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Abstract  

     In this paper, the integrability and a zero-Hopf bifurcation of the four-

dimensional Lotka-Volterra systems are studied. The requirements for this kind of 

system's integrability and a line of singularities with two zero eigenvalues are 

provided. We identify the parameters that lead to a zero-Hopf equilibrium point at 

each point along the line of singularities. We show that there is only one parameter 

that displays such equilibria. The first-order averaging method is also employed, 

although this method will not give any information about the bifurcate periodic 

solutions that bifurcate from the zero-Hopf equilibria. 

 

Keywords: Lotka-Volterra system, Invariant algebraic hypersurfaces, Darboux first 

integral, Zero-Hopf bifurcation, Averaging theory. 

 

 التكاملات الأولى والتشعب الصفري لأنظمة لوتکا فولتیرا رباعية الأبعاد 
 

 سیروان انور مصطفی *, نيازی هادی حسین  

    قسم الرياضيات، كلية العلوم، جامعة سوران، أربيل، العراق 
 

  الخلاصة 
فولتيرا رباعية الأبعاد. يتم  -والتشعب الصفري هوبف لأنظمة لوتکا  قابلية التكاملفي هذا البحث تم دراسة        

إعطاء شروط تكامل هذا النوع من النظام وخط التفردات مع قيمتين من قيم الذاتية. نحدد المعلمات التي تؤدي  
إلى نقطة توازن صفرية لهوبف في أي نقطة على طول خط التفردات. نظهر أن هناك متغير واحد فقط يعرض  
هذه   أن  من  الرغم  على   ، الأولى  الدرجة  من  المتوسط  حساب  طريقة  استخدام  أيضًا  يتم  التوازن.  هذا  مثل 

 الطريقة لا توفر أي معلومات حول الحلول الدورية ذات التشعبين التي تتشعب من توازن صفر هوبف.
 

1. Introduction 

     Lotka -Volterra systems describing the interaction of n species were introduced 

independently by Alfred Lotka (1925) and Vito Volterra (1926) in the theory of biological 

populations. They consist of n first-order differential equations 

 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑥𝑖(𝑡)(𝑏𝑖 + ∑ 𝑎𝑖𝑗 𝑥𝑗(𝑡)

𝑛
𝑗=1 ),        𝑖 = 1,… , 𝑛,                                                  (1) 

where 𝑥𝑖(𝑡) is the number of individuals in the 𝑖 𝑡ℎ population at time 𝑡, 𝑏𝑖 is the growth rate 

of the 𝑖 𝑡ℎ population and  𝑎𝑖𝑗 are the interaction coefficients of the species [1]. 
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    The system described by equation (1) is called a competitive system. This system is a basic 

model of predator-prey interactions. The Lotka–Volterra system in ℝ4 with coordinates 

(𝑥, 𝑦, 𝑧, 𝑤) is a quadratic polynomial differential system of the form  

 

{

�̇� = 𝑥(𝑏1 + 𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14𝑤),
�̇� = 𝑦(𝑏2 + 𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 + 𝑎24𝑤),
�̇� = 𝑧(𝑏3 + 𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34𝑤),
�̇� = 𝑤(𝑏4 + 𝑎41𝑥 + 𝑎42𝑦 + 𝑎43𝑧 + 𝑎44𝑤),

                                                             (2) 

 

     where the dot denotes the derivative with respect to the independent variable t which is 

usually called the time and  𝑏𝑖 > 0 and 𝑎𝑖𝑗 < 0  (𝑖, 𝑗 = 1,… ,4) are real parameters, see [2].  

 

     The general Lotka-Volterra model has become the starting point for a wide variety of 

mathematical models in ecology, physics, economics, etc. [3]. 

 

     Various investigations of system (1) have been studied by numerous authors, including, 

Wang and Xiao [4] studied Hopf-bifurcation for the four-dimensional Lotka-Volterra system 

by using simulations and the linearization technique, Lyu and Jablonski [5] investigated the 

four-dimensional discrete-time Lotka-Volterra model with the use of a practical ecological 

system, Kowgier [6] showed on a few models how the survival probability of four 

populations alters with the assumption that they reach an equilibrium level determined by the 

same number of individuals, Farhan et al. [7] investigated the stability of the four-dimensional 

Lotka-Volterra model, and Antonov et al. [8] determined some criteria for the existence of the 

first integrals of the prey-predator tridiagonal 4-dimensional Lotka-Volterra models. 

 

     The purpose of this paper is to study two objectives: The first main objective of this paper 

is to advance our understanding of the complexity of system (2), more specifically, the 

dynamics of the system and this is done by examining its integrability. Furthermore, within 

the class of first integrals, the simpler ones are known as Darboux first integrals in ℝ4. For 

more details, see  [9, 10, 11, 12]. 

