Khuder and Majeed Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5629-5637 DOI: 10.24996/ijs.2024.65.10.26

 ISSN: 0067-2904

Centralizers and Double Centralizers for Prime and Semiprime -rings

Aya Hussein Khuder*, Abdulrahman H. Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 4/5/2023 Accepted: 8/8/2023 Published: 30/**10**/2024

Abstract

The purpose of this paper is to discuss the centralizers and the double centralizers in prime and semiprime Γ−rings with fulfilling certain identities.

Keywords: Centralizers, Double Centralizers, Semiprime Γ−Rings.

التمركزات والتمركزات الثنائية لحلقات- االولية وشبه االولية

اية حسين خضير*, عبدالرحمن حميد مجيد

قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

الخالصه

 الغرض من هذا العمل مناقشة التمركزات والتمركزات الثنائية لحلقات **-** االولية وشبه االولية مع تحقيق تطبيقات معينة.

1. Introduction

The definition of Γ-ring was introduced by Barnes [1]. Let K and Γ be two abelian groups. If there is a mapping $(a \alpha b) \rightarrow (a \alpha b)$ of $K \times \Gamma \times K \rightarrow K$, fulfilling the following, for any $a, b, c \in K$ and $\alpha, \beta \in \Gamma$.

i. $(a + b) \alpha c = a \alpha c + b \alpha c$, a $(\alpha + \beta) b = a \alpha b + a \beta b$, $a \alpha (b + c) = a \alpha b + a \alpha c$, ii.($a \alpha b$) $\beta c = a \alpha (b \beta c)$, then *K* is named a *Γ*-ring.

Every ring *K* is a *Γ*-ring with *K*= *Γ*. A Γ-ring not necessary be a ring. The concept of Gamma ring is a generalization of rings, where proposed by Nobuswa [2]. Barnes [1] diminished slightly the requirements in the definition of Γ-ring as in Nobuswa.

In [3], D. Özden, M.A. Özturk and Y. B. Jun, defined a Γ –subring. A Γ-subring of Γ ring *K* is an additive subgroup *S* of *K* such that $S \cap S \subseteq S$. Let *K* be a *Γ*-ring, then *K* is named a commutative *Γ*-ring if $a \alpha b = b \alpha a$, holds for any $a, b \in K$ and $\alpha \in \Gamma$ [4]. A subset *U* of a Γ -ring K is called a right (resp. left) ideal of K if U is an additive subgroup of K and U Γ K = ${a \alpha x: a \in U, \alpha \in \Gamma, x \in K}$ (resp. $KT U = {x \alpha a: a \in U, \alpha \in \Gamma, x \in K}$) is

_______________________________ *Email: alaa.w@sc.uobaghdad.edu.iq

contained in U . If U is both a left and a right ideal, then U is called a two-sided ideal, or simply is an ideal of K [5].

A *Γ*-ring *K* is named prime *Γ*-ring if $a \, \Gamma \, K \, Ib = 0$, implies $a=0$ or $b=0$, where $a, b \in K$. A Γ -ring K is named semiprime ring if $\alpha \Gamma K \Gamma \alpha = 0$, implies $\alpha = 0$, where $\alpha \in K$ [6].

Let K be a Γ -ring, then K is named $n -$ torsion free if $n \alpha = 0$, yields $\alpha = 0$, for every $a \in K$, where n is positive integer [7].

Let K be a Γ -semiring, an element $1 \in K$, is named unity if for any $x \in K$ there exists $\alpha \in \Gamma$ such that $x \alpha 1 = 1 \alpha x = x$ [8].

 In [9], Ceven and Uzturk defined the derivation and Jordan derivation in Γ-rings. Let K be a Γ-ring and $d : K \to K$ an additive map. Then *d* is named a derivation (resp. Jordan derivation), if $d (x \alpha y) = d (x) \alpha y + x \alpha d (y)$ (resp. $d (x \alpha x) = d (x) \alpha x +$ $x \alpha d(x)$, for any $x, y \in K$ and $\alpha \in \Gamma$. Every derivation of K is Jordan derivation but the opposite in general is need not to be true (see [9]).

