير الخوف وعملية الصيد التعاوني وتأثير آلي على سلوك نظام بيئي يتضمن        
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1. Introduction 

      In ecology and evolutionary biology, the interaction of prey and predator has been modeled 

using nonlinear differential equation systems. Numerous ecologists and mathematicians have 

developed an interest in interactions that are directly related to population density impacts, such 

as predation, fear, refuge, competition, etc. throughout the past few decades, see [1-4] and the 

references therein. According to several experimental research, fear causes behavioral changes 

that physiologically tax prey species and negatively affect their capacity for reproduction and 

long-term survival. In fact, numerous analytical research demonstrated the destabilizing effects 

of the manipulative philosophy of fear on ecological demographics [5-8]. 

 

      The iconic "Allee effect" is one of fear's harmful effects. Other reasons include genetic 

predispositions, sadness, a bad economy, and trouble finding the perfect mate [9,10]. To 

investigate the relationship between a species' growth and density, Allee [11] proposed in 1931 

that if the population is too sparse, the population size will drop. The isometric linear function 

given by Bazykin [12] was used in the following formula to explain the Allee effect of prey: 
𝑑𝑝

𝑑𝑡
= 𝑟𝑝 (1 −

𝑝

𝑘
) (𝑝 − 𝐴). 

 

      This model is stated to have a strong Allee effect when 0 < 𝐴 < 𝑘 and a weak Allee effect 

when 𝐴 ≤ 0. Numerous researchers have looked at the effects of their influence on the behavior 

of dynamic systems in light of the physiological connection between the term Allee and the fear 

effect. For instance, Liyun et al [13] looked at how fear and additive Allee affected the prey-

predator model's structure and found bifurcation points. The dynamic behavior of each of the 

one-species and two-species models was examined by Sourav [14], who discovered that the 

cost of fear can significantly limit per-capita growth and contribute to the creation of numerous 

Allee effects. The authors examined the stability of the interaction of an ecological model with 

a substantial Allee effect and functional Sokol-Howell predation [15]. 

 

     The methods employed to kill individual prey are numerous and varied; current research has 

concentrated on cooperative hunting behavior displayed by some predators and how it affects 

the stability of the prey population. Duarte et al. [16] examined all the dynamics of cooperative 

hunting, its effects on the stability of a species food-three  chain model, and the probability of 

extinction owing to a chaotic crisis. Both Alves and Hilker [17] provided a biological model 

that incorporated cooperative predator hunting with the Allee effect and described how to 

maintain the system's equilibrium in the event of a rapid collapse of the predator community. 

Using theoretical and numerical models of predator-prey interaction, Pal et al. [18] investigated 

the effects of the cooperative attack on members of the prey community and its contribution to 

raising anxiety among their numbers. Recent research by Pal et al. [19] examined a modified 

Leslie-Gower prey-predator model with the existence of fear as a result of predator cooperation 

during hunting. They found periodic trajectories across the Hopf bifurcation and an oscillation 

in system stability. The impacts of fear, shelter, collaboration, and harvesting on the dynamic 

behavior of autonomous and non-autonomous models were examined and analyzed by Mondal 

et al. [20]. But up to the time, this article was being written, no studies had been done on the 

phases of a delayed modified Leslie-Gower model under the combined influence of fear, 

cooperative attacking, and the Allee effect. The dynamics of ecosystems between stability and 

instability are directly impacted by temporal delays, which make systems more pragmatically 

and physiologically rich. Review the books [21-23] for more details.  

       The modified Leslie-Gower system is created in this study. It includes a variety of unique 

biological phenomena such as fear, the Allee effect, and hunting cooperation along with their 

effects on both species' inhabitants' daily lives. The mathematical architecture of the problem 

was represented using the delayed differential equations. This article is divided into the 
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following sections. The pragmatic interpretation of the system technique is prepared in section 

2. The existence, positivity, and boundedness of each proposed model trajectory were shown 

in section 3 to be true. The system's equilibrium and response to various biological factors are 

covered in section 4. The stability of the delay system and the favorable circumstances for the 

Hopf bifurcations are covered in sections 5 and 6, respectively. Using the center manifold 

theorem, section 7 examines the direction and stability of the bifurcating periodic trajectories. 

The delayed system numerical simulation results, which confirmed the theoretical predictions, 

were presented in detail in section 8. A discussion and conclusions are included in the final 

portion. 

 

2. Model Formulation 

       In order to comprehend the true dynamic behavior in the environment, and to maintain the 

diversity and balance of the ecosystem, this research proposes and studies a delayed ecological 

system that comprises a prey-predator and incorporates many actual biological elements. The 

following adopted hypotheses explain that fear of predators, cooperation during hunting 

processes, as well as the Allee effect, which arises from lack of interbreeding among individuals 

of the prey, are the biological components incorporated in the proposed system: 

 

1. Both the populations are assumed to grow logistically so that the density of the prey species 

at time 𝑡 denoted by 𝑥(𝑡) grows logistically with intrinsic growth rate 𝑟0 and carrying capacity 

𝑘0, while the density of the predator species at time 𝑡 denoted by 𝑦(𝑡) grows logistically with 

intrinsic growth rate 𝑟1 and carrying capacity proportional with consumed prey and is given by 

𝑘1 in the absence of the prey. 

2. The existence of the predator imposes fear with the discrete delay 𝜏 > 0 in the growth of 

prey so that the fear function utilized 
1

1+𝛿𝑦(𝑡−𝜏)
, where 𝛿 represents the fear rate. 

3. Due to the existence of fear in the prey population, the interbreeding among individuals of 

the prey decreases, and hence the Allee effect is represented by (𝑥 − 𝑚) multiplying by the 

growth rate, where 𝑚 > 0 stands for the Allee effect constant.  

4. The transmission of consumed prey to the predator is done by utilizing the Lotka-Volterra 

type of functional response with a search rate (attack rate) 𝛼 > 0, and since the predator 

population is assumed to have the capability of cooperative hunting then the functional response 

will be modified to (𝛼 + 𝛽 𝑦)𝑥, where 𝛽 > 0 represents the cooperative hunting coefficient. 

 

      According to the above hypotheses, the dynamic of the described prey-predator model can 

be written using the following set of nonlinear first-order differential equations.  

 

𝑑𝑥

𝑑𝑡
= (

𝑟0 𝑥 

1+𝛿 𝑦(𝑡−𝜏)
) (1 −

𝑥

𝑘0
) (𝑥 − 𝑚) − (𝛼 + 𝛽 𝑦) 𝑥𝑦 = 𝐹1(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑟1 𝑦 ( 1 −

𝑦

𝑘1+𝜎 (𝛼+𝛽 𝑦) 𝑥
 ) =  𝐹2(𝑥, 𝑦),                                    

                   (1) 

where all parameters of the system (1) are positive and described in Table (1). 
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Table 1: Biological interpretation of system parameters 

Parameter Description 

𝑟0 The growth rate of the prey population. 

𝛿 The fear rate. 

𝜏 The time taken by prey to respond to predation risk. 

𝑘0 Carrying capacity of the prey population. 

𝑚 Allee effect constant. 

𝛼 The search rate of the prey by a predator. 

𝛽 A cooperative hunting coefficient. 

𝑟1 The growth rate of the predator population. 

𝑘1 Carrying capacity of predator in the absence of the prey. 

𝜎 The conversion rate of prey biomass to predator biomass. 

 

The initial conditions of the system (1) are taken as follows:  

 𝑥(𝜃) = 𝜓1(𝜃), 𝑦(𝜃) = 𝜓2(𝜃), −𝜏 ≤  𝜃 ≤ 0,                      (2)    

where 𝜓 = (𝜓1, 𝜓2)
𝑇 ∈ 𝐶, such that 𝜓𝑖(𝜃) ≥ 0, 𝑖 = 1, 2. Here,  𝐶 = 𝐶( [−𝜏, 0], ℝ+

2 )  
represents the Banach space of continuous functions defined by the interval  [−𝜏, 0] into ℝ+

2  

with  ‖𝜓‖ =  𝑠𝑢𝑝−𝜏 ≤ 𝜃 ≤0 {|𝜓1(𝜃)|, |𝜓2(𝜃)|}. For biological mechanisms, it is assumed that  

𝜓𝑖(𝜃) > 0, 𝑖 = 1, 2. 