  

     The second objective of this research is to investigate a zero-Hopf bifurcation at the zero-

Hopf equilibrium point. We recall that a zero-Hopf equilibrium point is an equilibrium that 

has a pair of purely imaginary and two zero eigenvalues. When an infinitesimal periodic orbit 

bifurcates from the equilibrium point, such a kind of bifurcation is called zero-Hopf 

bifurcation. This type of bifurcation has been studied by [13, 14, 15, 16, 17]. It has been 

shown that, the isolated zero-Hopf equilibrium point of some complicated invariant sets may 

be bifurcated under suitable conditions. In [18, 19, 20, 21]  the authors obtain  some 

investigations as a chaotic behavior. The averaging method is a classical and useful 

computational technique for analysing nonlinear oscillations. It has been used by many 

authors to study the bifurcating periodic orbits from a zero-Hopf equilibrium point. The first 

order of the averaging method is used in the work [22, 23, 24, 25]. There are some works on a 

zero-Hopf bifurcation of the four-dimensional systems, Jaume Llibre and Yuzhou Tian in 

[26], Jaume Llibre et al. in [27]. Furthermore, the authors of [28, 29, 30, 31, 32] investigated 

periodic orbits in ℝ4 using the averaging method. 

 

       This paper is organized as follows.  In section 2, the Darboux theory of integrability and 

the line of singularities of the 4DLVS are studied. In section 3, the precise parametric 

requirements for a 4DLVS zero-Hopf equilibrium are given. We explain the averaging 

method of the first order. Finally,  the conclusion of this work is given in Section 4. 
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2. Darboux theory 

     In this section, the integrability and the existence of a line of singularities are studied for   

4DLVS. Some conditions are established in order to construct the invariant algebraic surfaces. 

In addition, the sufficient conditions for the existence of a line of singularity with two zero 

eigenvalues are obtained. In these conditions, a function of the Darboux type produces three 

linearly independent first integrals of the 4DLVS. We denote by ℂ[𝑥, 𝑦, 𝑥, 𝑤] the ring of 

polynomials in the variables 𝑥, 𝑦, 𝑧 and 𝑤 and coefficients are in ℂ. Given 𝑓 ∈ ℂ[𝑥, 𝑦, 𝑧, 𝑤]  is 

a Darboux polynomial of system (2) if there exists 𝐾 ∈ ℂ[𝑥, 𝑦, 𝑧, 𝑤] called the cofactor such 

that    

 �̇�
𝜕𝑓

𝜕𝑥
+ �̇�

𝜕𝑓

𝜕𝑦
+ �̇�

𝜕𝑓

𝜕𝑧
+ �̇�

𝜕𝑓

𝜕𝑤
= 𝐾 𝑓                                                                    (3) 

The degree of 𝐾 of system (2) is at most one. When a real polynomial system contains a 

complex Darboux polynomial, it also contains its conjugate.  It is critical to study the complex 

Darboux polynomials of real polynomial differential systems because sometimes they force 

the real integrability of the system, [33]. It is worth noting that we may write 𝑓 as: 

 𝜒𝑓 = 𝐾𝑓,    where   𝜒 = �̇�
𝜕

𝜕𝑥
+ �̇�

𝜕

𝜕𝑦
+ �̇�

𝜕

𝜕𝑧
+ �̇�

𝜕

𝜕𝑤
.                                      (4) 

 A non-locally constant 𝐶1 function 𝐻:𝑈 → ℝ is called a first integral of system (2) on 𝑈 ⊂
ℝ4 if  𝐻(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) is constant for all of the values of 𝑡 for which 

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) is a solution of system (2) contained in 𝑈, [33].  If system (2) has 

three distinct first integrals, it is integrable. 

  To find a first integral in Darboux type, we shall find enough invariant algebraic surfaces. 

So, we state the following propositions of system (2). 

 

Proposition (2.1): System (2) always has four Darboux polynomials, 𝑓1 = 𝑥, 𝑓2 = 𝑦, 𝑓3 = 𝑧 

and 𝑓4 = 𝑤 with cofactors 𝑘1 = 𝑏1 + 𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 + 𝑎14𝑤, 𝑘2 = 𝑏2 + 𝑎21𝑥 + 𝑎22𝑦 +
𝑎23𝑧 + 𝑎24𝑤,  𝑘3 = 𝑏3 + 𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧 + 𝑎34𝑤 and 𝑘4 = 𝑏4 + 𝑎41𝑥 + 𝑎42𝑦 + 𝑎43𝑧 +
𝑎44𝑤, respectively.   

 

Proof: Clearly,  𝜒(𝑓𝑖) = 𝑘𝑖𝑓𝑖 where 𝑓𝑖 and 𝑘𝑖 , 𝑖 = 1,⋯ ,4 are defined in the proposition. 

Therefore, 𝑓𝑖 = 0, 𝑖 = 1,⋯ ,4 are Darboux polynomials of system (2). 

 

Proposition (2.2): The function 𝑓5(𝑥, 𝑦, 𝑧, 𝑤) = 1 − (𝑥 + 𝑦 + 𝑧 + 𝑤) is Darboux polynomial 

of system (2) with cofactor 𝑘5 = −(𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧 + 𝑏4𝑤) if and only if the following 

conditions are satisfied: 

   𝑎𝑖𝑗 = −(𝑏𝑖 + 𝑏𝑗 + 𝑎𝑗𝑖), and  𝑎𝑖𝑖 = −𝑏𝑖 ,  for   𝑗 > 𝑖 and  𝑖, 𝑗 = 1,2,3,4.                               (5)  

 

Proof: Firstly, we consider that the function 𝑓5(𝑥, 𝑦, 𝑧, 𝑤) = 1 − (𝑥 + 𝑦 + 𝑧 + 𝑤) is Darboux 

polynomial of system (2), then from the equation (4), the set of conditions (5) is obtained. 