Let K be a Γ -ring with center $Z(K)$, a mapping d from K into itself is named Γ centralizing on a subset S of K if $[x, d(x)]_{\alpha} \in Z(K)$ for every $x \in S$ and $\alpha \in \Gamma$, in the special case when $[x, d(x)]_{\alpha} = 0$ hold for any $x \in S$ and $\alpha \in \Gamma$, the mapping d is named Γ commuting on \mathcal{S} [7]. Many researchers have studied centralizers and derivations in prime and semiprime Γ - rings, see [10-18]. The purpose of this paper is to discuss centralizers and double centralizers in semiprime Γ –rings with fulfilling certain identities.

2. Basic Concepts

 We begin our discussion with the following definitions and lemmas which are useful for the proof of our main results.

Definition 2.1[15]

Let K be a Γ-ring, d be called inner derivation of K, if there exists $a \in K$, such that $d(x) =$ $[a, x]_a$ for all $x \in K$ and $\alpha \in \Gamma$.

Definition 2.2 [16]

Let *K* be a Γ-ring, for any $x, y \in K$ and $\alpha \in \Gamma$, the symbol $[x, y]_a = x \alpha y - y \alpha x$, is denoted to the commutator, and $(x \circ y)_a = x \alpha y + y \alpha x$.

Lemma 2.3 [16]

If K is a Γ -ring, then the following are hold for any α , b , $c \in K$ and α , $\beta \in \Gamma$:

i. $[a, b]_{\alpha} + [b, a]_{\alpha} = 0.$

ii. $[a + b, c]_{\alpha} = [a, c]_{\alpha} + [b, c]_{\alpha}$.

iii. $[a, b + c]_{\alpha} = [a, b]_{\alpha} + [a, c]_{\alpha}$.

iv. $[a, b]_{\alpha + \beta} = [a, b]_{\alpha} + [a, b]_{\beta}$.

v. $[a \beta b, c]_{\alpha} = a \beta [b, c]_{\alpha} + [a, c]_{\alpha} \beta b + a \beta c \alpha b - a \alpha c \beta b$.

Definition 2.4[17]

Let K be a Γ -ring. An additive mapping is called a left (resp. right) centralizer $T: K \to K$ if $T(x\alpha y) = T(x) \alpha y (resp. T (x \alpha y) = x \alpha T(y)$ holds for any $x, y \in K$ and $\alpha \in \Gamma$. A centralizer is both a left and right centralizer.

Example 2.5

Let F be a field, and D_2 (F) be a Γ -ring of all diagonal matrices of degree 2, where $\Gamma = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & \pi \end{bmatrix} \right.$ $\begin{bmatrix} 0 & 0 \\ 0 & n \end{bmatrix}$ | $n \in F$ }. Define $T: D_2(F) \to D_2(F)$ by: $T\begin{pmatrix}a&0\\0&b\end{pmatrix}$ $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ $= \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix}$ for any $a, b \in F$.

Then T is a centralizer.

Definition 2.6[17]

Let *K* be a *r*-ring. An additive mapping $T: K \to K$ is called Jordan left (resp. right) centralizer if $T (x \alpha x) = T(x) \alpha x$ (resp. $T (x \alpha x) = x \alpha T (x)$, for any $x \in K$ and $\alpha \in \Gamma$.

Remark 2.7

 Every centralizer is Jordan centralizer but the converse in general is need not to be true, as the following example shows:

Example 2.8

Let *F* be a field, and K be a *Γ*-ring of all matrices of the from:

$$
x = \begin{bmatrix} 0 & a & c & b \\ 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ for any } a, b, c \in F,
$$

and

$$
\Gamma = \left\{ \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, n \text{ is integer} \right\}
$$

Let $T: K \to K$ be an additive mapping defined as:

$$
\begin{bmatrix} 0 & a & c & 0 \end{bmatrix}
$$

$$
T(x) = \begin{bmatrix} 0 & 0 & 0 & c \\ 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
 for any $a, c \in F, x \in K$.

Then *T* is a Jordan centralizer but not centralizer.

