Khuder and Majeed

Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5629-5637 DOI: 10.24996/ijs.2024.65.10.26

ISSN: 0067-2904

Centralizers and Double Centralizers for Prime and Semiprime Γ-rings

Aya Hussein Khuder*, Abdulrahman H. Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 4/5/2023 Accepted: 8/8/2023 Published: 30/10/2024

Abstract

The purpose of this paper is to discuss the centralizers and the double centralizers in prime and semiprime Γ –rings with fulfilling certain identities.

Keywords: Centralizers, Double Centralizers, Semiprime Γ –Rings.

التمركزات والتمركزات الثنائية لحلقات – ٢ الاولية وشبه الاولية

اية حسين خضير *, عبدالرحمن حميد مجيد

قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

الخلاصه

الغرض من هذا العمل مناقشة التمركزات والتمركزات الثنائية لحلقات– Γ الاولية وشبه الاولية مع تحقيق تطبيقات معينة.

1. Introduction

The definition of Γ -ring was introduced by Barnes [1]. Let K and Γ be two abelian groups. If there is a mapping $(a \alpha b) \rightarrow (a \alpha b)$ of $K \times \Gamma \times K \rightarrow K$, fulfilling the following, for any $a, b, c \in K$ and $\alpha, \beta \in \Gamma$.

i. $(a + b) \alpha c = a \alpha c + b \alpha c$, $a (\alpha + \beta) b = a \alpha b + a \beta b$, $a \alpha (b + c) = a \alpha b + a \alpha c$, ii. $(a \alpha b) \beta c = a \alpha (b \beta c)$, then *K* is named a Γ -ring.

Every ring *K* is a Γ -ring with $K = \Gamma$. A Γ -ring not necessary be a ring. The concept of Gamma ring is a generalization of rings, where proposed by Nobuswa [2]. Barnes [1] diminished slightly the requirements in the definition of Γ -ring as in Nobuswa.

In [3], D. Özden, M.A. Özturk and Y. B. Jun, defined a Γ -subring. A Γ -subring of Γ ring *K* is an additive subgroup *S* of *K* such that $S \Gamma S \subseteq S$. Let *K* be a Γ -ring, then *K* is named a commutative Γ -ring if $a \alpha b = b \alpha a$, holds for any $a, b \in K$ and $\alpha \in \Gamma$ [4]. A subset *U* of a Γ -ring *K* is called a right (resp. left) ideal of *K* if *U* is an additive subgroup of *K* and $U \Gamma K =$ $\{a \alpha x: a \in U, \alpha \in \Gamma, x \in K\}$ (resp. $K\Gamma U = \{x \alpha a: a \in U, \alpha \in \Gamma, x \in K\}$) is

*Email: alaa.w@sc.uobaghdad.edu.iq

contained in U. If U is both a left and a right ideal, then U is called a two-sided ideal, or simply is an ideal of K [5].

A Γ -ring *K* is named prime Γ -ring if $a \Gamma K \Gamma b = 0$, implies a=0 or b=0, where $a, b \in K$. A Γ -ring *K* is named semiprime ring if $a \Gamma K \Gamma a = 0$, implies a=0, where $a \in K$ [6].

Let K be a Γ -ring, then K is named n – torsion free if n a = 0, yields a = 0, for every $a \in K$, where n is positive integer [7].

Let *K* be a Γ -semiring, an element $1 \in K$, is named unity if for any $x \in K$ there exists $\alpha \in \Gamma$ such that $x \alpha 1 = 1 \alpha x = x$ [8].

In [9], Ceven and Uzturk defined the derivation and Jordan derivation in Γ -rings. Let K be a Γ -ring and $d: K \to K$ an additive map. Then *d* is named a derivation (resp. Jordan derivation), if $d(x \alpha y) = d(x) \alpha y + x \alpha d(y)$ (resp. $d(x \alpha x) = d(x) \alpha x + x \alpha d(x)$), for any $x, y \in K$ and $\alpha \in \Gamma$. Every derivation of *K* is Jordan derivation but the opposite in general is need not to be true (see [9]).