Conversely, if the conditions (5) satisfied, directly   𝜒(𝑓5) = 𝑘5𝑓5. Thus, 𝑓5(𝑥, 𝑦, 𝑧, 𝑤) = 0 is 

Darboux polynomial of system (2).  

 

Proposition (2.3): The function 𝑓6(𝑥, 𝑦, 𝑧, 𝑤) = (1 − 𝑥 − 𝑦)(𝑥 + 𝑦 + 𝑧 + 𝑤 − 1) is Darboux 

polynomial of system (2) with cofactor 𝑘6 = 2𝑎41𝑥 + (−2𝑎31 + 2𝑎32 + 2𝑎41)𝑦 + (𝑎31 −
𝑎41)𝑧 if and only if the conditions (5) with the following conditions hold:  

𝑎42 = 𝑎32 − 𝑎31 + 𝑎41,  𝑏1 = −𝑎41,  𝑏2 = 𝑎31 − 𝑎32 − 𝑎41,  𝑏3 = 𝑎41 − 𝑎31 and 𝑏4 = 0.   (6) 

 

Proof: Firstly, we assume that the function 𝑓6(𝑥, 𝑦, 𝑧, 𝑤) = 0 is Darboux polynomial of 

system (2), then from equation (4), the set of conditions (5) and (6) are obtained. Conversely, 
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if the conditions (5) and (6) hold, then it is easy to show that  𝜒(𝑓6) = 𝑘6𝑓6. Thus, the 

function 𝑓6(𝑥, 𝑦, 𝑧, 𝑤) = 0 is Darboux polynomial of system (2).  

The following theorem is the first main result of this work. 

 

Theorem (2.4): For the four-dimensional Lotka-Volterra system (2) satisfying conditions (5) 

and (6) the following results are obtained 

1. System (2) has a line of singularities with two zero eigenvalues.  

2. System (2) is integrable. Accurately, the system has three independent first integrals.  

 

Proof: We can rewrite system (2) with conditions (5) and (6) of the following 

{
  
 

  
 

 

�̇� = 𝑥(𝑎41𝑥 − (𝑎21 + 𝑎31 − 𝑎32 − 2𝑎41)𝑦 − 𝑎41),                                         
 

�̇� = 𝑦(𝑎21𝑥 − (𝑎31 − 𝑎32 − 𝑎41)𝑦 + 𝑎31 − 𝑎32 − 𝑎41),                                
 

�̇� = 𝑧(𝑎31𝑥 + 𝑎32𝑦 + (𝑎31 − 𝑎41)𝑧 + (𝑎31 − 𝑎41 − 𝑎43)𝑤 − 𝑎31 + 𝑎41),
 

�̇� = 𝑤(𝑎41𝑥 − (𝑎31 − 𝑎32 − 𝑎41)𝑦 + 𝑎43𝑧).                                                       

                  (7) 

The singular points of system (7) can be found by solving the following equations: 

{
  
 

  
 

 

0 = 𝑥(𝑎41𝑥 − (𝑎21 + 𝑎31 − 𝑎32 − 2𝑎41)𝑦 − 𝑎41),                                         
 

0 = 𝑦(𝑎21𝑥 − (𝑎31 − 𝑎32 − 𝑎41)𝑦 + 𝑎31 − 𝑎32 − 𝑎41),                                
 

0 = 𝑧(𝑎31𝑥 + 𝑎32𝑦 + (𝑎31 − 𝑎41)𝑧 + (𝑎31 − 𝑎41 − 𝑎43)𝑤 − 𝑎31 + 𝑎41),
 

0 = 𝑤(𝑎41𝑥 − (𝑎31 − 𝑎32 − 𝑎41)𝑦 + 𝑎43𝑧).                                                       

 

 

       A simple analysis, using Maple program, directly  obtains the following solutions to the 

above system of equations which are singular points of system (7) 
(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,𝑤),  

  (1,0, −
𝑎41

𝑎43
,
𝑎41

𝑎43
) , (1,0,

𝑎41

𝑎41−𝑎31
, 0) , (0,1,

𝑎32+𝑎41−𝑎31

𝑎41−𝑎31
, 0),  

   (0,1, −
𝑎32+𝑎41−𝑎31

𝑎43
,
𝑎32+𝑎41−𝑎31

𝑎43
),   (−

𝑎32+𝑎41−𝑎31

𝑎41−𝑎21
,

𝑎41

𝑎41−𝑎21
,
𝑎32+𝑎41−𝑎31−𝑎21

𝑎41−𝑎21
, 0), 

 where 𝑎43 ≠ 0 and  𝑎41 − 𝑎31 ≠ 0, system (2) has the following line of singularities,  

 

          𝐿 = {(𝑥, 𝑦, 𝑧, 𝑤) ∈ ℝ4: (𝑥, 𝑦, 𝑧, 𝑤) = (
𝑎31−𝑎32−𝑎41

𝑎41−𝑎21
,

𝑎41

𝑎41−𝑎21
, 0, 𝑡)},                               (8) 

where t ∈ ℝ, such that 𝑎41 − 𝑎21 ≠ 0. 

