Mustafa and Hussen Iragi Journal of Science, 2024, Vol. 65, No. 9, pp: 5171-5181
DOI: 10.24996/ijs.2024.65.9.31

w
Iraqi

Journal of

Science

o ~—~——
ISSN: 0067-2904

First Integrals and a Zero-Hopf Bifurcation of the Four-Dimensional
Lotka-Volterra Systems

Sirwan A. Mustafa*, Niazy H. Hussen
Department of Mathematics, Faculty of Science, Soran University, Erbil, Iraqg

Received: 4/5/2023 Accepted: 11/8/2023 Published: 30/9/2024

Abstract

In this paper, the integrability and a zero-Hopf bifurcation of the four-
dimensional Lotka-Volterra systems are studied. The requirements for this kind of
system's integrability and a line of singularities with two zero eigenvalues are
provided. We identify the parameters that lead to a zero-Hopf equilibrium point at
each point along the line of singularities. We show that there is only one parameter
that displays such equilibria. The first-order averaging method is also employed,
although this method will not give any information about the bifurcate periodic
solutions that bifurcate from the zero-Hopf equilibria.

Keywords: Lotka-Volterra system, Invariant algebraic hypersurfaces, Darboux first
integral, Zero-Hopf bifurcation, Averaging theory.
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1. Introduction

Lotka -Volterra systems describing the interaction of n species were introduced
independently by Alfred Lotka (1925) and Vito Volterra (1926) in the theory of biological
populations. They consist of n first-order differential equations

dx; ]
zt(t) = xi(t)(bl- + Z;‘zl a;j x]-(t)), i=1,..,n (1)
where x;(t) is the number of individuals in the i th population at time t, b; is the growth rate

of the i th population and a;; are the interaction coefficients of the species [1].
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The system described by equation (1) is called a competitive system. This system is a basic
model of predator-prey interactions. The Lotka-Volterra system in R* with coordinates
(x,y,z,w) is a quadratic polynomial differential system of the form

.X.' = x(bl + a11x + a12y + a13Z + a14W),
Y =YDy + axx + azy + a3z + azyw),
zZ = Z(b3 + as1 X + as,y + a33Z + a34W),
W = W(b4 + Az X + a42y + Ayu3Z + a4,4W),

)

where the dot denotes the derivative with respect to the independent variable t which is
usually called the time and b; > 0 and a;; <0 (i,j = 1,...,4) are real parameters, see [2].

The general Lotka-Volterra model has become the starting point for a wide variety of
mathematical models in ecology, physics, economics, etc. [3].

Various investigations of system (1) have been studied by numerous authors, including,
Wang and Xiao [4] studied Hopf-bifurcation for the four-dimensional Lotka-Volterra system
by using simulations and the linearization technique, Lyu and Jablonski [5] investigated the
four-dimensional discrete-time Lotka-Volterra model with the use of a practical ecological
system, Kowgier [6] showed on a few models how the survival probability of four
populations alters with the assumption that they reach an equilibrium level determined by the
same number of individuals, Farhan et al. [7] investigated the stability of the four-dimensional
Lotka-Volterra model, and Antonov et al. [8] determined some criteria for the existence of the
first integrals of the prey-predator tridiagonal 4-dimensional Lotka-Volterra models.

The purpose of this paper is to study two objectives: The first main objective of this paper
IS to advance our understanding of the complexity of system (2), more specifically, the
dynamics of the system and this is done by examining its integrability. Furthermore, within
the class of first integrals, the simpler ones are known as Darboux first integrals in R*. For
more details, see [9, 10, 11, 12].