 

3. Properties of the solution 

Obviously, the functions in the right-hand side of the system (1) are continuous and satisfy 

the local Lipschitz condition on 𝐶, then according to the fundamental theory of functional 

differential equations [24], the solution (𝑥(𝑡), 𝑦(𝑡)) to the system (1) starting with any initial 

conditions satisfies (2) exists and is unique on  [0, 𝜂), where  0 < 𝜂 ≤ ∞. Moreover, it is well 

known that a model's positivity and boundedness ensure that the model is properly posed 

biologically. In reality, the solutions' positivity proves that there is a population, and their 

boundedness shows how growth is naturally constrained by the availability of resources. As a 

result, theorem (1) is established for the positivity of the system (1), and theorem (2) is 

introduced for the boundedness. 

 

Theorem 1.  Every solution to the system (1) with the initial conditions (2) remains positive 

for all 𝑡 ≥ 0. 

Proof.  Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) 𝑇 ∈ ℝ+
2  be any solution to system (1) with initial conditions 

(2). Then system (1) can be written in the vector form as  

 
𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹(𝑋(𝑡), 𝑋(𝑡 − 𝜏)),                          (3) 

where 

 

𝐹(𝑋(𝑡), 𝑋(𝑡 − 𝜏)) = (
 𝐹1(𝑋(𝑡), 𝑋(𝑡 − 𝜏))  

 𝐹2𝑋(𝑡), 𝑋(𝑡 − 𝜏) 
)                                                            

=  (
𝑥 [𝑟0 (1 −

𝑥

𝑘0
) (𝑥 −𝑚) (

1

1+𝛿 𝑦(𝑡−𝜏)
) − (𝛼 + 𝛽 𝑦) 𝑥𝑦]

 𝑦 [𝑟1  ( 1 −
𝑦

𝜎 (𝛼+𝛽 𝑦) 𝑥+𝑘1
 )]

) ,

  

with 𝑋(𝑡 − 𝜏) = (𝑥(𝑡 − 𝜏), 𝑦(𝑡 − 𝜏)) 𝑇. 

Thus, by integrating both sides of the system (3) from 0 to 𝑡,  it is obtained that 
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𝑥(𝑡) = 𝑥(0) 𝑒
∫ [𝑟0(1−

𝑥(𝑠)

𝑘0
)(𝑥(𝑠)−𝑚) (

1

1+𝛿 𝑦(𝑠−𝜏)
)−(𝛼+𝛽 𝑦(𝑠)) 𝑦(𝑠)]𝑑𝑠

𝑡
0

𝑦(𝑡) = 𝑦(0) 𝑒
∫ [𝑟1 (1−

𝑦(𝑠)

𝜎 (𝛼+𝛽 𝑦(𝑠)) 𝑥(𝑠)+𝑘1
)]𝑑𝑠

𝑡
0                                 

  }.    

Therefore,  𝑥(𝑡) > 0 and 𝑦(𝑡) > 0 for all 𝑡 ≥ 0.              ■ 

 

Theorem 2.  All solutions to the system (1) with the initial conditions (2) are uniformly 

bounded. 

 

Proof.  Let  (𝑥(𝑡), 𝑦(𝑡)) be any positive solution of system (1) under the initial conditions (2). 

 

Case I:  If  𝑥(0) ≤ 𝑘0, then  𝑥(𝑡) ≤ 𝑘0  for all  𝑡 ≥ 𝑘0. 

Assuming it is not true, then there exist 𝑡1  and  𝑡2 such that  𝑥(𝑡1) = 𝑘0 and 𝑥(𝑡) > 𝑘0 for all 

𝑡 ∈ (𝑡1, 𝑡2). Thus,  

𝑥(𝑡) = 𝑥(0)𝑒𝑥𝑝 {∫ ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠))
𝑡

0
𝑑𝑠}, 

where ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠)) = 𝑟0 (1 −
𝑥(𝑠)

𝑘0
) (𝑥(𝑠) − 𝑚) (

1

1+𝛿 𝑦(𝑠−𝜏)
) − (𝛼 + 𝛽 𝑦(𝑠)) 𝑦(𝑠) 

can be written as follows: 

𝑥(𝑡) = 𝑥(0)𝑒𝑥𝑝 {∫ ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠))
𝑡1
0

𝑑𝑠 + ∫ ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠))
𝑡2
𝑡1

𝑑𝑠}  

                   = 𝑥(𝑡1)𝑒𝑥𝑝 {∫ ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠))
𝑡2
𝑡1

𝑑𝑠}  <  𝑥(𝑡1), 

because  ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠)) < 0 for all  𝑡 ∈ (𝑡1, 𝑡2) which is a contradiction. Therefore, 

𝑥(𝑡) ≤ 𝑘0  for all  𝑡 ≥ 0. 

 

Case II:  If  𝑥(0) > 𝑘0, then  lim
𝑡 → ∞

𝑠𝑢𝑝 𝑥(𝑡) ≤ 𝑘0.  

Suppose it is not true, then  𝑥(𝑡) > 𝑘0 for all 𝑡 > 0 and ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠)) < 0. Thus, we 

have  

𝑥(𝑡) = 𝑥(0)𝑒𝑥𝑝 {∫ ℱ(𝑥(𝑠), 𝑦(𝑠 − 𝜏), 𝑦(𝑠))
𝑡

0
𝑑𝑠} < 𝑥(0) . 

Hence, from cases I and II, we have 

𝑥(𝑡) ≤ 𝑚𝑎𝑥{𝑥(0), 𝑘0} ≡ 𝑀1 for all 𝑡 ≥ 0.  

From, the predator equation of system (1), we have 
𝑑𝑦

𝑑𝑡
≤

𝑟1

𝑘1
𝑦(𝑘1 + 𝜎𝛼𝑀1 − (1 − 𝜎𝛽𝑀1)𝑦)  

Hence,  lim
𝑡 → ∞

sup 𝑦(𝑡)  ≤ {𝑦(0),
𝑘1+𝜎𝛼𝑀1

1−𝜎𝛽𝑀1
}. 

Biologically, predators' survival and persistence are impossible without the need to hunt prey, 

therefore it is necessary to be  1 − 𝜎 𝛽 𝑀1 > 0.           ■ 

 

4. Existence of equilibrium points 

       An investigation of the equilibrium points of system (1) shows that system (1) has a number 

of nonnegative equilibrium points described as follows: 

i. The vanishing equilibrium point 𝐸0 = (0, 0) always exists. 

ii. The prey-free equilibrium point 𝐸1 = (0, 𝑘1) always exists. 

iii. The predator-free equilibrium point can be obtained by determining the roots of the 

following equation. 

𝑥2 − (𝑘0 +𝑚) 𝑥 + 𝑘0 𝑚 = 0. 

Clearly, this equation has two positive roots, which are given by 𝑥1 = 𝑘0 and 𝑥2 = 𝑚. Hence, 

system (1) has two predator-free equilibrium points 𝐸21 = (𝑘0, 0) and 𝐸22 = (𝑚, 0). 
iv. Finally, the interior equilibrium point is denoted by 𝐸∗ = (𝑥∗, 𝑦∗), where  
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𝑦∗ =
𝜎 𝛼 𝑥∗+𝑘1

1−𝜎 𝛽 𝑥∗
,                                                     (4) 

while 𝑥∗ is the positive root of the following fifth-order polynomial equation 

𝐴1𝑥
5 + 𝐴2𝑥

4 + 𝐴3𝑥
3 + 𝐴4𝑥

2 + 𝐴5𝑥 + 𝐴6 = 0,                     (5) 

where 

𝐴1 = 𝛽
3𝜎3𝑟0 > 0, 

𝐴2 = −3𝛽2𝜎2𝑟0 −𝑚𝛽
3𝜎3𝑟0 − 𝛽

3𝜎3𝑘0𝑟0 < 0, 

𝐴3 = [𝛼2𝜎2𝑘0 + 𝛼𝛽𝜎
2𝑘0𝑘1](𝛽 − 𝛼𝛿) + 3𝛽𝜎𝑟0 + 3𝑚𝛽

2𝜎2𝑟0
+3𝛽2𝜎2𝑘0𝑟0 +𝑚𝛽

3𝜎3𝑘0𝑟0,
 

𝐴4 = −𝛼2𝜎𝑘0 − 2𝛼
2𝛿𝜎𝑘0𝑘1 + 𝛽𝜎𝑘0𝑘1

2(𝛽 − 2𝛼𝛿) − 𝑟0 − 3𝑚𝛽𝜎𝑟0
−3𝛽𝜎𝑘0𝑟0 − 3𝑚𝛽

2𝜎2𝑘0𝑟0,
 

𝐴5 = −𝛼𝑘0𝑘1 − 𝛽𝑘0𝑘1
2 − 𝛼𝛿𝑘0𝑘1

2 − 𝛽𝛿𝑘0𝑘1
3 +𝑚𝑟0 + 𝑘0𝑟0 + 3𝑚𝛽𝜎𝑘0𝑟0, 

𝐴6 = −𝑚𝑘0𝑟0 < 0. 