Let *K* be a Γ -ring with center Z(K), a mapping *d* from *K* into itself is named Γ centralizing on a subset *S* of *K* if $[x, d(x)]_{\alpha} \in Z(K)$ for every $x \in S$ and $\alpha \in \Gamma$, in the
special case when $[x, d(x)]_{\alpha} = 0$ hold for any $x \in S$ and $\alpha \in \Gamma$, the mapping *d* is named Γ commuting on *S* [7]. Many researchers have studied centralizers and derivations in prime and
semiprime Γ - rings, see [10-18]. The purpose of this paper is to discuss centralizers and
double centralizers in semiprime Γ -rings with fulfilling certain identities.

2. Basic Concepts

We begin our discussion with the following definitions and lemmas which are useful for the proof of our main results.

Definition 2.1[15]

Let K be a Γ -ring, d be called inner derivation of K, if there exists $a \in K$, such that $d(x) = [a, x]_a$ for all $x \in K$ and $\alpha \in \Gamma$.

Definition 2.2 [16]

Let *K* be a Γ -ring, for any $x, y \in K$ and $\alpha \in \Gamma$, the symbol $[x, y]_a = x \alpha y - y \alpha x$, is denoted to the commutator, and $(x \circ y)_a = x \alpha y + y \alpha x$.

Lemma 2.3 [16]

If *K* is a Γ -ring, then the following are hold for any $a, b, c \in K$ and $\alpha, \beta \in \Gamma$:

i. $[a, b]_{\alpha} + [b, a]_{\alpha} = 0.$

ii. $[a + b, c]_{\alpha} = [a, c]_{\alpha} + [b, c]_{\alpha}$.

iii. $[a, b + c]_{\alpha} = [a, b]_{\alpha} + [a, c]_{\alpha}$.

iv. $[a, b]_{\alpha+\beta} = [a, b]_{\alpha} + [a, b]_{\beta}$

v. $[a \beta b, c]_{\alpha} = a \beta [b, c]_{\alpha} + [a, c]_{\alpha} \beta b + a \beta c \alpha b - a \alpha c \beta b$.

Definition 2.4[17]

Let *K* be a Γ -ring. An additive mapping is called a left (resp. right) centralizer $T: K \to K$ if $T(x \alpha y) = T(x) \alpha y$ (resp. $T(x \alpha y) = x \alpha T(y)$) holds for any $x, y \in K$ and $\alpha \in \Gamma$. A centralizer is both a left and right centralizer.

Example 2.5

Let F be a field, and D₂ (F) be a Γ -ring of all diagonal matrices of degree 2, where $\Gamma = \{ \begin{bmatrix} 0 & 0 \\ 0 & n \end{bmatrix} \mid n \in F \}. \text{ Define } T: D_2(F) \to D_2(F) \text{ by:}$ $T\left(\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ for any } a, b \in F.$

$$T\left(\begin{bmatrix}a & 0\\0 & b\end{bmatrix}\right) = \begin{bmatrix}0 & 0\\0 & b\end{bmatrix} \text{ for any } a, b \in$$

Then T is a centralizer.

Definition 2.6[17]

Let *K* be a Γ -ring. An additive mapping $T: K \to K$ is called Jordan left (resp. right) centralizer if $T(x\alpha x) = T(x)\alpha x$ (resp. $T(x\alpha x) = x\alpha T(x)$, for any $x \in K$ and $\alpha \in \Gamma$.

Remark 2.7

Every centralizer is Jordan centralizer but the converse in general is need not to be true, as the following example shows:

Example 2.8

Let *F* be a field, and K be a Γ -ring of all matrices of the from:

$$x = \begin{bmatrix} 0 & a & c & b \\ 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ for any } a, b, c \in F,$$

and

$$T(x) = \begin{bmatrix} 0 & a & c & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
 for any $a, c \in F, x \in K$.

Then *T* is a Jordan centralizer but not centralizer.