The second objective of this research is to investigate a zero-Hopf bifurcation at the zero-
Hopf equilibrium point. We recall that a zero-Hopf equilibrium point is an equilibrium that
has a pair of purely imaginary and two zero eigenvalues. When an infinitesimal periodic orbit
bifurcates from the equilibrium point, such a kind of bifurcation is called zero-Hopf
bifurcation. This type of bifurcation has been studied by [13, 14, 15, 16, 17]. It has been
shown that, the isolated zero-Hopf equilibrium point of some complicated invariant sets may
be bifurcated under suitable conditions. In [18, 19, 20, 21] the authors obtain some
investigations as a chaotic behavior. The averaging method is a classical and useful
computational technique for analysing nonlinear oscillations. It has been used by many
authors to study the bifurcating periodic orbits from a zero-Hopf equilibrium point. The first
order of the averaging method is used in the work [22, 23, 24, 25]. There are some works on a
zero-Hopf bifurcation of the four-dimensional systems, Jaume Llibre and Yuzhou Tian in
[26], Jaume Llibre et al. in [27]. Furthermore, the authors of [28, 29, 30, 31, 32] investigated
periodic orbits in R* using the averaging method.

This paper is organized as follows. In section 2, the Darboux theory of integrability and
the line of singularities of the 4DLVS are studied. In section 3, the precise parametric
requirements for a 4DLVS zero-Hopf equilibrium are given. We explain the averaging
method of the first order. Finally, the conclusion of this work is given in Section 4.
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2. Darboux theory
In this section, the integrability and the existence of a line of singularities are studied for

4DLVS. Some conditions are established in order to construct the invariant algebraic surfaces.
In addition, the sufficient conditions for the existence of a line of singularity with two zero
eigenvalues are obtained. In these conditions, a function of the Darboux type produces three
linearly independent first integrals of the 4DLVS. We denote by C[x,y,x,w] the ring of
polynomials in the variables x, y, z and w and coefficients are in C. Given f € C[x,y, z,w] is
a Darboux polynomial of system (2) if there exists K € Clx, y, z, w] called the cofactor such
that

LOf | .Of , .Of , . Of

X£+y5+Z£+W%=Kf (3)
The degree of K of system (2) is at most one. When a real polynomial system contains a
complex Darboux polynomial, it also contains its conjugate. It is critical to study the complex
Darboux polynomials of real polynomial differential systems because sometimes they force
the real integrability of the system, [33]. It is worth noting that we may write f as:

Xr =Kf, where y =i 4y 47T+, (4)
A non-locally constant C* function H: U — R is called a first integral of system (2) on U c
R* if  H(x(t),y(t),z(t),w(t)) is constant for all of the values of t for which
(x(t),y(t),z(t),w(t)) is a solution of system (2) contained in U, [33]. If system (2) has
three distinct first integrals, it is integrable.

To find a first integral in Darboux type, we shall find enough invariant algebraic surfaces.
So, we state the following propositions of system (2).

Proposition (2.1): System (2) always has four Darboux polynomials, f; = x,f, =y, f3 =2
and f, = w with cofactors k; = by + a1x + a1y + a432 + agaw, ky = by + ayx + ayy +
Ay3Z + AyuW, k3 = by + az1x + az,y + azzz +azaw and ky, = by + agx + agy + agzz +
a4 ,w, respectively.

Proof: Clearly, x(f;) = k;f; where f; and k;,i = 1,---,4 are defined in the proposition.
Therefore, f; = 0,i = 1,---,4 are Darboux polynomials of system (2).

Proposition (2.2): The function f5(x,y,z,w) =1 — (x + y + z + w) is Darboux polynomial
of system (2) with cofactor ks = —(byx + b,y + b3z + b,w) if and only if the following
conditions are satisfied:

ajj = _(bl + bj + aji), and a; = _bi , for ] > i and l,] =1,2,3,4. (5)

Proof: Firstly, we consider that the function f;(x,y,z,w) =1 — (x + y + z + w) is Darboux
polynomial of system (2), then from the equation (4), the set of conditions (5) is obtained.
Conversely, if the conditions (5) satisfied, directly x(fs) = ksfs. Thus, fs(x,y,z,w) =0 is
Darboux polynomial of system (2).