Note that, the interior equilibrium point of the system (1) exists provided that there is a positive 

point (𝑥∗, 𝑦∗) that represents the intersection of the two isoclines given in system (1). 

Obviously, from equation (4), 𝑦∗ > 0 if and only if the following condition is met. 

 𝑥∗  <  
1

𝜎𝛽
.                                                (6)  

However, equation (5) has at least one positive root. In fact, it has a unique positive root if and 

only if the following set of conditions holds. 

 
𝛽 +

3𝛽𝜎𝑟0+3𝑚𝛽
2𝜎2𝑟0+3𝛽

2𝜎2𝑘0𝑟0+𝑚𝛽
3𝜎3𝑘0𝑟0

[𝛼2𝜎2𝑘0+𝛼𝛽𝜎2𝑘0𝑘1]
< 𝛼𝛿                                     

𝑚𝑟0 + 𝑘0𝑟0 + 3𝑚𝛽𝜎𝑘0𝑟0 < 𝛼𝑘0𝑘1 + 𝛽𝑘0𝑘1
2 + 𝛼𝛿𝑘0𝑘1

2 + 𝛽𝛿𝑘0𝑘1
3
}.                      (7) 

It has three or one positive root and hence there are three or one interior equilibrium point 

provided that one set of the following sets of conditions holds. 

 

𝐴3 > 0, 𝐴4 < 0, 𝐴5 < 0
𝐴3 < 0, 𝐴4 > 0, 𝐴5 < 0
𝐴3 < 0, 𝐴4 < 0, 𝐴5 > 0
𝐴3 > 0, 𝐴4 > 0, 𝐴5 > 0
𝐴3 > 0, 𝐴4 > 0, 𝐴5 < 0
𝐴3 < 0, 𝐴4 > 0, 𝐴5 > 0

    

}
 
 

 
 

                                            (8)  

However, equation (5) has five, three, or one positive root and hence the number of interior 

equilibrium points will be the same as the number of roots if the following set of conditions 

holds. 

            𝐴3 > 0, 𝐴4 < 0, 𝐴5 > 0.                                                (9) 

 

5. Stability Analysis 

       An investigation of the local stability of the system (1) close to the feasible equilibrium 

points is accomplished in this section. Let �̃� = (�̃�, �̃�) be any equilibrium point of the system 

(1), or their equivalent vector form system (3), and let 𝑥(𝑡) = 𝑥1(𝑡) + �̃� and     𝑦(𝑡) = 𝑦1(𝑡) +

�̃�, where 𝑋1(𝑡) = (𝑥1(𝑡), 𝑦1(𝑡))
𝑇
 be the small perturbation vector, then the linearized system 

of system (1) at �̃� can be written as follows: 

 
𝑑𝑋1

𝑑𝑡
=

𝑑𝑋

𝑑𝑡
= 𝑀𝑋1(𝑡) + 𝑁𝑋1(𝑡 − 𝜏),                                            (10) 

where 𝑀 = (
𝜕𝐹

𝜕𝑋(𝑡)
)
�̃�

 and 𝑁 = (
𝜕𝐹

𝜕𝑋(𝑡−𝜏)
)
�̃�

. Thus the Jacobian matrix of the system (1) at �̃� can 

be written as: 

 𝐽 = 𝑀 + 𝑁𝑒−𝜆𝜏,                                              (11) 

where 𝜆 fulfills the characteristic equation: 

  |𝜆𝐼 − 𝑀 − 𝑁𝑒−𝜆𝜏| = 0,                                               (12) 
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where 

 𝑀 = (

2𝑟0(𝑘0+𝑚)�̃�

𝑘0(1+𝛿�̃�)
− (𝛼 +  𝛽�̃�) �̃� −

𝑟0𝑚+3(
𝑟0
𝑘0
)�̃�2

1+𝛿�̃�
−(𝛼 + 2𝛽�̃�) �̃�

 
𝑟1 𝜎 �̃�

2 (𝛼+𝛽�̃�)

[𝑘1+𝜎�̃�(𝛼+𝛽 �̃�)]2
𝑟1 [1 − �̃�

2𝑘1+𝜎�̃�(2𝛼+𝛽�̃�)

[𝑘1+𝜎�̃�(𝛼+𝛽 �̃�)]2
]

),  

𝑁 = (0
(𝑟0𝑚+(

𝑟0
𝑘0
)�̃�2) 𝛿�̃�

(1+𝛿�̃�)2
−
𝑟0(𝑘0+𝑚) 𝛿�̃�

2

𝑘0(1+𝛿�̃�)2

0 0

). 

Accordingly, the local stability analysis of the boundary equilibrium points of the system (1) 

can be summarized in the following theorem. 

 

Theorem 3.  

(1) The vanishing equilibrium point of system (1) is a saddle point for all 𝜏 ≥ 0. 

(2) The prey-free equilibrium point of system (1) is unconditionally stable for all 𝜏 ≥ 0. 

(3) Both the predator-free equilibrium points of system (1) are unstable for all 𝜏 ≥ 0. 

Proof. (1) Substituting the equilibrium point 𝐸0 = (0, 0) in the equation (11) shows that 

 𝐽(𝐸0) = (
−𝑟0𝑚 0
0 𝑟1

). 

 

Hence, the roots of the characteristic equation (12) will be given by: 

           𝜆01 = −𝑟0𝑚 < 0 and  𝜆02 = 𝑟1 > 0. 

Therefore, the vanishing equilibrium point of system (1) is a saddle point for all 𝜏 ≥ 0. 

(2) Substituting the equilibrium point 𝐸1 = (0, 𝑘1) in the equation (11) shows that 

 𝐽(𝐸1) = (
− [

𝑟0𝑚

1+𝛿𝑘1
+ (𝛼 +  𝛽𝑘1) 𝑘1] 0

𝑟1𝜎(𝛼 +  𝛽𝑘1) −𝑟1
). 

Hence the roots of the characteristic equation (12) will be given by 

           𝜆11 = −[
𝑟0𝑚

1+𝛿𝑘1
+ (𝛼 +  𝛽𝑘1) 𝑘1] < 0 and 𝜆12 = −𝑟1 < 0. 

 

Therefore, the prey-free equilibrium point of system (1) is unconditionally stable for all 𝜏 ≥ 0. 

(3) Substituting the equilibrium points 𝐸21 = (𝑘0, 0) and 𝐸22 = (𝑚, 0) in equation (11), 

respectively, shows that 

 𝐽(𝐸21) = (
𝑟0(𝑚 − 𝑘0) −𝛼𝑘0

0 𝑟1
). 

 𝐽(𝐸22) = (
𝑟0𝑚(1 −

𝑚

𝑘0
) −𝛼𝑚

0 𝑟1
). 

Hence, the roots of the characteristic equation (12) will be given as follows: 

For 𝐸21:    𝜆211 = 𝑟0(𝑚 − 𝑘0) and 𝜆212 = 𝑟1 > 0. 

For 𝐸22:    𝜆221 = 𝑟0𝑚(1 −
𝑚

𝑘0
) and 𝜆222 = 𝑟1 > 0. 

 

     Accordingly, for 𝑚 > 𝑘0, then 𝐸21is an unstable node while 𝐸22 is a saddle point for all 𝜏 ≥
0. However, for 𝑚 < 𝑘0, then 𝐸21 is a saddle point while 𝐸22 is unstable node for all 𝜏 ≥ 0. 