Theorem 2.9 [17]

Let *K* be a 2-torsion free semiprime Γ -ring, then every left (resp. right) Jordan centralizer is a left (resp. right) centralizer.

Definition 2.10

Let *d* and *g* be additive mappings on Γ -ring *K*, a pair (*d*, *g*) is called a derivation pair if the following equations hold:

$$\begin{aligned} d & (x \, \alpha \, y \, \beta \, x) = d \, (x) \, \alpha \, y \, \beta \, x + x \, \alpha \, g(y) \, \beta \, x + x \, \alpha \, y \, \beta \, d \, (x) \\ & \text{for any } x, \, y \in K, \, \alpha, \beta \in \Gamma. \\ g & (x \, \alpha \, y \, \beta \, x) = g \, (x) \, \alpha \, y \, \beta \, x + x \, \alpha \, d(y) \, \beta \, x + x \, \alpha \, y \, \beta \, g \, (x) \\ & \text{for any } x, \, y \, \in K, \, \alpha, \beta \in \Gamma. \end{aligned}$$

3. Main results

Lemma 3.1

Let K be a prime Γ -ring, and U be a non-zero ideal of K. Let $T: K \to K$, be a left centralizer of K. If T = 0 on U, then T = 0 on K.

Proof: We have

$$T(x) = 0 \text{ for all } x \in U.$$
(1)
Replacing x by r \alpha x in (1), where $r \in K$

$$T(r\alpha x) = 0 \text{ for all } x \in U, r \in K, \alpha \in \Gamma.$$
Since T is left centralizer, we have

$$T(r)\alpha x = 0 \text{ for all } r \in K, x \in U, \alpha \in \Gamma.$$
(2)
Replace x with s \beta x in (2), we get

$$T(r)\alpha s \beta x = 0 \text{ for all } r, s \in K, x \in U, \alpha, \beta \in \Gamma,$$
(3)
hence

$$T(r)\alpha K \beta x = 0 \text{ for all } r \in K, x \in U, \alpha, \beta \in \Gamma$$
by the primness of K, and U be a non-zero ideal of K, we have

$$T(r) = 0 \text{ for all } r \in K.$$

Theorem 3.2

Let K be a non-commutative prime Γ -ring, let U be a non-zero ideal of K, and $T: K \to K$ be a left centralizer. If $T(x) \in Z(K)$, holds for any $x \in U$, then T = 0. **Proof:**

Since

$$[T(x),r]_{\alpha} = 0 \quad \text{for all } r \in \mathsf{K}, x \in \bigcup \text{ and } \alpha \in \Gamma$$
(1)

Putting
$$x \beta z$$
 for x in (1), where $z \in K$, and α , $\beta \in \Gamma$, we get

 $[T(x),r]_{\alpha} \beta z + T(x) \beta [z,r]_{\alpha} = 0 \quad \text{for all } r, z \in K, x \in U \text{ and } \alpha, \beta \in \Gamma.$ (2) Hence,

 $T(x) \beta [z, r]_{\alpha} = 0 \text{, for all } r, z \in K, x \in U \text{and } \alpha, \beta \in \Gamma.$ (3) By replacing x with x σ w, in (3), where $w \in K, \sigma \in \Gamma$, give

 $T(x) \sigma w \beta [z, r]_{\alpha} = 0$ for all $r, z, w \in K, x \in U$ and $\alpha, \beta, \sigma \in \Gamma$. (4) By the primness and non-commutative of *K*, follows T(x) = 0, for any $x \in U$, using Lemma 3.1, we have T = 0.

Theorem 3.3

Let K be a semiprime Γ -ring, U be an ideal of K, and let $T: K \to K$ be a centralizer of K. If $T(x) \alpha T(y) = 0$, for any $x, y \in U$, then T = 0 on U. In case K is a prime Γ -ring, then T = 0.