Theorem 2.9 [17]

Let *K* be a 2-torsion free semiprime Γ -ring, then every left (resp. right) Jordan centralizer is a left (resp. right) centralizer.

Definition 2.10

 Let *d* and *g* be additive mappings on *Γ*-ring *K*, a pair (*d*, *g*) is called a derivation pair if the following equations hold:

$$
d(x \alpha y \beta x) = d(x) \alpha y \beta x + x \alpha g(y) \beta x + x \alpha y \beta d(x)
$$

for any $x, y \in K$, $\alpha, \beta \in \Gamma$.

$$
g(x \alpha y \beta x) = g(x) \alpha y \beta x + x \alpha d(y) \beta x + x \alpha y \beta g(x)
$$

for any $x, y \in K$, $\alpha, \beta \in \Gamma$.

3. **Main results**

Lemma 3.1

Let *K* be a prime *Γ*-ring, and *U* be a non-zero ideal of *K*. Let $T: K \to K$, be a left centralizer of *K*. If $T = 0$ on *U*, then $T = 0$ on *K*.

Proof*:* We have

$$
T(x) = 0 \text{ for all } x \in U.
$$
\n(1)
\nReplacing x by r \alpha x in (1), where $r \in K$
\n
$$
T(r\alpha x) = 0 \text{ for all } x \in U, r \in K, \alpha \in \Gamma.
$$

\nSince T is left centralizer, we have
\n
$$
T(r)\alpha x = 0 \text{ for all } r \in K, x \in U, \alpha \in \Gamma.
$$

\nReplace x with s \beta x in (2), we get
\n
$$
T(r)\alpha s \beta x = 0 \text{ for all } r, s \in K, x \in U, \alpha, \beta \in \Gamma,
$$

\nhence
\n
$$
T(r)\alpha K \beta x = 0 \text{ for all } r \in K, x \in U, \alpha, \beta \in \Gamma
$$

\nby the primness of K, and U be a non-zero ideal of K, we have
\n
$$
T(r) = 0 \text{ for all } r \in K.
$$

\n(3)

Theorem 3.2

Let *K* be a non-commutative prime Γ-ring, let *U* be a non-zero ideal of *K*, and $T: K \to K$ be a left centralizer. If $T(x) \in Z(K)$, holds for any $x \in U$, then $T = 0$. **Proof:**

Since

$$
[T(x), r]_{\alpha} = 0 \quad \text{for all } r \in \mathbb{K}, x \in \mathbb{U} \text{ and } \alpha \in \Gamma
$$
 (1)

Putting $x \beta z$ for x in (1), where $z \in K$, and $\alpha, \beta \in \Gamma$, we get

 $[T(x), r]_{\alpha} \beta z + T(x) \beta [z, r]_{\alpha} = 0$ for all $r, z \in K, x \in U$ and $\alpha, \beta \in \Gamma$. (2) Hence,

 $T(x) \beta [z, r]_{\alpha} = 0$, for all $r, z \in K, x \in U$ and $\alpha, \beta \in \Gamma$. (3) By replacing *x* with $x \sigma w$, in (3), where $w \in K$, $\sigma \in \Gamma$, give

 $T(x)$ $\sigma w \beta [z, r]_{\alpha} = 0$ for all $r, z, w \in K, x \in U$ and $\alpha, \beta, \sigma \in \Gamma$. (4) By the primness and non-commutative of *K*, follows $T(x) = 0$, for any $x \in U$, using Lemma 3.1, we have $T = 0$.

Theorem 3.3

Let *K* be a semiprime Γ-ring, *U* be an ideal of *K*, and let $T: K \to K$ be a centralizer of *K*. If $T(x) \alpha T(y) = 0$, for any *x*, $y \in U$, then $T = 0$ on *U*. In case *K* is a prime Γ-ring, then $T =$ θ .

Proof: We have

 $T(x) \alpha T(y) = 0$ for all $x, y \in \cup$ and $\alpha \in \Gamma$ Replace y by $r \beta x$ in the above relation, since T is centralizer, we get $T(x)\alpha K \beta T(x) = 0$ for all $x \in U$, $\alpha, \beta \in \Gamma$. By the semiprimness of K , we get $T(x) = 0$ for all $x \in U$. In case *K* is prime *Γ* -ring and using Lemma 3.1, which complete the proof.