Finally, when 𝑚 = 𝑘0, then 𝐸21 and 𝐸22 are nonhyperbolic unstable points.          ■ 

Now, the stability of the interior equilibrium point is denoted by 𝐸∗ = (𝑥∗, 𝑦∗) is discussed in 

the following theorem. 

Theorem 4. Suppose that system (1) has a unique interior equilibrium point. Then it is 

asymptotically stable for  𝜏 = 0 if and only if the following conditions are met. 
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2𝑟0(𝑘0+𝑚)𝑥
∗

𝑘0(1+𝛿𝑦∗)
< (𝛼 +  𝛽𝑦∗)𝑦∗ +

𝑟0𝑚+3(
𝑟0
𝑘0
)𝑥∗

2

(1+𝛿𝑦∗)

1 < 𝑦∗
2𝑘1+𝜎𝑥

∗(2𝛼+𝛽𝑦∗)

[𝑘1+𝜎𝑥∗(𝛼+𝛽𝑦∗)]2

(𝑟0𝑚+(
𝑟0
𝑘0
)𝑥∗

2
) 𝛿𝑥∗

(1+𝛿𝑦∗)2
<

𝑟0(𝑘0+𝑚) 𝛿𝑥
∗2

𝑘0(1+𝛿𝑦∗)2

   

}
 
 

 
 

.                               (13) 

 

However, there exists a positive delay value 𝜏∗ at which the interior equilibrium point becomes 

unstable for 𝜏 ≥ 𝜏∗ provided that in addition to the set of conditions (13) the following condition 

holds. 

 𝑃2
2 < 𝑃3

2,                     (14) 

where all the new symbols are given in the proof. 

 

Proof. According to equation (11), the Jacobian matrix of the system (1) at  𝐸∗ can be written 

as  

 𝐽( 𝐸∗) = (
𝑎11 𝑎12
𝑎21 𝑎22

) + 𝑒−𝜆𝜏 (
0 𝑏12
0 0

),                       (15) 

where 

 𝑎11 =
2𝑟0(𝑘0+𝑚)𝑥

∗

𝑘0(1+𝛿𝑦∗)
− (𝛼 +  𝛽𝑦∗)𝑦∗ −

𝑟0𝑚+3(
𝑟0
𝑘0
)𝑥∗

2

(1+𝛿𝑦∗)
, 

 𝑎12 = −(𝛼 + 2𝛽𝑦∗)𝑥∗,  

 𝑎21 =
𝑟1 𝜎 𝑦

∗2 (𝛼+𝛽𝑦∗)

[𝑘1+𝜎 𝑥∗(𝛼+𝛽𝑦∗)]2
, 

 𝑎22 = 𝑟1 [1 − 𝑦
∗ 2𝑘1+𝜎𝑥

∗(2𝛼+𝛽𝑦∗)

[𝑘1+𝜎𝑥∗(𝛼+𝛽𝑦∗)]2
], 

 𝑏12 =
(𝑟0𝑚+(

𝑟0
𝑘0
)𝑥∗

2
) 𝛿𝑥∗

(1+𝛿𝑦∗)2
−
𝑟0(𝑘0+𝑚) 𝛿𝑥

∗2

𝑘0(1+𝛿𝑦∗)2
. 

Then, the characteristic equation (12) at 𝐸∗ becomes: 

𝜆2 + 𝑃1 𝜆 + 𝑃2 + 𝑃3 𝑒
− 𝜆𝜏 = 0,                      (16) 

where 

 𝑃1 = −(𝑎11 + 𝑎22), 
 𝑃2 = 𝑎11𝑎22 − 𝑎12𝑎21, 

 𝑃3 = −𝑎21𝑏12. 

The characteristic equation (16) is a transcendental equation, thus it is obvious that applying 

the Routh-Hurwitz criterion to it will be hard. Therefore, the following two scenarios are 

discussed in order to specify the sign of the real parts of the equation's (16) roots. 

 

First:  At  𝜏 = 0, the equation (16) becomes  

 𝜆2 + 𝑃1 𝜆 + (𝑃2 + 𝑃3) = 0.                                           (17) 

Under the following requirements 𝑃1 > 0 and 𝑃2 + 𝑃3 > 0, which are easily satisfied if and 

only if the set of conditions (13) is met, system (1) has an equilibrium 𝐸∗ that is asymptotically 

stable and all roots of equation (17) have negative real parts according to the Routh-Hurwitz 

criterion. 

Second:  At  𝜏 > 0, it is claimed that 𝐸∗ is unstable for a positive delay value 𝜏∗, then the roots 

of equation (16) must cross the imaginary axis [25], which means it is necessary to find pure 

imaginary such as 𝜆 = 𝑖𝜗, with 𝜗 > 0 satisfies the equation (16).  

Now, substituting 𝜆 = 𝑖𝜗 into the equation (16) yields: 

  − 𝜗2 + 𝑃2 + 𝑃3 cos(𝜗𝜏) + 𝑖 [𝑃1𝜗 − 𝑃3 sin(𝜗𝜏)] = 0.                           (18)  

By separating the real and imaginary components of equation (18), it is obtained that: 
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𝑃3 cos(𝜗𝜏) =  𝜗

2 − 𝑃2
− 𝑃3 sin(𝜗𝜏) =  − 𝑃1𝜗

  }.                                           (19) 

By squaring and adding to each other the equations in (19) yields 

           𝜗4 + (𝑃1
2 − 2𝑃2)𝜗

2 + (𝑃2
2 − 𝑃3

2) = 0                                       (20) 

Substituting  𝜗2 = 𝑉, then equation (20) becomes: 

    𝑉2 + (𝑃1
2 − 2𝑃2) 𝑉 + (𝑃2

2 − 𝑃3
2) = 0.                                       (21) 

 

By Descartes’ rule of signs, equation (21), and hence (20), has one positive root 𝜗0 if and only 

if the condition (14) is met. Thus, for 𝜏 ≥ 𝜏∗, the characteristic equation (16) has roots with 

positive real part and hence 𝐸∗ becomes unstable.                    ■ 

      According to the above theorem, 𝐸∗ is asymptotically stable for all 𝜏 ∈ [ 0, 𝜏∗) and loses its 

stability once the eigenvalues cross the imaginary axis at 𝜏 = 𝜏∗.   
 

6. Hopf bifurcation Analysis  

     This section computes the value of 𝜏∗ before investigating the long-term behavior of the 

system (1) solution under conditions (13) and (14) for 𝜏 ≥ 𝜏∗. The system (1) experiences a 

Hopf bifurcation under conditions (13) and (14) for 𝜏 ≥ 𝜏∗, as will be proved in the following 

theorem. 

 

Theorem 5. Assume that conditions (13)-(14) hold, then there exists 𝜏∗ > 0 such that the 

equilibrium point 𝐸∗ of the system (1) remains asymptotic stable for 0 < 𝜏 < 𝜏∗ and unstable 

for 𝜏 > 𝜏∗,  where 

 𝜏∗ = min {
1

𝜗0
 (arccos (

𝜗0
2−𝑃2

𝑃3
 ) + 2𝑛𝜋)} ; 𝑛 = 0,1, …                                        (22) 

 

Furthermore, the system (1) undergoes the Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏∗ provided that 

the following condition holds. 

 2𝑃3 < 2𝜗0
2 + 𝑃1

2.                                     (23) 

 

Proof.  According to the theorem (4), under the given conditions, there is a unique positive 

root, namely 𝜗0, that satisfies the equation (20) when 𝜏 = 𝜏∗. Thus, the characteristic equation 

(16) has a pair of purely imaginary roots given by 𝜆(𝜏∗) = ∓ 𝑖𝜗0.  Otherwise, 𝜆(𝜏) = 𝜌(𝜏) ∓
𝑖𝜗, for all 𝜏 ∈ (𝜏∗ − 𝜀, 𝜏∗ + 𝜀).  
Now, from the equation (19) with 𝜗 = 𝜗0, it is obtained that 

𝜏𝑛
∗ =

1

𝜗0
 (arccos (

𝜗0
2−𝑃2

𝑃3
 ) + 2𝑛𝜋) , 𝑛 = 0, 1, 2, …                                 (24) 

 

It is a function of 𝜗0, and 𝜏∗ can be selected as follows:  

 𝜏∗ = min 𝜏𝑛
∗ , 𝑛 = 0, 1, 2, … 

Now, since the system (1) has a pair of purely imaginary eigenvalues when 𝜏 = 𝜏∗, then the 

system (1) undergoes the Hopf bifurcation if the transversality condition  
𝑑

𝑑𝜏
[𝑅𝑒 {𝜆(𝜏)}]|

𝜏= 𝜏∗
≠

0, where 𝑅𝑒 {𝜆(𝜏)} = 𝜌(𝜏), is verified. So, by deriving the equation (16) with respect to 𝜏 [26], 

it is obtained that: 

(2𝜆 + 𝑃1 − 𝑃3 𝜏 𝑒
− 𝜆𝑡)

𝑑𝜆

𝑑𝜏
= 𝑃3 𝜆𝑒

− 𝜆𝑡. 