Proposition (2.3): The function f¢(x,y,z,w) = (1 —x —y)(x + y + z + w — 1) is Darboux
polynomial of system (2) with cofactor ks = 2a,,x + (—2a3; + 2asz, + 2a4,)y + (az; —
a41)z if and only if the conditions (5) with the following conditions hold:

A4 = A3 — Az1 + Ay, by = —aAyq, by = A3 — A3 — Ay, b3 = a4y —az, and by, = 0. (6)

Proof: Firstly, we assume that the function f4(x,y,z,w) = 0 is Darboux polynomial of
system (2), then from equation (4), the set of conditions (5) and (6) are obtained. Conversely,
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if the conditions (5) and (6) hold, then it is easy to show that x(fs) = kefs. Thus, the
function fi(x,y, z, w) = 0 is Darboux polynomial of system (2).
The following theorem is the first main result of this work.

Theorem (2.4): For the four-dimensional Lotka-Volterra system (2) satisfying conditions (5)
and (6) the following results are obtained

1. System (2) has a line of singularities with two zero eigenvalues.

2. System (2) is integrable. Accurately, the system has three independent first integrals.

Proof: We can rewrite system (2) with conditions (5) and (6) of the following
(X =x(asx — (a1 + a3y — azy — 2a41)y — asq),

Yy =y(azx — (az; — azz — as1)y + az; — azp; — aqq),
) (7)

Z =2z(az31X + azy + (31 — Ay1)z + (A31 — 41 — Ag3)W — A3q1 + Ayq),

\W = w(asx — (azq — a3z — A4q)y + a432).
The singular points of system (7) can be found by solving the following equations:
(0 =x(asx — (21 + azy — az; — 2a41)y — auq),

0 = y(azx — (az; — azz — As1)y + Azq — A3z — A4q),

0 = z(az1x + azy + (az1 — as1)z + (31 — Q41 — Ag3)W — azq + Agq),

\0 = w(asx — (az; — a3z — A41)Y + A432).

A simple analysis, using Maple program, directly obtains the following solutions to the
above system of equations which are singular points of system (7)
(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,w),
(1’0’ _Ga &) ’ (1’0’ 2t O) , (0,1, a3z +0a41—A31 ,0),

)
Q43 Q43 A41—0a31 A41—0a31
(0 1 — a32t+d41—-031 a32+a41—a31) (— A32+A41—GA31 Q41 A32+041—031-021 0)
)= ) ) )

) ) )
A43 As3 Ag1—0a21 Ag1—0A21 Ag1—021

where a3 # 0 and a,; — as; # 0, system (2) has the following line of singularities,

L={@yzw) e R: (x,y,zw) = (B2tn o ) ®)

as1—0z1  Au1—az;
Where t e R, SUCh that a41 - a21 #: 0
In order to prove the second part of the theorem, we try to construct Darboux first integral of
the form

H =1, ili'
where f; are Darboux polynomials of system (2) and their cofactor k; are defined in
Propositions (2.1), (2.2) and (2.3). Using the form Y5_, A;k; = 0, where 4; € C, we have the
following equation
(a214z + azids + ag Ay + agydy + agyds + 2a416)x + ((aszz — a2 — azq + 2a41)4
+(asz — az1 + ag1)ds + azpdz + (azz — azq + ag)dy + (az2 — az1 + ag1)ds + (2asz;
—2031 + 2041)26)y + ((a31 — @21)A3 + Gazdy — (ag1 — a31)As + (a31 — A41)26)2
+(as; — agy — ay3)Azw — agdy + (azy — azz — ayy); + (41 — az)A3 = 0.
This gives that
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0 = (agy — as1 — au3)s,
0 = —au1d; + (g — azp — ag)Ay + (a4 — azq)is,
0 = ay14, + azqdz + agdy + gy + agds + 2 azq e,
0 = (azy; — ag A3 + ag3dy — (a41 — a31)As + (a3 — as1)4s,
0 = (as; — Az1 + 2 ayq — az A + (azz — azq + as1)d; + azpds
+(as; — azy + ay)As + (32 — a3 + ag)ds + (2 az; — 2 agy + 2 as) e

9)