In order to  prove the second part of the theorem, we try to construct Darboux first integral of 

the form 

 𝐻 = Π𝑖=1
6 𝑓𝑖

𝜆𝑖 , 

 

     where 𝑓𝑖 are Darboux polynomials of system (2) and their cofactor 𝑘𝑖 are defined in 

Propositions (2.1), (2.2) and (2.3). Using the form ∑6𝑖=1 𝜆𝑖𝑘𝑖 = 0, where 𝜆𝑖 ∈ ℂ, we have the 

following equation  

(𝑎21𝜆2 + 𝑎31𝜆3 + 𝑎41𝜆1 + 𝑎41𝜆4 + 𝑎41𝜆5 + 2𝑎41𝜆6)𝑥 + ((𝑎32 − 𝑎21 − 𝑎31 + 2𝑎41)𝜆1 

+(𝑎32 − 𝑎31 + 𝑎41)𝜆2 + 𝑎32𝜆3 + (𝑎32 − 𝑎31 + 𝑎41)𝜆4 + (𝑎32 − 𝑎31 + 𝑎41)𝜆5 + (2𝑎32 

−2𝑎31 + 2𝑎41)𝜆6)𝑦 + ((𝑎31 − 𝑎41)𝜆3 + 𝑎43𝜆4 − (𝑎41 − 𝑎31)𝜆5   + (𝑎31 − 𝑎41)𝜆6)𝑧     

     +(𝑎31 − 𝑎41 − 𝑎43)𝜆3𝑤 − 𝑎41𝜆1 + (𝑎31 − 𝑎32 − 𝑎41)𝜆2 + (𝑎41 − 𝑎31)𝜆3 = 0.  

 This gives that  
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0 = (𝑎31 − 𝑎41 − 𝑎43)𝜆3,

0 = −𝑎41𝜆1 + (𝑎31 − 𝑎32 − 𝑎41)𝜆2 + (𝑎41 − 𝑎31)𝜆3,

0 = 𝑎21𝜆2 + 𝑎31𝜆3 + 𝑎41𝜆1 + 𝑎41𝜆4 + 𝑎41𝜆5 + 2 𝑎41𝜆6,

0 = (𝑎31 − 𝑎41)𝜆3 + 𝑎43𝜆4 − (𝑎41 − 𝑎31)𝜆5 + (𝑎31 − 𝑎41)𝜆6,

0 = (𝑎32 − 𝑎21 + 2 𝑎41 − 𝑎31)𝜆1 + (𝑎32 − 𝑎31 + 𝑎41)𝜆2 + 𝑎32𝜆3
    +(𝑎32 − 𝑎31 + 𝑎41)𝜆4 + (𝑎32 − 𝑎31 + 𝑎41)𝜆5 + (2 𝑎32 − 2 𝑎31 + 2 𝑎41)𝜆6.

          (9) 

  

For the above equations, there is a set of solutions indicates that there exist 𝜆𝑖 ∈ ℝ such that 
∑𝑛𝑖=1 𝜆𝑖𝑘𝑖 = 0,  𝜆𝑖 not all zero. Thus, the system has a first integral of Darboux type. We 

choose the following solutions for equation (9),  

        (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) = (𝜂1, 1,0, (𝑎41 − 𝑎31)𝜂2, 𝑎43𝜂2, 0), 
        (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) = (0,0,0, 𝜂3, 𝜂4, 1), 
         (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) = (𝜂1, 1,0, (𝑎41 − 𝑎31)𝜂2, 𝜂5, 1), 

where 𝜂1 =
𝑎31−𝑎32−𝑎41

𝑎41
, 𝜂2 =

(𝑎21+𝑎31−𝑎32−𝑎41)

𝑎41(𝑎31−𝑎41−𝑎43)
, 𝜂3 =

−𝑎31+𝑎41

𝑎31−𝑎41−𝑎43
, 𝜂4 =

𝑎41−𝑎31+2𝑎43

𝑎31−𝑎41−𝑎43
 

 𝜂5 =
(𝑎21+𝑎31−𝑎32+𝑎41)𝑎43−𝑎41(𝑎31−𝑎41)

 𝑎41(𝑎31−𝑎41−𝑎43)
  with 𝑎41 ≠ 0 and 𝑎31 − 𝑎41 − 𝑎43 ≠ 0. 