Further simplification gives that:  

         (
𝑑𝜆

𝑑𝜏
)
− 1

= 
2𝜆+ 𝑃1

− 𝜆 (𝑃2+ 𝑃1𝜆+𝑃3)
 −  

𝜏

𝜆
. 

Then, to verify the transversality condition, it is clear that  
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𝑠𝑖𝑔𝑛 {
𝑑

𝑑𝜏
[𝑅𝑒 {𝜆(𝜏)}]}

𝜏= 𝜏∗
= 𝑠𝑖𝑔𝑛 {𝑅𝑒 (

𝑑𝜆

𝑑𝜏
)
− 1

 }
𝜆=𝑖𝜗0

                                     

                                  = 𝑠𝑖𝑔𝑛 {𝑅𝑒 (
1

𝜗0
 (

𝑃1+𝑖2𝜗0

𝑃1𝜗0+𝑖(𝜗0
2−𝑃3)

− 
𝜏

𝑖
))}

                                              = 𝑠𝑖𝑔𝑛 [
𝑃1
2+2(𝜗0

2−𝑃3)

𝑃1
2 𝜗0

2+ (𝜗0
2−𝑃3)

2] = 𝑠𝑖𝑔𝑛 [
2𝜗0

2+ 𝑃1
2−2𝑃3

𝑃3
2 

]

         

Clearly, 
𝑑

𝑑𝜏
[𝑅𝑒 {𝜆(𝜏)}]|

𝜏= 𝜏∗
> 0  due to condition (23). Hence, the system (1) undergoes the 

Hopf-bifurcation at  𝜏 =  𝜏∗.               ■ 

7. Direction and stability of Hopf bifurcation 

       Based on the center manifold and normal form theory given in [26], the direction of the 

Hopf bifurcation, and the stability of bifurcating periodic trajectories are discussed in the 

present section.  

 

Theorem 6. The stability and direction of the bifurcating periodic solution can be specified 

under the following determined fixed quantities. 

𝐶1(0) =  
𝑖

2𝜗0𝜏∗
 (𝑔11𝑔20 − (2 |𝑔11|

2 +
|𝑔02|

2

3
)) + 

𝑔21

2

𝑁2 = −
 𝑅𝑒{𝐶1(0)}

𝑅𝑒{
𝑑𝜆(𝜏∗)

𝑑𝜏
}

𝑃2 = 2 𝑅𝑒{𝐶1(0)}

𝑀2 = −
 𝐼𝑚 {𝐶1(0)} + 𝑁2 𝐼𝑚{

𝑑𝜆(𝜏∗)

𝑑𝜏
}

𝜗0𝜏∗ }
 
 
 

 
 
 

.                   (25) 

 

Then, the physical properties of the Hopf bifurcation for system (1) around  𝐸∗  at critical 

point 𝜏 =  𝜏∗ are given below: 

1. If  𝑁2 > 0 (𝑁2 < 0), then direction of the Hopf bifurcation is supercritical (subcritical) and 

the bifurcating periodic trajectories exist for 𝜏 > 𝜏∗ (𝜏 < 𝜏∗). 
2. If  𝑃2 < 0 (𝑃2 > 0), then the bifurcating periodic trajectories are stable (unstable). 

3. If  𝑀2 > 0 (𝑀2 < 0), then the period of the bifurcating periodic trajectories increase 

(decrease). 

 

Proof.  Utilizing the linear transformation 𝑢1(𝑡) = 𝑥(𝑡) − 𝑥
∗, 𝑢2(𝑡) = 𝑦(𝑡) − 𝑦

∗, 𝜇 = 𝜏 − 𝜏∗, 

where 𝜇 ∈ ℝ, and then rescaling the time delay using 𝑡 →
𝑡

𝜏
, the system (1) yields the following 

functional differential equation in 𝐶 = 𝐶([−1,0], ℝ2). Obviously, the value 𝜇 = 0 leads to the 

Hopf bifurcation point 𝜏∗ that is defined in equation (22), and the periodic trajectories of system 

(1) are equivalent to the trajectories of the following resulting system. 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝐿𝜇(𝑢𝑡) + 𝑓(𝜇, 𝑢𝑡),                                             (26) 

where 𝑢(𝑡) = 𝑢𝑡 = (𝑢1(𝑡), 𝑢2(𝑡))
𝑇
∈ ℝ2, and 𝐿𝜇: 𝐶 ⟶ ℝ2, and 𝑓:ℝ × 𝐶 ⟶ ℝ2, with 

 𝐿𝜇(𝜑) = (𝜏
∗ + 𝜇) [𝑀∗ (

𝜑1(0)

𝜑2(0)
) + 𝑁∗ (

𝜑1(−1)

𝜑2(−1)
)],                              (27) 

            𝑀∗ = (
𝑓100
(1)

𝑓010
(1)

𝑓10
(2)

𝑓01
(2)
) = (

𝑎11 𝑎12
𝑎21 𝑎22

), 

 𝑁∗  (0 𝑓001
(1)

0 0
) = (

0 𝑏12
0 0

), 
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and 

𝑓(𝜇, 𝜑) = (𝜏∗ + 𝜇) [
∑

1

𝑖!𝑗!𝑘!
 𝑓𝑖𝑗𝑘
(1)
 𝜑1
𝑖 (0) 𝜑2

𝑗(0) 𝜑3
𝑘(−1)𝑖+𝑗+𝑘≥2

∑
1

𝑖!𝑗!
 𝑓𝑖𝑗
(2)
 𝜑1
𝑖 (0) 𝜑2

𝑗(0)𝑖+𝑗≥2

],                (28) 

with 𝜑(𝑣) = (𝜑1(𝑣), 𝜑2(𝑣))
𝑇
∈ 𝐶, 𝑣 ∈ [−1, 0], while 𝑓(1)(𝜑1, 𝜑2, 𝜑3), 𝑓

(2)(𝜑1, 𝜑2), 

𝑓𝑖𝑗𝑘
(1)
𝜑1
𝑖 (0) 𝜑2

𝑗(0) 𝜑3
𝑘(−1), and 𝑓𝑖𝑗

(2)
𝜑1
𝑖 (0) 𝜑2

𝑗(0)  are given as follows: 

𝑓(1)(𝜑1, 𝜑2, 𝜑3) =
 (𝜑1+𝑥

∗)[− 𝑟0𝑚+
𝑟0(𝑘0+𝑚)

𝑘0
(𝜑1+𝑥

∗)−
𝑟0
𝑘0
(𝜑1+𝑥

∗)2 ]

1+𝛿𝜑2𝜑3+𝛿𝑦∗
                       

               −(𝜑1 + 𝑥
∗)[𝛼(𝜑2 + 𝑦

∗) + 𝛽𝜑2(𝜑2 + 2𝑦
∗) + 𝛽𝑦∗2]

, 

𝑓(2)(𝜑1, 𝜑2) = 𝑟1(𝜑2 + 𝑦
∗) [1 −

(𝜑2+𝑦
∗)

𝑘1+𝜎(𝜑1+𝑥∗)[𝛼+𝛽(𝜑2+𝑦∗)]
], 

𝑓𝑖𝑗𝑘
(1)
=

𝜕𝑖+𝑗+𝑘 𝑓(1)

𝜕𝜑1
𝑖  𝜑2

𝑗
 𝜑3
𝑘
|
(𝜑1,𝜑2,𝜑3)=(0,0,−1)

, 

𝑓𝑗𝑘
(2)
=

𝜕𝑖+𝑗 𝑓(2)

𝜕𝜑1
𝑖  𝜑2

𝑗
 
|
(𝜑1,𝜑2)=(0,0)

. 