For the above equations, there is a set of solutions indicates that there exist A; € R such that
., Ak; =0, A; not all zero. Thus, the system has a first integral of Darboux type. We
choose the following solutions for equation (9),
(A1, A2, A3, A4, A5, A6) = (11, 1,0, (@41 — A31)M2, A4372, 0),
(A1, A2, 43, A4, A5, A6) = (0,0,0,13,74, 1),
(A1, 42,43, 44,45, 46) = (11, 1,0, (as1 — az1)N2,Ms5, 1),

_ Q31—0a33—041 _ (az1t+az1—asz—asq) _ —azitay; _ as1—aszit+2a43
where ny = ———=, 1, = M=, Ny =
a41 a41(A31—A41—043) A31—041—043 A31—041—043
Ap1+0a31—032+041)043—a41(a31—a .
s = (a21+031—A32+0a41)A43—-a41(A31—A41) with A # 0 and Ugq — Ggp — Qg3 + 0.

a41(A31—A41—043)
Consequently, the following functions are first integrals of the system,
Hl — xmyw(a41—a31)nz(1 —X—-y—z— W)a43772,
a43
Hy=wB(x+y—1D(1—-—x—y—2z—w)1-da-ds’
Hy = xT)1yW(a41—a31)772(x +y—1)(1—x—y—z—w)%sls,
It is simple to verify that VH,, VH, and VH; are linearly independent, hence the first three
integrals H;, i = 1,2,3 are independent. This means that system (2) with conditions (5) and
(6) is integrable.

3. Zero-Hopf Bifurcation

We here investigate a zero-Hopf bifurcation of the 4DLVS via the first-order averaging
method. Also, we prove that system (2) has only one line of singularity as a zero-Hopf
equilibrium. This section is organized as follows: In the first subsection, we give the first-
order averaging method and some related concepts. The second subsection, we use the first-
order averaging theory to illustrate that there are no periodic solutions that bifurcate from the
zero-Hopf equilibrium point located at that line of singularity of system (2).

3.1 First-Order Averaging Method
The averaging method is one of the most significant theories for predicting periodic

solutions for various differential systems. Several authors have devoted their efforts to
analyzing the existence of periodic solutions via the averaging method as we see in the work
of Sanders and Murdock [34], McCracken and Marsden [35], Chow [36], Buica et al. [37]. In
the following, we consider the perturbation differential systems

x = Fy(t,x) + €F,(t, x) + €2F,(t, x, €), (10)
where € is too small positive perturbation parameter, Fp: RX U — R™", F;:Rx U — R",
and F, : R x U X (—€y, €5) — R™ are €? functions which are T-periodic in ¢, and U ¢ R™.
The unperturbed part of system (10) is

x = Fy(t, x). (12)

The existence of a submanifold of periodic solutions for system (11) is supposed. This
means that all solutions are T-periodic. We write the linearization of the unperturbed system
(11) along a periodic solution x(t, ¢) satisfies the initial condition x(0, ¢) = ¢ as

y = DxFO (t' X(t, q)))y' (12)
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where the Jacobian matrix of F, with respect to x is D,F,, and here we denote the
fundamental matrix of system (12) by M, (t). Also, we suppose that there is an open set W
with CL(W) < U such that for each ¢ € CIL(W), x(t, ) is a T-periodic.

Theorem (3.1.1): We assume that the function F: CI(W) — R"
Fl) =1, Mz Fi(tx(t, 9))dt. (13)
If there exists & € W with F(«) = 0 and det(D,F(a)) # 0, then for system (10) there is a

T-periodic solution x(t, €) such that x(t,e) — a as e — 0.
For a proof of the above result, see [37].

3.2 Periodic Solutions in a Zero-Hopf Bifurcation of the 4DLVS
The proposition below shows that the existence of the 4DLVS parameter such that any
point on the line of singularities (8) is a zero-Hopf equilibrium point.
Proposition (3.2.1): If the following condition is satisfied, then system (2) has a double zero-
Hopf equilibrium points with conditions (5) and (6) at the line of singularities (8):
a41(w?+aj,)

(yy = 2L 1%2), (14)

w2+a32041

Proof: At any point localized at the line of singularities (8), the characteristic polynomial
P(4) of the linearization of system (7) is given by

P(A) = A* = S1 23 + S,4% — S34, (15)
where
$1= m(ah —a31)(Az1 + azq — Azy — A1) + (A31 — Agq — Ay3)t,
Sy = (@31 — a3z — a41)(Qa1 + A3y — Az — Aga), (16)
S3 = @12161#1)2 ((az1 — a3z — a41)(az1 + Q31 — A3z — A41)%(a31 — As1)

—(az1 — a41 — a43)(Az1 — A4q)t).