Proof: We have

 $T(x)\alpha T(y) = 0 \quad \text{for all } x, y \in \bigcup \text{ and } \alpha \in \Gamma$ Replace y by $r \beta x$ in the above relation, since T is centralizer, we get $T(x)\alpha K \beta T(x) = 0 \quad \text{for all } x \in U, \ \alpha, \beta \in \Gamma.$ By the semiprimness of K, we get $T(x) = 0 \quad \text{for all } x \in U.$ In case K is prime Γ -ring and using Lemma 3.1, which complete the proof.

Theorem 3.4

Let *K* be a 2-torsin free semiprime Γ -ring, and let $T: K \to K$ be a left centralizer of *K*, such that $T(x \circ y)_a = 0$ and $y \alpha x \beta z = y \beta x \alpha z$, for any $x, y \in K, \alpha, \beta \in \Gamma$ then T(x)=0.

Proof:

We have

$$T(x \circ y)_{\alpha} = T(x \alpha y + y \alpha x) = 0 \text{ for all } x, y \in \mathbf{K}, \alpha \in \Gamma$$
(1)

Gives us

$$T(x)\alpha y + T(y)\alpha x = 0 \qquad \text{for all } x, y \in K, \alpha \in \Gamma.$$
(2)
Replace y by y $\beta z + z \beta y \qquad \text{in (2), we obtain}$

 $T(x) \alpha (y \beta z + z \beta y) + T (y \beta z + z \beta y) \alpha x = 0 \text{ for any } x, y, z \in K, \alpha, \beta \in \Gamma.$ Now, from (1), we get $T(x)\alpha (y \beta z + z \beta y) = 0 \text{ for all } x, y, z \in K, \alpha, \beta \in \Gamma.$ (3) Replace z with y $\gamma z + z \gamma y$ in (3), we get $2T(x)\alpha (y \gamma z \beta y) = 0 \text{ for all } x, y, z \in K, \alpha, \beta, \gamma \in \Gamma.$ (4)

Since K is a 2-torsion free, then (4) leads to $T(x)\alpha(yyz\beta y) = 0 \quad \text{for all } x y z \in K \alpha \beta y \in \Gamma$ (5)

$$T(x)\alpha (y \gamma z\beta y) = 0 \quad for \ all \ x, y, z \in K, \alpha, \ \beta, \gamma \in \Gamma.$$
(5)
Replace z by z σ T (x) in (5), we get

 $T(x)\alpha y \gamma z \sigma T(x) \alpha y = 0 \quad for \ all \ x, y, z \in K, and \ \alpha, \gamma, \sigma \in \Gamma.$ (6) By the semiprimness of K, we get T = 0.

Theorem 3.5

Let K be a prime Γ -ring, let U be a non-zero ideal of K, and T: $K \to K$, be an additive mapping which satisfies $T(r \alpha x) = T(r)\alpha x$, for any $r \in K$, $x \in U$, $\alpha \in \Gamma$. Then T is a left centralizer of K.

Proof:

By the assumption, we have

 $T(r \alpha x) = T(r)\alpha x \quad \text{for all } r \in K, x \in U, \alpha \in \Gamma$ Replace x by s β x in the above relation, we get $T(r \alpha s \beta x) = T(r \alpha s) \beta x = T(r)\alpha s \beta x \text{ for all } r, s \in K, x \in U, \alpha, \beta \in \Gamma$

i.e.,

 $(T(r \alpha s) - T(r)\alpha s)\beta t\gamma x = 0$ for all $r, s, t \in K, x \in U, \alpha, \beta \in \Gamma$ By the primness of K and U is a non-zero, we get

 $T(r \alpha s) = T(r)\alpha s$ for all $r, s \in K, \alpha \in \Gamma$.

Then T is a left centralizer of K.

Definition 3.6

Let K be Γ -ring, let T, S: $K \to K$, be additive mappings, then a pair (T, S) is named a double centralizer, if T is a left centralizer, S is a right centralizer, and satisfy a balanced requirement $x \alpha T(y) = S(x) \alpha y$, for any $x, y \in K$.