Moreover, direct computation gives the following higher derivatives: 

 

 

𝑓110
(1)
= − (𝛼 + 2𝛽𝑦∗), 𝑓101

(1)
=

𝛿 (3
𝑟0
𝑘0
𝑥∗2−2

𝑟0(𝑘0+𝑚)

𝑘0
𝑥∗+𝑟0𝑚)

(1+𝛿𝑦∗)2
, 𝑓011

(1)
= 0,

𝑓200
(1) =

𝑟0(𝑘0+𝑚)

𝑘0
 − 3

𝑟0
𝑘0
𝑥∗

1+𝛿𝑦∗
, 𝑓020

(1)
= −𝛽𝑥∗, 𝑓002

(1)
=

2𝛿𝑥∗ (
𝑟0
𝑘0
𝑥∗
2
−
𝑟0(𝑘0+𝑚)

𝑘0
𝑥∗+𝑟0𝑚)

(1+𝛿𝑦∗)3
,

 𝑓11
(2)
= 𝑟1𝜎𝑦

∗ [
𝛽𝑦∗ Υ2+2 (𝛼+𝛽𝑦∗)(1− 𝜎𝛽𝑥∗𝑦∗ Υ )

Υ4
] , 𝑓20

(2)
= −

 𝑟1𝑦
∗2 Υ 𝜎(𝛼+𝛽𝑦∗)2

Υ4
 

𝑓02
(2) =

𝑟1𝜎𝛽𝑥
∗𝑦∗+2𝑟1𝜎𝛽𝑥

∗𝑦∗ Υ2−𝑟1𝜎𝛽𝑥
∗ Υ2− 𝑟1𝜎

2𝛽2𝑥∗2𝑦∗ Υ

Υ4
, Υ = 𝑘1 + 𝜎𝑥

∗(𝛼 + 𝛽𝑦∗).}
 
 
 

 
 
 

   (29) 

According to the Riesz representation theorem [27], there exists a  2 × 2 matrix given by 

𝜂(𝑣, 𝜇) whose inputs are bounded variation functions such that 

 𝐿𝜇𝜑 = ∫ [𝑑𝜂(𝑣, 𝜇)]𝜑(𝑣)
0

−1
, for 𝜑 ∈ 𝐶.                                     (30) 

In truth, it is possible to select: 

 𝜂(𝑣, 𝜇) = (𝜏∗ + 𝜇) [(
𝑓100
(1)

𝑓010
(1)

𝑓10
(2) 𝑓01

(2)
)𝛿(𝑣) − (0 𝑓001

(1)

0 0
)𝛿(𝑣 + 1) ],                          (31) 

where 𝛿 (𝑣) denotes the Dirac delta function and is defined as  

 𝛿(𝑣) = {
1,         𝑣 = 0 
0,         𝑣 ≠  0

. 

For  𝜑 ∈ 𝐶1([−1,0], ℝ2), define that  

 𝐴(𝜇)𝜑(𝑣) = {

𝑑𝜑(𝑣)

𝑑𝑣
;                  𝑣 ∈ [−1,0)

∫
0

−1
𝑑𝜂(𝜎, 𝜇) 𝜑(𝜎);  𝑣 = 0

,                                                 (32) 

and 

  𝑅(𝜇)𝜑(𝑣) = {
0;           𝑣 ∈ [−1,0)

𝑓(𝜇, 𝜑); 𝑣 = 0        
                                   (33) 

Thus, system (26) corresponds to 

 
𝑑𝑢(𝑡)

𝑑𝑡
= 𝐴(𝜇) 𝑢𝑡 + 𝑅(𝜇) 𝑢𝑡,                               (34) 

where, 𝑢𝑡(𝑣) = 𝑢(𝑡 + 𝑣) for 𝑣 ∈ [−1,0]. Furthermore, for 𝜓 ∈ 𝐶1([0,1], (ℝ2)∗), define 
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 𝐴∗𝜓(𝑠) = {
−
𝑑𝜓(𝑠)

𝑑𝑠
;                       𝑠 ∈ (0,1]

∫
0

−1
[𝑑𝜂𝑇(𝑡, 0)] 𝜓(− 𝑡);  𝑠 = 0

,                                           (35) 

where 𝜂𝑇 represents the transpose matrix 𝜂. For 𝜑 ∈ 𝐶1([−1,0], ℝ2) and 𝜓 ∈ 𝐶1([0,1], (ℝ2)∗), 
in order to normalize the eigenvectors of operator 𝐴 and adjoint operator 𝐴∗, the following 

bilinear inner product is defined below 

 〈𝜓(𝑠), 𝜑(𝑣)〉 = �̅�(0) 𝜑(0) − ∫ ∫ �̅�(𝜖 − 𝑣)
𝑣

𝜖=0

0

−1
𝑑𝜂(𝑣) 𝜑(𝜖) 𝑑𝜖,                            (36) 

where, 𝜂(𝑣) =  𝜂(𝑣, 0). Obviously, 𝐴 = 𝐴(0) and 𝐴∗ = 𝐴∗(0) are adjoint operators, then it is 

obtained that 〈𝜓, 𝐴𝜑〉 = 〈𝐴∗𝜓,𝜑〉.  
Now, since the system (26) undergoes the Hopf-bifurcation near equilibrium point 𝐸∗. Then 

system (26) has two pure imaginary eigenvalues ∓ 𝑖𝜗0𝜏
∗of A, which are also eigenvalues of 𝐴∗. 

         

Now, by a simple calculation, the eigenvectors of 𝐴(0) and 𝐴∗ associated with the eigenvalues 

∓ 𝑖𝜗0𝜏
∗ are computed, respectively, as follows: 

 
𝑞(𝑣) = (1, 𝑞1)

𝑇𝑒𝑖𝜗0𝜏
∗𝑣      

𝑞∗(𝑠) = 𝐷(1, 𝑞1
∗)𝑇𝑒−𝑖𝜗0𝜏

∗𝑠
},                                           (37) 

where 

𝑞1 = −
 𝑓10
(2)
 

𝑓01
(2)
−𝑖𝜗0

      

𝑞1
∗ = −

 (𝑓100
(1)
+ 𝑖𝜗0) 

𝑓10
(2)

}
 
 

 
 

.                                                   (38) 

Moreover, determine the parameter value of 𝐷, such that: 

            ⟨𝑞∗(𝑠), 𝑞(𝑣)⟩ = 1; ⟨𝑞∗(𝑠), �̅�(𝑣)⟩ = 0.                                          (39) 

According to equation (36), it is observed that: 

〈𝑞∗(𝑠), 𝑞(𝑣)〉 = �̅�(1, 𝑞1
∗̅̅̅) (1, 𝑞1)

𝑇 − ∫ ∫ �̅�(1, 𝑞1
∗̅̅̅) 𝑒−𝑖𝜗0𝜏

∗(𝜖−𝑣)

𝑣

𝜖=0

0

−1

 𝑑𝜂(𝑣)(1, 𝑞1)
𝑇𝑒𝑖𝜗0𝜏

∗𝜖 𝑑𝜖 

                          = �̅� (1 + 𝑞1 𝑞1
∗̅̅̅̅ + 𝜏∗(𝑞1 𝑓001

(1)
) 𝑒− 𝑖𝜗0𝑡

∗
). 

Therefore, due to (39), it is obtained that  

�̅� = (1 + 𝑞1 𝑞1
∗̅̅̅̅ + 𝜏∗(𝑞1 𝑓001

(1)
) 𝑒− 𝑖𝜗0𝑡

∗
)
−1

𝐷 = (1 + 𝑞1̅̅̅ 𝑞1
∗ + 𝜏∗(𝑞1̅̅̅ 𝑓001

(1)
) 𝑒  𝑖𝜗0𝑡

∗
)
−1 }.                                         (40) 

Moreover, from the adjoint property 〈𝜓, 𝐴𝜑〉 = 〈𝐴∗𝜓,𝜑〉, it is follows that ⟨𝑞∗(𝑠), �̅�(𝑣)⟩ = 0. 