Assume that at each point along the line of singularity (8), system (7) has two zeros and a
pair of purely imaginary complex eigenvalues. Hence, P (1) must take the following form.
P(A) = 22(2% + w?),

where w > 0. The proof is directly made by comparing the coefficients in both P(1).
After doing computations using the Maple software, the condition (14) will be found.
Conversely, the Jacobian matrix of system (7) under the family of condition (14) at the line of
singularity (8) has the double zero and a pair of purely conjugate complex eigenvalues +iw
will not depend on the value of t. This means that all points along the line of singularity (8)
are therefore the zero-Hopf equilibrium points.

Theorem (3.2.2): Consider system (2) with conditions (5), (6) and (14) in Propositions (2.2),
2 2
(2.3) and (3.2.1), respectively, are satisfied. Let a,; = W + ey, where € is too small
32441

positive parameter and w > 0. Using the first-order averaging method, we are unable to find
any periodic solution bifurcating from the zero-Hopf equilibrium point satisfing condition
(14) in Proposition (3.2.1).
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2
w + e, holds. Firstly, after we change
w +a32a41
the line of singularities' equilibrium point to the origin, the four-dimensional Lotka-Volterra
system satisfing the above condition is expressed in the following
+ a31a32€0) (132[2

. {
(x=x(a31x——2y Y
to £1

Proof: Suppose that the perturbation a,; =

‘131032{’0) __az1t3

ool _

Z = z(az1x + azy — ay3w),

\W = W(a31x + as,y + a4_3Z).

By rescaling the variables (x,y,z,w) = (ex, €y, €z,ew), system (17) becomes

(% = ex(az x — y) €2a32y + foaj,za“,
1
a311?3 a31a32%0
= ey (x + ayyy) - ey — Indute
! (18)
Z = €z(az1X + a3y — Ay3W),
\W = ew(az1Xx + az,y + a432),
— )2 _ _ 2
where to = W + az103z, €1 = €Uty — A31a33(a31 — A32), €2 = €Uty — Az (W* +

a3)) and £53 = eu £y + az;(w? + a3,). Now, the linearized system (18) at the origin is not in
the real Jordan form, when e = 0, i.e. as

0 —w 0 0
w 0 0 O
0 0 0 0)
0 O 0 O
For performing that, we use the following linear change of coordinates
P1 P2 0 0
-1 1 0 0
(x,y,z,w) = P(X,Y,Z,W), P=| 0 0 0 —az;(w? + a3;)
0 O ! -1

waz,(az; — dzz)
— a3z (a32(az1—w)+w(w+azg)) azz(w(az1—w)—azz(w+azg))
as1(w2+a?,) asi(w2+a?,) )

System (18) in the new variables (X, Y, Z, W) becomes
(X =—a¥ +5 (85X2 + (83 — 8g)X — 63¥2 + 2 2 So¥ Y)+0(e?),

where p; and p, =

Y = wX + 6£(<32x2 (85r - “32“" 8g) X — 8,Y% + 85 ) + O(e?),

4 (19)
/ 6672 (waszy(azy — az)W? —ZW + (X + %Y)Z) + 0(e?),

w2+as, (azz+w)

| W = S (@438sW? + (86X + 2252y — g, (w? + ad,) IW) + O(e),
05 az;+w

where

81 = 2waz,a3,(az; — azz)(w? + a3,)(w? + aziasy),

8, = waz1a5;(as; — w)(as; — as)*(asz(as; — w) + w(w + asy)),

83 = waz1a5,(az1 — az2)%(az; + w)(az(w + az;) + w(w — asy)),
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84 = a32(a31 — a32) (A3 + W), 85 = wazy(as; — azy)(w? + ajy),

86 = wa3,(az; — a3;)* (a3 + @), 8; = a(w® + a3,)(1+ az;(w? + a3y)),

83 = (0 — azy)(as; + w)(w? + az1a3;)?, 8y = 4azw?a3,(az; — azy)*(w? + aziazy).
System (19) is in the form

[X =—wY +eG(X,Y,ZW),

Y = wX +eGy(X,Y,Z,W),
Z=0+eGs(X,Y,Z,W), (20)

W =0+€G,(X,Y,ZW).