Example 3.7

Let *F* be a field, and $K_2(F)$ be a Γ -ring of all 2 by 2 matrices with usual addition and multiplication, and $\Gamma = \{ \begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix}, n \text{ is integer} \}$, Define *T*, *S*: $K_2(F) \to K_2(F)$ by

$$T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = \begin{bmatrix}0 & 0\\c & d\end{bmatrix}, \text{ for any } a, b, c, d \in F.$$

$$S\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = \begin{bmatrix}0 & b\\0 & d\end{bmatrix}, \text{ for any } a, b, c, d \in F.$$

It is clear that T is a left centralizer and S is a right centralizer satisfy the condition

$$x \alpha T(y) = S(x) \alpha y.$$

Therefore, (T, S) is a double centralizer.

Remark 3.8

Let K be a Γ -ring, and let T: $K \rightarrow K$ a centralizer, then it is clear that (T, T) is a double centralizer.

In the following proposition, we shall prove that the existence of additive mappings $T, S: K \rightarrow K$ fulfilling $x \alpha T(x) = S(x) \alpha x$ for any $x \in K \alpha \in \Gamma$, yields that T-S is inner derivation.

Proposition 3.9

Let K be a Γ -ring, with identity and let T, S: $K \to K$ be additive mappings fulfilling $x \alpha T(x) = S(x) \alpha x$ for any $x \in K$, $\alpha \in \Gamma$. Then T - S is an inner derivation. **Proof:**

We have

$$x \alpha T(x) = S(x) \alpha x$$
 for all $x \in K, \alpha, \beta \in \Gamma$ (1)

Replacing x by x + 1 in (1), we get

$$x \alpha a + T(x) = S(x) + a \alpha x$$
 for all $x \in K, \alpha \in \Gamma$ (2)

where T(1) = S(1) = a.

Then from relation (2), we have

 $(T-s)(x) = a \alpha x - x \alpha a = [a, x]_a$ for all $x \in K, \alpha \in \Gamma$

Hence,

T-S is inner derivation.

Definition 3.10

Let K be a Γ -ring, and let $T, S: K \to K$, be additive mappings, then a pair (T, S) is named a double Jordan centralizer, if T is a left Jordan centralizer, S is a right Jordan centralizer, and they satisfy a balanced requirement $x \alpha T(x) = S(x) \alpha x$, for any $x \in K$, $\alpha \in \Gamma$.

Example 3.11

Let *F* be a field, and $K_2(F)$ be a Γ -ring of all 2 by 2 matrices with usual addition and multiplication of matrices, and $\Gamma = \{ \begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix}, n \text{ is integer} \}.$

Define
$$T, S: K_2(F) \to K_2(F)$$
 by
 $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ c & d \end{bmatrix}$, for any $a, b, c, d \in F$.
 $S\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix}$, for any $a, b, c, d \in F$.

It is clear that T is a left Jordan centralizer and S is a right Jordan centralizer satisfy the condition

$$x \alpha T(y) = S(x) \alpha y.$$

Therefore, (T, S) is a double Jordan centralizer.

Remark 3.12

Every double centralizer is a double Jordan centralizer, but the opposite in general is need not to be true .

In the following example justifies this remark.

Example 3.13

Let *K*, Γ and *T* be as in the Example 2.7 and defined *S*: $K \rightarrow K$ by $\begin{bmatrix} 0 & a & c & 0 \\ 0 & a & c & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & a & c & b \\ 0 & a & c & b \end{bmatrix}$

$$S(x) = \begin{bmatrix} 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ where } x = \begin{bmatrix} 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

It is clear that T and S are Jordan centralizers but not centralizer, and satisfy $x \alpha T(x) = S(x) \alpha x$.

Hence (T, S) is a double Jordan centralizer but it is not double centralizer.

Theorem 3.14

Let K be a 2-torssion free semiprime Γ -ring, then every double Jordan centralizer is a double centralizer.