 

       Next, using a similar technique as in [27] , the properties of the bifurcating periodic 

trajectories of the system (26) can be discussed and analyzed. The coefficients 𝑔𝑖𝑗 that 

determine the direction and stability of the Hopf bifurcation are given below 

 

𝑔20 = 2 𝜏
∗ �̅�(𝑅1 +  𝑞1

∗̅̅̅̅  𝑅5)

𝑔11 = 𝜏∗ �̅�(𝑅2 +  𝑞1
∗̅̅̅̅  𝑅6)   

𝑔02 = 2𝜏
∗ �̅�(𝑅3 +  𝑞1

∗̅̅̅̅  𝑅7)

𝑔21 = 2𝜏
∗ �̅�(𝑅4 +  𝑞1

∗̅̅̅̅  𝑅8)}
 
 

 
 

,                                            (41) 

where 

 𝑅1 = 𝑞1 𝑓110
(1)
+ 𝑞1̅̅̅ 𝑓101

(1)
 𝑒  𝑖𝜗0𝑡

∗
+
1

2
 (𝑓200

(1)
+ 𝑞1

2 𝑓020
(1)
+ 𝑞1

2 𝑓002
(1)
 𝑒−2𝑖𝜗0𝑡

∗
), 

 𝑅2 =  𝑓200
(1)
+ 𝑞1𝑞1̅̅̅ ( 𝑓020

(1)
+  𝑓002

(1)
) + (𝑞1 + 𝑞1̅̅̅) ( 𝑓110

(1)
+  𝑓101

(1)
), 
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 𝑅3 = 𝑞1̅̅̅ ( 𝑓110
(1)
+  𝑓101

(1)
  𝑒  𝑖𝜗0𝑡

∗
) +

1

2
 ( 𝑓200

(1)
+ 𝑞1

2̅̅ ̅( 𝑓020
(1)
+  𝑓002

(1)
  𝑒  𝑖𝜗0𝑡

∗
)), 

 𝑅4 = ℬ1 𝑓110
(1)
+ ℬ2 𝑓101

(1)
+ ℬ3 𝑓200

(1)
+ ℬ4 𝑓020

(1)
+
1

2
 ℬ5 𝑓002

(1)
, 

 𝑅5 = 𝑞1 𝑓11
(2)
+
1

2
 ( 𝑓20

(2)
+ 𝑞1

2 𝑓02
(2)
), 

 𝑅6 =  𝑓20
(2)
+ 𝑞1𝑞1̅̅̅  𝑓02

(2)
+ (𝑞1 + 𝑞1̅̅̅) 𝑓11

(2)
, 

 𝑅7 = 𝑞1̅̅̅ 𝑓11
(2) +

1

2
( 𝑓20

(2) + 𝑞1
2̅̅ ̅ 𝑓02

(2)), 

 𝑅8 =  ℬ1 𝑓11
(2) + ℬ3 𝑓20

(2) + ℬ6 𝑓02
(2)

, 

with, 

ℬ1 =
1

2
 𝑞1̅̅̅̅  𝑊20

(1)(0) + 𝑞1 𝑊11
(1)(0) +  𝑊11

(2)(0) +
1

2
  𝑊20

(2)(0), 

ℬ2 =
1

2
 𝑞1̅̅̅̅  𝑊20

(1)(0) 𝑒  𝑖𝜗0𝑡
∗
+ 𝑞1 𝑊11

(1)(0) 𝑒− 𝑖𝜗0𝑡
∗
+  𝑊11

(2)(−1) +
1

2
  𝑊20

(2)(−1), 

ℬ3 =
1

2
 𝑊20

(1)(0) +  𝑊11
(1)(0), 

ℬ4 = 𝑞1 (
1

2
𝑊20

(1)(0) +𝑊11
(1)(0)) = 𝑞1ℬ3, 

ℬ5 =
1

2
 ( 𝑞1̅̅̅̅  𝑊20

(2)(−1) 𝑒  𝑖𝜗0𝑡
∗
+ 𝑞1 𝑊11

(2)(−1) 𝑒− 𝑖𝜗0𝑡
∗
), 

ℬ6 =  𝑞1̅̅̅̅  𝑊20
(1)(0) + 2𝑞1 𝑊11

(1)(0). 
Clearly, the values of 𝑔20, 𝑔11, and 𝑔02 can be determined from the above findings, while 𝑔21 

needs to determine 𝑊20(𝑣) and 𝑊11(𝑣). So, performing certain arithmetic procedures and 

solving for 𝑊20(𝑣) and 𝑊11(𝑣) yields:  

 
𝑊20(𝑣) =

𝑖𝑔20

𝜗0𝜏∗
𝑞(0) 𝑒  𝑖𝜗0𝑡

∗𝑣 +
𝑖 𝑔11̅̅ ̅̅ ̅

3𝜗0𝜏∗
�̅�(0) 𝑒−𝑖𝜗0𝑡

∗𝑣 + 𝐸1 𝑒
 2𝑖𝜗0𝑡

∗𝑣

𝑊11(𝑣) = −
 𝑖𝑔11

𝜗0𝜏∗
𝑞(0) 𝑒  𝑖𝜗0𝑡

∗𝑣 +
𝑖 𝑔02̅̅ ̅̅ ̅

𝜗0𝜏∗
�̅�(0) 𝑒−𝑖𝜗0𝑡

∗𝑣 + 𝐸2       
},                          (42) 

where, 𝐸𝑖 = (𝐸𝑖
(1)
, 𝐸𝑖

(2)
)
𝑇

∈ ℝ2 for 𝑖 = 1,2  are constant vectors, which can be determined 

from the following equations: 

 [
2𝑖𝜗0 −  𝑓100

(1)      −( 𝑓010
(1)
+  𝑓001

(1)
  𝑒  2𝑖𝜗0𝑡

∗
)

−  𝑓10
(2) 2𝑖𝜗0 −  𝑓01

(2)
] [
𝐸1
(1)

𝐸1
(2)
] = 2 [

𝑅1
𝑅5
]             (43) 

[
− 𝑓100

(1)
      −( 𝑓010

(1)
+  𝑓001

(1)
 )

−  𝑓10
(2)      − 𝑓01

(2)
] [
𝐸2
(1)

𝐸2
(2)
] = [

𝑅2
𝑅6
].                               (44)  

As a result, using Cramer’s rule, it is obtained that 

 𝐸1
(1)
= 

det(∆11)

det(∆1)
, 𝐸1

(2)
= 

det(∆12)

det(∆1)
, 𝐸2

(1)
= 

det(∆21)

det(∆2)
, 𝐸2

(2)
= 

det(∆22)

det(∆2)
                    (45) 

where 

∆1= [ 
2𝑖𝜗0 −  𝑓100

(1)      −( 𝑓010
(1)
+  𝑓001

(1)
  𝑒  2𝑖𝜗0𝑡

∗
)

−  𝑓10
(2) 2𝑖𝜗0 −  𝑓01

(2)
 ], 

∆11= [ 
𝑅1      −( 𝑓010

(1)
+  𝑓001

(1)
  𝑒  2𝑖𝜗0𝑡

∗
)

𝑅5      2𝑖𝜗0 −  𝑓01
(2)

 ], 

∆12= [  
2𝑖𝜗0 −  𝑓100

(1)        𝑅1

−  𝑓10
(2) 𝑅5

  ],  

∆2= [ 
− 𝑓100

(1)      −( 𝑓010
(1)
+  𝑓001

(1)
 )

−  𝑓10
(2)      − 𝑓01

(2)
], 
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∆21= [ 
𝑅2      −( 𝑓010

(1)
+  𝑓001

(1)
 )

𝑅6      − 𝑓01
(2)

], 

∆22= [ 
− 𝑓100

(1)      𝑅2

−  𝑓10
(2)      𝑅6

 ], 

Therefore, it becomes easy to find the value of both 𝑊20(𝑣)   and   𝑊11(𝑣) in equation (42) using 

the obtained results from equation (45). Hence, the value of  𝑔21  in equation (41) can be 

determined. Finally, utilizing the determined value of 𝑔𝑖𝑗, the value of the fixed quantities in 

equation (25) is obtained, then all the properties of the bifurcating Hopf bifurcation follow and 

the proof is completed. 