Consequently, the following functions are first integrals of the system,  

𝐻1 = 𝑥
𝜂1𝑦𝑤(𝑎41−𝑎31)𝜂2(1 − 𝑥 − 𝑦 − 𝑧 − 𝑤)𝑎43𝜂2 ,                                                     

𝐻2 = 𝑤
𝜂3(𝑥 + 𝑦 − 1)(1 − 𝑥 − 𝑦 − 𝑧 − 𝑤)

𝑎43
𝑎31−𝑎41−𝑎43

 ,
                                           

𝐻3 = 𝑥
𝜂1𝑦𝑤(𝑎41−𝑎31)𝜂2(𝑥 + 𝑦 − 1)(1 − 𝑥 − 𝑦 − 𝑧 − 𝑤)𝑎43𝜂4. 

It is simple to verify that ∇𝐻1, ∇𝐻2 and ∇𝐻3 are linearly independent, hence the first three 

integrals 𝐻𝑖 , 𝑖 = 1,2,3 are independent. This means that system (2) with conditions (5) and 

(6) is integrable.  

 

3. Zero-Hopf Bifurcation 

     We here investigate a zero-Hopf bifurcation of the 4DLVS via the first-order averaging 

method. Also, we prove that system (2) has only one line of singularity as a zero-Hopf 

equilibrium. This section is organized as follows: In the first subsection, we give the first-

order averaging method and some related concepts. The second subsection, we use the first-

order averaging theory to illustrate that there are no periodic solutions that bifurcate from the 

zero-Hopf equilibrium point located at that line of singularity of system (2). 

 

3.1 First-Order Averaging Method 

     The averaging method is one of the most significant theories for predicting periodic 

solutions for various differential systems. Several authors have devoted their efforts to 

analyzing the existence of periodic solutions via the averaging method as we see in the work 

of Sanders and Murdock [34], McCracken and Marsden [35], Chow [36], Buica et al. [37]. In 

the following, we consider the perturbation differential systems  

 �̇� = 𝐹0(𝑡, 𝑥) + 𝜖𝐹1(𝑡, 𝑥) + 𝜖
2𝐹2(𝑡, 𝑥, 𝜖),                                                      (10) 

 where 𝜖 is too small positive perturbation parameter, 𝐹0: ℝ × 𝑈 ⟶ ℝ𝑛, 𝐹1: ℝ × 𝑈 ⟶ ℝ𝑛, 
and 𝐹2 : ℝ × 𝑈 × (−𝜖0, 𝜖0) ⟶ ℝ𝑛 are 𝐶2 functions which are 𝑇-periodic in 𝑡, and 𝑈 ⊂ ℝ𝑛. 

The unperturbed part of system (10) is  

 �̇� = 𝐹0(𝑡, 𝑥).                                                                                                  (11) 

  

     The existence of a submanifold of periodic solutions for system (11) is supposed. This 

means that all solutions are 𝑇-periodic. We write the linearization of the unperturbed system 

(11) along a periodic solution 𝑥(𝑡, 𝜑) satisfies the initial condition 𝑥(0, 𝜑) = 𝜑 as 

 �̇� = 𝐷𝑥𝐹0(𝑡, 𝑥(𝑡, 𝜑))𝑦,                                                                                 (12) 
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     where the Jacobian matrix of 𝐹0 with respect to 𝑥 is 𝐷𝑥𝐹0, and here we denote the 

fundamental matrix of system (12) by  𝑀𝜑(𝑡). Also, we suppose that there is an open set W 

with 𝐶𝑙(𝑊) ⊂ 𝑈 such that for each 𝜑 ∈ 𝐶𝑙(𝑊), 𝑥(𝑡, 𝜑) is a 𝑇-periodic. 

 

Theorem (3.1.1): We assume that the function ℱ: 𝐶𝑙(𝑊) ⟶ ℝ𝑛  

 ℱ(𝜑) =
1

𝑇
∫
𝑇

0
𝑀𝜑
−1𝐹1(𝑡, 𝑥(𝑡, 𝜑))𝑑𝑡.                                                              (13) 

 If there exists 𝛼 ∈ 𝑊 with ℱ(𝛼) = 0 and 𝑑𝑒𝑡(𝐷𝜑ℱ(𝛼)) ≠ 0, then for system (10) there is a 

T-periodic solution 𝑥(𝑡, 𝜖) such that 𝑥(𝑡, 𝜖) ⟶ 𝛼 as 𝜖 ⟶ 0.  

For a proof of the above result, see [37]. 

 

3.2 Periodic Solutions in a Zero-Hopf Bifurcation of the 4DLVS 

     The proposition below shows that the existence of the 4DLVS parameter such that any 

point on the line of singularities (8) is a zero-Hopf equilibrium point. 