Proof: According to Theorem 2.9, we obtain *T* is a left centralizer and *S* is a right centralizer. Let us verify that $x \alpha T(y) = S(x) \alpha y$, for any $x, y \in K$ and $\alpha \in \Gamma$. That is, by hypothesis,

$$x \alpha T(x) = S(x) \alpha x$$
 for any $x \in K, \alpha \in \Gamma$. (1)

Now replacing x by x + y in (1), we get $x \alpha T(y) + y \alpha T(x) = S(x) \alpha y + S(y) \alpha x$, for any $x, y \in K, \alpha \in \Gamma$. (2) Setting $y = y \beta z$ in (2), we arrive at $x \alpha T(y \beta z) + y \beta z \alpha T(x) = S(x) \alpha y \beta z + S(y \beta z) \alpha x$

 $(x \alpha T (y) - S (x)\alpha y) \beta z = y \beta (S (z)\alpha x - z \alpha T(x)), \text{ for any } x, y \in K, \alpha \in \Gamma$ (3) By replacing x with y in (3), we obtain

$$y \beta (S(z)\alpha y - z \alpha T(y)) = 0 \text{ for any } y, z \in K, \alpha, \beta \in \Gamma.$$
Putting $z=z \sigma x \text{ in } (4)$, we get
$$(4)$$

$$y \beta z \sigma (S(x) \alpha y - x \alpha T(y)) = 0 \text{ for any } x, y, z \in K, \alpha, \beta, \sigma \in \Gamma.$$
(5)

Yields that,

 $T(y) \beta z \sigma(S(x)\alpha y - x\alpha T(y)) = 0, \text{ for any } x, y \in K, \alpha, \beta, \sigma \in \Gamma.$ (6) Left multiplication the relation (6) by x, give us

 $x \alpha T(y)\beta z\sigma(S(x)\alpha y) - x\alpha T(y)) = 0 \quad \text{for any } x, y \in K, \ \alpha, \beta, \sigma \in \Gamma.$ (7) Also, left multiplication the relation (5) by S (x), we get

 $S(x)\alpha y\beta \ z\sigma(S(x)\alpha \ y - x \ \alpha T(y)) = 0 \text{ for any } x, \ y, \ z \in K, \ \alpha, \ \beta, \sigma \in \Gamma.$ (8) Subtracting (7) from (8), we have

 $(S(x) \alpha y - x \alpha T(y))\beta z\sigma (S(x)\alpha y - x\alpha T(y)) = 0 \text{ for any } x, y, z \in K, \alpha, \beta, \sigma \in \Gamma.$ (9) By the semiprimness of K, we get $S(x)\alpha y = x \alpha T(y)$ for any $x, y \in K, \alpha \in \Gamma.$

Let us point out is case K has an identity element, Theorem 3.14 can be proved for an arbitrary Γ -ring as following:

Theorem 3.15

Let K be a $\ensuremath{\,\Gamma}$ -ring with identity, then every double Jordan centralizer is a double centralizer.

For the proof of the above theorem, we need the following lemma:

Lemma 3.16

Let *K* be a Γ -ring with identity element. Then, (T, S) is a double Jordan centralizer if and only if *T* and *S* are of the from $T(x) = a \alpha x$ and $S(x) = x \alpha a$ for some fixed element $a \in K, \alpha \in \Gamma$.

Proof:

Let (T, S) be a double Jordan centralizer, then

 $T(x \alpha x) = T(x)\alpha x \quad \text{for any } x \in \mathbf{K}, \ \alpha \in \Gamma.$ (1)

 $S(x \alpha x) = x \alpha S(x)$ for any $x \in K$, $\alpha \in \Gamma$. (2)

$$x \alpha T(x) = S(x) \alpha x$$
 for any $x \in K, \alpha \in \Gamma$. (3)

Replace x by x + 1 in (1), we get

 $T(x) = a \alpha x$ for any $x \in K$, $\alpha \in \Gamma$, where a = T(1). Also, replace x by x + 1 in (2), we get

 $S(x) = x \alpha b$ for any $x \in K$, $\alpha \in \Gamma$, where b = S(1)Now, setting x=1 in (3), we get a = b. Therefore, we obtain

 $T(x) = a \alpha x \text{ and } S(x) = x \alpha a$ for any $x \in K$, $\alpha \in \Gamma$. To show the opposite, assume that: $T(x) = a \alpha x \text{ and } S(x) = x \alpha a$ for any $x \in K$, $\alpha \in \Gamma$. Since $x\alpha T(x) = x\alpha a \alpha x = S(x)\alpha x$. Therefore, the pair (T, S) is a double Jordan centralizer.