Note that system (20) is expressed as of the form (10). We can use the first-order
averaging method described in Theorem 3.1.1, since it has a normal form. We observe that
the system (20) is equivalent to system (10) by taking

Y | owx [ G,(X, Y, Z,W)
x={, | Fx=| " | ad A@0=| "0 Y
W O G4(X;Y;ZIW)

The unperturbed system(20) must first be solved. The solution x(t, ) =
(X(t),Y(t),Z(t), W(t)) in the following unperturbed part

(X = —wZ,

Y = wX,
1720, (21)
lw =0,

which satisfies the initial condition (X(0),Y(0),Z(0),W(0)) = (Xo, Yy, Zo, W,) € R* is
represented as

X(t) Xosin(wt) + Yycos(wt)
Y(t) | _ [ Yysin(wt) — Xycos(wt)
zZ@ | Zy ’
w(t) Wo

when (X, Yy, Zo, Wy) # (0,0,0,0), these solutions are periodic of period %” Therefore, we

can use Theorem (3.1.1) because the unperturbed system (21) of (19) is isochronous. The
fundamental matrix solution M,,(t) and its inverse M,,* (t) of system (21) are obtained by

sin(wt) cos(wt) 0 0 sin(wt) —cos(wt) 0 O
M, =~ cos(wt) sin(wt) 0 0 and M(,‘,l(t) _ | cos(wt) sinflwt) 0 O
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
The averaged function (13) is obtained by
F11(X0, YO! ZO! WO)
i Fyr (Xo, Yo, Zo, Wo)
— ﬂ P -1 — 21 010,40 0
Flo) = 2m fO My () F1(8, x (L, p))dt F31(X0,Y0,Zo, Wy) |
Fi41(Xo, Yo, Zo, W)
where
i (az2(Xo +Yo) + 0(Xo — Yp)) (w? + az1a3;,)?
Fi1(p) = > 2 )
2a3;a31(as; — asz)(w? + as,)
Fyy (@) = 1 (w(Xo +Yp) — az(Xo — Yo)) (w? + a31a32)2’ 22)

2a3,a3,(az; — azy)(w? + a3,)
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F31(9) = as3(wazy(as, — azs)Wy — Zo)(1 + azi(w? + a3;))W,
_ ay3(waszy(azy — azx))Wo — Zo) Wy
Fui(p) = _ .
waszy(az, — azy)
Then, system (22) has the following solutions
s; = (0,0,0,0), sz = (0,0, waszz(az; — azz)Wy, 0),
In addition, the determinants of the Jacobian matrix at s; and s, take the values

det (m) =0, and det(m) = 0.

x dx

S1 S

This means that s, and s, are not acceptable solutions. As a result, the averaging technique
explained in Theorem (3.1.1) does not give any information about the possible periodic
solutions bifurcating from the zero-Hopf equilibrium point.

4. Conclusion

In this article, we have considered the four-dimensional Lotka-Volterra systems (4DLV)
system. We have then found three first integrals of this type of system, this means that the
4DLV system is integrable under the suitable conditions. Also, using these conditions, we
have found that the system has a line of singularities for which a zero-Hopf equilibrium
occurs at each point localized at that line of singularities. Moreover, only one parameter of the
system exists that displays such equilibrium point. The first-order averaging technique is then
used to find a periodic solution, but the first-order averaging theory described in Theorem
(3.1.1) does not provide any information about the possible periodic orbits bifurcating from
the zero-Hopf equilibrium point.
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