Proposition (3.2.1): If the following condition is satisfied, then system (2) has a double zero-

Hopf equilibrium points with conditions (5) and (6) at the line of singularities (8): 

 𝑎21 =
𝑎41(𝜔

2+𝑎32
2 )

𝜔2+𝑎32𝑎41
.                                                                                         (14)  

 

Proof: At any point localized at the line of singularities (8), the characteristic polynomial 

𝑃(𝜆) of the linearization of system (7) is given by 

 𝑃(𝜆) = 𝜆4 − 𝑆1𝜆
3 + 𝑆2𝜆

2 − 𝑆3𝜆,                                                                 (15) 

 where  

𝑆1 =
1

𝑎21 − 𝑎41
(𝑎41 − 𝑎31)(𝑎21 + 𝑎31 − 𝑎32 − 𝑎41) + (𝑎31 − 𝑎41 − 𝑎43)𝑡, 

              𝑆2 =
𝑎41

𝑎21−𝑎41
(𝑎31 − 𝑎32 − 𝑎41)(𝑎21 + 𝑎31 − 𝑎32 − 𝑎41),                                      (16) 

𝑆3 =
𝑎41

(𝑎21 − 𝑎41)2
((𝑎31 − 𝑎32 − 𝑎41)(𝑎21 + 𝑎31 − 𝑎32 − 𝑎41)

2(𝑎31 − 𝑎41) 

                   −(𝑎31 − 𝑎41 − 𝑎43)(𝑎21 − 𝑎41)𝑡).                                                                     
  

     Assume that at each point along the line of singularity (8), system (7) has two zeros and a 

pair of purely imaginary complex eigenvalues. Hence, 𝑃(𝜆) must take the following form.  

 𝑃(𝜆) = 𝜆2(𝜆2 + 𝜔2), 
 

      where 𝜔 > 0. The proof is directly made by comparing the coefficients in both 𝑃(𝜆). 
After doing computations using the Maple software, the condition (14) will be found. 

Conversely, the Jacobian matrix of system (7) under the family of condition (14) at the line of 

singularity (8) has the double zero and a pair of purely conjugate complex eigenvalues ±𝑖𝜔 

will not depend on the value of 𝑡. This means that all points along the line of singularity (8) 

are therefore the zero-Hopf equilibrium points. 

 

Theorem (3.2.2):  Consider system (2) with conditions (5), (6) and (14) in Propositions (2.2), 

(2.3) and (3.2.1), respectively, are satisfied. Let 𝑎21 =
𝑎41(𝜔

2+𝑎32
2 )

𝜔2+𝑎32𝑎41
+ 𝜖𝜇1, where 𝜖 is too small 

positive parameter and 𝜔 > 0. Using the first-order averaging method, we are unable to find 

any periodic solution bifurcating from the zero-Hopf equilibrium point satisfing condition 

(14) in Proposition (3.2.1). 
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Proof: Suppose that the perturbation 𝑎21 =
𝑎41(𝜔

2+𝑎32
2 )

𝜔2+𝑎32𝑎41
+ 𝜖𝜇1 holds. Firstly, after we change 

the line of singularities' equilibrium point to the origin, the four-dimensional Lotka-Volterra 

system satisfing  the above condition is expressed in the following 

{
 
 
 

 
 
 

 

�̇� = 𝑥(𝑎31𝑥 −
ℓ2

ℓ0
𝑦 +

𝑎31𝑎32ℓ0

ℓ1
) −

𝑎32ℓ2

ℓ1
𝑦,   

 

�̇� = 𝑦(
ℓ3

ℓ0
𝑥 + 𝑎32𝑦 −

𝑎31𝑎32ℓ0

ℓ1
) −

𝑎31ℓ3

ℓ1
𝑥,

 
�̇� = 𝑧(𝑎31𝑥 + 𝑎32𝑦 − 𝑎43𝑤),                    

 
�̇� = 𝑤(𝑎31𝑥 + 𝑎32𝑦 + 𝑎43𝑧).                      

                                                                      (17) 

 

By rescaling the variables (𝑥, 𝑦, 𝑧, 𝑤) = (𝜖𝑥, 𝜖𝑦, 𝜖𝑧, 𝜖𝑤), system (17) becomes  

{
 
 
 

 
 
 

 

�̇� = 𝜖𝑥(𝑎31𝑥 −
ℓ2

ℓ0
𝑦) −

ℓ2𝑎32

ℓ1
𝑦 +

ℓ0𝑎32𝑎31

ℓ1
,

 

�̇� = 𝜖𝑦(
ℓ3

ℓ0
𝑥 + 𝑎32𝑦) −

𝑎31ℓ3

ℓ1
𝑥 −

𝑎31𝑎32ℓ0

ℓ1
,

 
�̇� = 𝜖𝑧(𝑎31𝑥 + 𝑎32𝑦 − 𝑎43𝑤),                    

 
�̇� = 𝜖𝑤(𝑎31𝑥 + 𝑎32𝑦 + 𝑎43𝑧),                    

                                                                      (18) 

     

      where ℓ0 = 𝜔
2 + 𝑎31𝑎32, ℓ1 = 𝜖𝜇1ℓ0 − 𝑎31𝑎32(𝑎31 − 𝑎32), ℓ2 = 𝜖𝜇1ℓ0 − 𝑎32(𝜔

2 +
𝑎31
2 ) and ℓ3 = 𝜖𝜇1ℓ0 + 𝑎31(𝜔

2 + 𝑎32
2 ). Now, the linearized system (18) at the origin is not in 

the real Jordan form, when 𝜖 = 0, i.e. as  

 (

0 −𝜔 0 0
𝜔 0 0 0
0 0 0 0
0 0 0 0

). 