Proof the Theorem 3.15

For Lemma 3.16, we get $T(x) = a \alpha x$ and $S(x) = x \alpha a$ for any $x \in K$, $\alpha \in \Gamma$. So, T is a left centralizer, S is a right centralizer and $x \alpha T(y) = x \alpha a \alpha y = S(x) \alpha y$. Therefore, (T, S) is a double centralizer.

Now, we shall prove the following result which involves every double centralizer (T, S) of K induced a derivation d, defined by

$$d(x) = T(x) - S(x).$$

Remark 3.17

Let K be a Γ -ring, then every double centralizer (T, S) of K induced a derivation d defined by d(x) = T(x) - S(x) for any $x \in K$.

Proof:

We have d(x) = T(x) - S(x) for any $x \in K$. Replace x with x α y in the above relations, we get $d(x \alpha y) = T(x) \alpha y - x \alpha S(y)$

$$\begin{aligned} u(x \, \alpha \, y) &= T(x) \, \alpha \, y - x \, \alpha \, S(y) \\ &= \left(T(x) \alpha \, y - S(x) \alpha \, y + x \, \alpha \, T(y) - x \, \alpha S(y) \right) \\ &= d(x) \, \alpha \, y + x \, \alpha \, d(y), \quad \text{for any } x \in K, \, \alpha \in \Gamma. \end{aligned}$$

Proposition 3.18

Let K be a Γ -ring, and let (T_1, S_1) , (T_2, S_2) be double centralizers of K, define $d, g: K \to K$ by

$$d(x) = T_1(x) - S_2(x) \quad \text{for any } x \in K.$$
(1)

$$g(x) = T_2(x) - S_I(x) \quad \text{for any } x \in K.$$
(2)

Then (d, g) is a derivation pair.

Proof : We intend to prove the equations

$$d (x \alpha y \beta x) = d (x) \alpha y \beta x + x \alpha g(y) \beta x + x \alpha y \beta d (x)$$

for any x, y \in K, \alpha, \beta \in \Gamma. (3)
$$g (x \alpha y \beta x) = g (x) \alpha y \beta x + x \alpha d(y) \beta x + x \alpha y \beta g (x)$$

$$g(x \alpha y \beta x) = g(x) \alpha y \beta x + x \alpha d(y) \beta x + x \alpha y \beta g(x)$$

for any x, y \in K, \alpha, \beta \in \Gamma, \beta \in K. \alpha, \beta \in \Gamma. \text{(4)}

To prove (3), putting x α y β x for x in (1), we get $d(x \alpha y \beta x) = T_{I}(x \alpha y \beta x) - S_{2}(x \alpha y \beta x)$ $= (T_{I}(x) - S_{2}(x)) \alpha y \beta x + S_{2}(x) \alpha y \beta x - S_{2}(x \alpha y \beta x)$ $= d(x)\alpha y \beta x + xT_{2}(y)\alpha y \beta x - x \alpha S_{I}(y)\beta x + x\alpha S_{I}(y) \beta x$ $- S_{2}(x \alpha y \beta x)$ $= d(x) \alpha y \beta x + x \alpha g (y)\beta x + x \alpha y \beta T_{I}(x) - x \alpha y \beta S_{I}(x)$ $= d(x) \alpha y \beta x + x \alpha g (y)\beta x + x \alpha y \beta d(x)$ for any $x, y \in K, \alpha, \beta \in \Gamma$.

Analogously, $g(x \alpha y \beta x) = g(x)\alpha y \beta x + x\alpha d(y) \beta x + x \alpha y \beta g(x)$,

for any $x, y, \in K$, $\alpha, \beta \in \Gamma$.