 

8. Numerical Simulations 

In the present section, the obtained theoretical results are verified utilizing numerical 

simulation. The influence of time delay and all other parameters on the system's (1) dynamical 

behavior is studied in detail using numerical solutions of the system depending on the following 

hypothetical Dataset of biologically feasible parameters set. System (1) is solved numerically 

utilizing Matlab code with version R2021a.  
𝑟0 = 4, 𝑘0 = 15, 𝛿 = 2,𝑚 = 1, 𝛼 = 0.25, 𝛽 = 0.1

𝑟1 = 0.5, 𝑘1 = 1, 𝜎 = 0.5, 𝜏 = 0.1.
                  (45) 

The numerical solution of the system (1) is determined and represented in the form of a phase 

portrait and their time series as shown in Figure (1) using the Dataset (45) and starting from 

different initial points. 

 

 
Figure 1: The trajectories of the system (1) using the dataset (45) and different initial points. 

(a) Approach asymptotically to 𝐸∗ = (7.61, 3.13). (b) The trajectories of 𝑥 and 𝑦 versus time. 
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(c) Bi-stable between 𝐸1 = (0,1) and 𝐸∗ = (7.61, 3.13). (d) The trajectories of 𝑥 and 𝑦 versus 

time for bistable case.  

 

       According to Figure (1), the obtained theoretical results are verified as a system (1) has 

unconditional stable prey-free equilibrium point. So once the initial points fall within their basin 

of attraction it will subsequently approach it. Moreover, since the interior equilibrium point 

exists and is stable the system (1) presents a bi-stable behavior.  Further, the influence of 𝑟0 on 

the dynamic of the system (1) is investigated in Figure (2). 

 

 
Figure 2: The trajectories of the system (1) using the dataset (45) and different initial points 

with different values of 𝑟0. (a-b) The phase portrait and their time series for 𝑟0 = 2.5 approaches 

𝐸1 = (0,1). (c-d) The phase portrait and their time series for 𝑟0 = 3.5 exhibit bi-stable between 

𝐸1 and periodic dynamics. 

 

      According to Figure (2), as the parameter 𝑟0 increases the solution to the system (1) is 

transferred from the prey-free equilibrium point to the periodic in the interior of the first 

quadrant and then to the interior equilibrium point. The bi-stable behavior is still observed 

depending on the position of the initial points. Moreover, since 𝐸1 is totally stable, the system 

exhibits bi-stability whenever using the initial points fall in the basin of attraction of 𝐸1. 

Therefore, from now onward single initial point is used to understand the influence of the other 

parameters.    

The influence of time delay is investigated and the obtained numerical results are shown in 

Figure (3). 
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Figure 3: The trajectories of the system (1) using the dataset (45) with different values of 𝜏. (a-

b) The phase portrait and their time series for 𝜏 = 𝜏0 = 0.188 exhibits a Hopf bifurcation. (c-

d) The phase portrait and their time series for 𝜏 = 0.2 exhibit small periodic dynamics. (e-f) 

The phase portrait and their time series for 𝜏 = 0.5 exhibit large periodic dynamics. (g-h) The 

phase portrait and their time series for 𝜏 = 1.27 exhibit asymptotic stable 𝐸1. 

Figure (3) shows that the interior equilibrium point becomes unstable and the system (1) 

undergoes the Hopf bifurcation at 𝜏0 = 0.188. Then the period starts increasing with the value 

of  𝜏, and then the system loses its persistence and approaches 𝐸1.  

The influence of 𝑘0 on the system's (1) dynamic is studied numerically and presented in Figure 

(4). 
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Figure 4: The trajectories of the system (1) using the dataset (45) with different values of 𝑘0. 

(a) The phase portrait for 𝑘0 = 4.9 approaches to 𝐸1. (b) The phase portrait for 𝑘0 = 5 

approaches to 𝐸∗. (c) The phase portrait for 𝑘0 = 15.5 exhibits periodic dynamics. (d) The 

phase portrait for 𝑘0 = 20 approaches to 𝐸1. 

From Figure (4), it is observed that the behavior of the system (1), as increases 𝑘0, transfers 

from 𝐸1 to  𝐸∗, then to periodic, and finally returns back to 𝐸1. Now, the impact of varying δ 

on the dynamics of the system (1) is presented in Figure (5). 

 
Figure 5: The trajectories of the system (1) using the dataset (45) with different values of 𝛿. (a-

b) The phase portrait and their time series for 𝛿 = 2.1 exhibit periodic dynamics. (c-d) The 

phase portrait and their time series for 𝛿 = 2.9 approaches 𝐸1. 
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According to Figure (5), as increasing 𝛿 the system undergoes periodic due to the instability of 

𝐸∗. Then as the parameter increases further the system approaches 𝐸1. Now the effect of varying 

𝛽 on the system’s (1) dynamic is studied numerically and the results are presented in Figure 

(6). However, the effect of varying 𝑟1 is shown in Figure (7). 

 

 
Figure 6: The trajectories of the system (1) using the dataset (45) with different values of  𝛽. 

(a-b) The phase portrait and their time series for  𝛽 = 0.05 approaches 𝐸∗. (c-d) The phase 

portrait and their time series for 𝛽 = 0.11 exhibit a periodic dynamics. (e-f) The phase portrait 

and their time series for 𝛽 = 0.115  approaches 𝐸1. 
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Figure 7: The trajectories of the system (1) using the dataset (45) with different values of 𝑟1. 

(a-b) The phase portrait and their time series for 𝑟1 = 0.1 approaches 𝐸1. (c-d) The phase 

portrait and their time series for 𝑟1 = 0.3 exhibit periodic dynamics. 

      

 It is observed from Figure (6) that  𝛽 has a similar effect as that of 𝛿 on the system’s 

(1) dynamic. On the other hand, Figure (7) shows that as decreases 𝑟1 the interior equilibrium 

point becomes unstable and a periodic dynamic occurs. Then decreasing this parameter further 

makes the system approaches 𝐸1. 

Finally, the numerical simulation shows that the parameters 𝑚, 𝛼, 𝜎, and 𝑘1 have a similar 

influence on the system’s (1) dynamics as that shown in 𝛿. 

 

9. Conclusions 

      A delayed prey-predator model involving fear, cooperative hunting, and the Allee effect is 

proposed and studied. The properties of the solution were studied. It was obtained that there 

exist four boundary equilibrium points. There is at least one interior equilibrium point. The 

stability analysis of system (1) was investigated.  It is obtained that the vanishing equilibrium 

point of system (1) is a saddle point for all 𝜏 ≥ 0. While the prey-free equilibrium point of 

system (1) is unconditionally stable for all 𝜏 ≥ 0. However, Both the predator-free equilibrium 

points of system (1) are unstable for all 𝜏 ≥ 0. The interior equilibrium point is locally stable 

for 𝜏 ∈ [0, 𝜏0) and unstable for 𝜏0 < 𝜏. However, the system undergoes the Hopf bifurcation at 

𝜏0. The stability and direction of the bifurcating periodic dynamics were investigated using 

normal form theory and center manifold theory. Numerical simulation is used to verify the 

obtained finding and understand the influence of parameters on the system’s (1) dynamics.  

      According to the numerical simulation, it is observed that increasing the growth rate of the 

prey population has a stabilizing effect on the system’s (1) dynamics. However, increasing the 

time prey takes to respond to predation risk (delay) has a destabilizing effect on the system's 

dynamic (1) up to a specific value and then the prey goes to extinction.  Decreasing the carrying 

capacity of the prey population causes extinction in the prey population while increasing it 

destabilizes the interior equilibrium point first and periodic dynamics occur, then at a critical 

value, the system approaches a prey-free equilibrium point. Decreasing the growth rate of the 

predator population destabilizes the system.  

It is obtained that, increasing the fear rate and a cooperative hunting coefficient destabilize the 

system’s (1) dynamic. Similarly, as the fear rate and a combined hunting coefficient, the other 

parameters (Allee effect constant, the search rate of the prey by a predator, the conversion rate 

of prey biomass to predator biomass, and carrying capacity of predator in the absence of the 

prey) influence the system’s (1) dynamics. Finally, since the prey-free equilibrium point is 

unconditionally asymptotically stable that means it has won a basin of attraction then the system 



Al-Jubouri and Naji                          Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 3901-3921                             

 

3920 

undergoes a bi-stable behavior either between the interior point and the axial point or between 

periodic dynamics and the axial point. 
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