 For performing that, we use the following linear change of coordinates  

(𝑥, 𝑦, 𝑧, 𝑤) = 𝑃(𝑋, 𝑌, 𝑍,𝑊),    𝑃 =

(

 
 
 

 𝑝1 𝑝2               0           0
−1 1               0           0
   0 0               0 −𝑎31(𝜔

2 + 𝑎32
2 )

   0 0
1

𝜔𝑎32(𝑎31 − 𝑎32)
        −1

)

 
 
, 

where 𝑝1 =
𝑎32(𝑎32(𝑎31−𝜔)+𝜔(𝜔+𝑎31))

𝑎31(𝜔2+𝑎32
2 )

  and 𝑝2 =
𝑎32(𝜔(𝑎31−𝜔)−𝑎32(𝜔+𝑎31))

𝑎31(𝜔2+𝑎32
2 )

. 

System (18) in the new variables (𝑋, 𝑌, 𝑍,𝑊) becomes  

{
 
 
 
 

 
 
 
 

 

�̇� = −𝜔𝑌 +
𝜖

𝛿1
(𝛿3𝑋

2 + (𝛿9𝑌 − 𝛿8)𝑋 − 𝛿3𝑌
2 +

𝑎32−𝜔

𝑎32+𝜔
𝛿8𝑌) + O(𝜖

2),           
 

�̇� = 𝜔𝑋 +
𝜖

𝛿1
(𝛿2𝑋

2 + (𝛿9𝑌 −
𝑎32+𝜔

𝑎32−𝜔
𝛿8)𝑋 − 𝛿2𝑌

2 + 𝛿8𝑌) + O(𝜖
2),            

 

�̇� =
𝜖 𝛿7

𝜔2+𝑎32
2 (𝜔𝑎32(𝑎31 − 𝑎32)𝑊

2 − 𝑍𝑊 +
𝛿4

𝛿7
(𝑋 +

(𝜔−𝑎32)

(𝑎32+𝜔)
𝑌)𝑍) + O(𝜖2),   

 

�̇� =
𝜖

𝛿5
(𝑎43𝛿5𝑊

2 + (𝛿6𝑋 +
𝛿6(𝜔−𝑎32)

𝑎32+𝜔
𝑌 − 𝑎43(𝜔

2 + 𝑎32
2 )𝑍)𝑊) + O(𝜖2),

                 (19) 

where  

𝛿1 = 2𝜔𝑎31𝑎32(𝑎31 − 𝑎32)(𝜔
2 + 𝑎32

2 )(𝜔2 + 𝑎31𝑎32), 
𝛿2 = 𝜔𝑎31𝑎32

2 (𝑎32 − 𝜔)(𝑎31 − 𝑎32)
2(𝑎32(𝑎31 − 𝜔) + 𝜔(𝜔 + 𝑎31)), 

𝛿3 = 𝜔𝑎31𝑎32
2 (𝑎31 − 𝑎32)

2(𝑎32 + 𝜔)(𝑎32(𝜔 + 𝑎31) + 𝜔(𝜔 − 𝑎31)), 
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𝛿4 = 𝑎32(𝑎31 − 𝑎32)(𝑎32 + 𝜔),      𝛿5 = 𝜔𝑎32(𝑎31 − 𝑎32)(𝜔
2 + 𝑎32

2 ), 
𝛿6 = 𝜔𝑎32

2 (𝑎31 − 𝑎32)
2(𝑎32 + 𝜔),    𝛿7 = 𝑎43(𝜔

2 + 𝑎32
2 )(1 + 𝑎31(𝜔

2 + 𝑎32
2 )), 

𝛿8 = 𝜇1(𝜔 − 𝑎32)(𝑎32 + 𝜔)(𝜔
2 + 𝑎31𝑎32)

3,   𝛿9 = 4𝑎31𝜔
2𝑎32

2 (𝑎31 − 𝑎32)
2(𝜔2 + 𝑎31𝑎32). 

System (19) is in the form 

 

{
 
 

 
 
�̇� = −𝜔𝑌 + 𝜖 𝐺1(𝑋, 𝑌, 𝑍,𝑊),

�̇� = 𝜔𝑋 + 𝜖 𝐺2(𝑋, 𝑌, 𝑍,𝑊),

�̇� = 0 + 𝜖 𝐺3(𝑋, 𝑌, 𝑍,𝑊),

�̇� = 0 + 𝜖 𝐺4(𝑋, 𝑌, 𝑍,𝑊).

                                                                   (20) 

 

      Note that system (20) is expressed as of the form (10). We can use the first-order 

averaging method described in Theorem 3.1.1, since it has a normal form. We observe that 

the system (20) is equivalent to system (10) by taking 

𝑥 = (

 X 
 Y
 Z
 W

),   𝐹0(𝑡, 𝑥) = (

−𝜔𝑌  
    𝜔𝑋
      0
      0

),   and   𝐹1(𝑡, 𝑥) = (

𝐺1(𝑋, 𝑌, 𝑍,𝑊)
𝐺2(𝑋, 𝑌, 𝑍,𝑊)
𝐺3(𝑋, 𝑌, 𝑍,𝑊)
𝐺4(𝑋, 𝑌, 𝑍,𝑊)

).    