Thus, the pair (d, g) is a derivation pair.

4. Conclusions

In this work, we discussed centralizers and double centralizers in semiprime Γ –rings with fulfilling certain identities.

References

- [1] W. E. Barnes, "On the Γ-rings of Nobusawa", *Pacific J. Math.*, vol. 18, pp.411-422, 1966.
- [2] N. Nobusawa, "On a generalization of the ring theory", Osaka J. Math., vol. 1, pp. 81-89, 1984.
- [3] D. Özden, M. A. Özturk and Y. B. Jun, "Permuting tri-derivations in Prime and semi-prime gamma rings", *Kyung Pook Math. J.*, vol. 46, pp. 153-167, 2006.
- [4] S. Chakraborty and A. C. Paul, "On Jordan generalized k-derivations of semiprime Γ_N -rings", *Bulletin of the Iranian Math. Soc.*, vol. 36, no. 1, pp. 41-53, 2010.
- [5] S. Kyuno, "Prime ideals in gamma rings", Pacific J. of Math., vol. 98, no. 2, pp. 375-379, 1982.
- [6] S. Chakraborty and A. c. Paul, "On Jordan k-derivations of 2-torison free Prime Γ_N -rings", *Punjab University J. of Math*, vol. 40, pp. 97-101, 2008.
- [7] A. H. Majeed, S. K. Motashar, "Γ-Centralzing mappings of semiprime Γ-rings", Iraqi Journal of Science, vol.53, no.3, pp. 657-662, 2012.
- [8] M.M.K.RAO, "On Γ -semiring with identity" General Algebra and Applications 37(2017)189-207
- [9] Y. Ceven and M.A. Öztürk, "On Jordan centralized derivations in gamma Rings", *Hacettepe. J. Math. and statistics*, vol. 33, pp.11-14, 2004.
- [10] A.T. Mutlak and A. H. . Majeed, "On Centralizers of 2-torsion Free Semiprime Gamma Rings", *Iraqi Journal of Science*, vol. 62, no. 7, pp. 2351–2356, Jul. 2021.
- [11] A. H. Majeed and S.A. Hamil," γ- Orthogonal for K- Derivations and K- Reverse Derivations", *Journal of physics*, 1530, 2020 p.p.1-6.
- [12] A. H. Majeed and S. Ali Hamil, "Derivations in Gamma Rings with γ-Lie and γ-Jordan Structures" 2020 J. Phys.: Conf. Ser. 1530 012049.
- [13] A. H. Majeed and S. Ali Hamil, "Derivations and reverse derivations on γ-prime and γ-semiprime gamma semirings" 2020 J. Phys.: Conf. Ser. 1530 012050.
- [14] A. K. Kadhim, H. Sulaiman, A. H. Majeed "Γ * -Derivation Acting As An Endomorphism And As An Anti-Endomorphism In Semiprime Γ-Ring M With Involution", *International Journal of Pure and Applied Mathematics*, v. 102, no. 3 pp. 495-501, 2015.
- [15] S. Chakraborty, Md. M. Rashid and A. C. Paul "Inner derivations on semiprime gamma rings", *Ganit J. Bangladesh Math. Soc.*, vol. 39.pp. 101-110, 2019.
- [16] A. K. Kadhim, H.Sulaiman and A. H. Majeed, "Jordan Γ^* –centralizers and reverse Γ^* -centralizers on Semiprime Γ -ring with involution", *International Math. Forum*, vol. 10, no.8, pp. 385-393, 2015.
- [17] M.F. Hoque and A.C. Paul. "On centralizers of semiprime Gamma rings". *Int. Math Forum*, vol. 6, no.13, pp. 627-638, 2011.
- **[18]** A. A. Abdulridha, A. H. Majeed, "On Γ -n- (Anti) Generalized Strong Commutativity Preserving Maps for Semiprime Γ -Rings", vol. 64, no. 6, pp. 3044-3053, 2023.