The unperturbed system(20) must first be solved. The solution 𝑥(𝑡, 𝜑) =
(𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡),𝑊(𝑡)) in the following unperturbed part  

 

{
 
 

 
 
�̇� = −𝜔𝑍,

�̇� = 𝜔𝑋,

�̇� = 0,

�̇� = 0,

                                                                                                  (21) 

which satisfies the initial condition (𝑋(0), 𝑌(0), 𝑍(0),𝑊(0)) = (𝑋0, 𝑌0, 𝑍0,𝑊0) ∈ ℝ
4 is 

represented as  

 (

𝑋(𝑡)
𝑌(𝑡)
𝑍(𝑡)
𝑊(𝑡)

) = (

𝑋0sin(𝜔𝑡) + 𝑌0cos(𝜔𝑡)

𝑌0sin(𝜔𝑡) − 𝑋0cos(𝜔𝑡)
                     𝑍0
                     𝑊0

), 

 

     when (𝑋0, 𝑌0, 𝑍0,𝑊0) ≠ (0,0,0,0), these solutions are periodic of period 
2𝜋

𝜔
. Therefore, we 

can use Theorem (3.1.1) because the unperturbed system (21) of (19) is isochronous. The 

fundamental matrix solution 𝑀𝜑(𝑡) and its inverse 𝑀𝜑
−1(𝑡) of system (21) are obtained by  

𝑀𝜑(𝑡) = (

    sin(𝜔𝑡) cos(𝜔𝑡) 0 0
− cos(𝜔𝑡) sin(𝜔𝑡) 0 0
        0      0 1 0
        0      0 0 1

)  and  𝑀𝜑
−1(𝑡) = (

sin(𝜔𝑡) −cos(𝜔𝑡) 0 0
cos(𝜔𝑡)     sin(𝜔𝑡) 0 0
     0         0 1 0
     0         0 0 1

) 

The averaged function (13) is obtained by  

 ℱ(𝜑) =
𝜔

2𝜋
∫
2𝜋

𝜔
0
𝑀𝜑(𝑡)

−1𝐹1(𝑡, 𝑥(𝑡, 𝜑))𝑑𝑡 = (

𝐹11(𝑋0, 𝑌0, 𝑍0,𝑊0)
𝐹21(𝑋0, 𝑌0, 𝑍0, 𝑊0)
𝐹31(𝑋0, 𝑌0, 𝑍0, 𝑊0)
𝐹41(𝑋0, 𝑌0, 𝑍0,𝑊0)

), 

 where  

           𝐹11(𝜑) =
𝜇1(𝑎32(𝑋0 + 𝑌0) + 𝜔(𝑋0 − 𝑌0))(𝜔

2 + 𝑎31𝑎32)
2

2𝑎32𝑎31(𝑎31 − 𝑎32)(𝜔2 + 𝑎32
2 )

, 

           𝐹21(𝜑) =
𝜇1(𝜔(𝑋0 + 𝑌0) − 𝑎32(𝑋0 − 𝑌0))(𝜔

2 + 𝑎31𝑎32)
2

2𝑎32𝑎31(𝑎31 − 𝑎32)(𝜔2 + 𝑎32
2 )

,                                         (22) 
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           𝐹31(𝜑) = 𝑎43(𝜔𝑎32(𝑎31 − 𝑎32)𝑊0 − 𝑍0)(1 + 𝑎31(𝜔
2 + 𝑎32

2 ))𝑊0,   

           𝐹41(𝜑) =
𝑎43(𝜔𝑎32(𝑎31 − 𝑎32)𝑊0 − 𝑍0)𝑊0

𝜔𝑎32(𝑎31 − 𝑎32)
.   

Then, system (22) has the following solutions  

𝑠1 = (0,0,0,0), 𝑠2 = (0,0, 𝜔𝑎32(𝑎31 − 𝑎32)𝑊0, 0), 
 In addition, the determinants of the Jacobian matrix at 𝑠1 and 𝑠2 take the values  

 det (
𝜕ℱ(𝜑)

𝜕𝑥
)|
𝑠1
= 0,      and    det (

𝜕ℱ(𝜑)

𝜕𝑥
)|
𝑠2
= 0. 

      

     This means that 𝑠1 and 𝑠2 are not acceptable solutions. As a result, the averaging technique 

explained in Theorem (3.1.1) does not give any information about the possible periodic 

solutions bifurcating from the zero-Hopf equilibrium point. 

 

4. Conclusion 

     In this article, we have considered the four-dimensional Lotka-Volterra systems (4DLV) 

system. We have then found three first integrals of this type of system, this means that the 

4DLV system is integrable under the suitable conditions. Also, using these conditions, we 

have found that the system has a line of singularities for which a zero-Hopf equilibrium 

occurs at each point localized at that line of singularities. Moreover, only one parameter of the 

system exists that displays such equilibrium point.  The first-order averaging technique is then 

used to find  a periodic solution, but the first-order averaging theory described in Theorem 

(3.1.1) does not provide any information about the possible periodic orbits bifurcating from 

the zero-Hopf equilibrium point. 
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