Theorem 3.4

Let *K* be a 2-torsin free semiprime *Γ* -ring, and let *T*: $K \rightarrow K$ be a left centralizer of *K*, such that $T(x \circ y)_a=0$ and $y\alpha x\beta z = y\beta x\alpha z$, for any $x, y \in K$, $\alpha, \beta \in \Gamma$ then $T(x)=0$.

Proof:

We have

$$
T(x \circ y)_a = T(x \alpha y + y \alpha x) = 0 \text{ for all } x, y \in \mathcal{K}, a \in \Gamma
$$
 (1)

Gives us

$$
T(x)\alpha y + T(y)\alpha x = 0 \qquad \text{for all } x, y \in \mathbb{K}, \alpha \in \Gamma.
$$

Replace y by y $\beta z + z \beta y$ in (2), we obtain

 $T(x)$ α $(y \beta z + z \beta y) + T$ $(y \beta z + z \beta y)$ α $x=0$ for any $x, y, z \in K$, $\alpha, \beta \in \Gamma$. Now, from (1), we get $T(x)\alpha (y \beta z + z \beta y) = 0$ for all $x, y, z \in K, \alpha, \beta \in \Gamma$. (3) Replace z with y γ z+ z γ y in (3), we get $2T(x)\alpha (y \gamma z \beta y) = 0$ for all $x, y, z \in K, \alpha, \beta, \gamma \in \Gamma$. (4) Since *K* is a 2-torsion free, then (4) leads to

$$
T(x)\alpha (y \gamma z \beta y) = 0 \quad \text{for all } x, y, z \in K, \alpha, \beta, \gamma \in \Gamma. \tag{5}
$$

Replace z by z $\sigma T(x)$ in (5), we get

 $T(x) \alpha$ y γ z σ $T(x) \alpha$ γ = 0 for all $x, y, z \in K$, and $\alpha, \gamma, \sigma \in \Gamma$. (6) By the semiprimness of *K*, we get $T = 0$.

Theorem 3.5

Let *K* be a prime *Γ* -ring, let *U* be a non-zero ideal of *K*, and *T*: $K \rightarrow K$, be an additive mapping which satisfies $T(r \alpha x) = T(r) \alpha x$, for any $r \in K$, $x \in U$, $\alpha \in \Gamma$. Then *T* is a left centralizer of *K*.

Proof:

By the assumption, we have

 $T(r \alpha x) = T(r) \alpha x$ for all $r \in K, x \in U, \alpha \in \Gamma$ Replace x by $s \beta x$ in the above relation, we get

 $T(r \alpha s \beta x) = T(r \alpha s) \beta x = T(r) \alpha s \beta x$ for all $r, s \in K, x \in U, \alpha, \beta \in \Gamma$

i.e.,

 $(T(r \alpha s) - T(r) \alpha s) \beta t \gamma x = 0$ for all $r, s, t \in K, x \in U, \alpha, \beta \in \Gamma$ By the primness of *K* and *U* is a non-zero, we get

 $T(r \alpha s) = T(r) \alpha s$ for all $r, s \in K, \alpha \in \Gamma$.

Then *T* is a left centralizer of *K*.

Definition 3.6

Let *K* be *Γ* -ring, let *T*, *S*: $K \rightarrow K$, be additive mappings, then a pair (*T*, *S*) is named a double centralizer, if T is a left centralizer, S is a right centralizer, and satisfy a balanced requirement $x \alpha T(y) = S(x) \alpha y$, for any $x, y \in K$.

Example 3.7

Let *F* be a field, and $K_2(F)$ be a Γ -ring of all 2 by 2 matrices with usual addition and multiplication, and $\Gamma = \begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix}$, *n* is integer}, Define *T*, *S*: $K_2(F) \rightarrow K_2(F)$ by

$$
T\begin{pmatrix} \begin{bmatrix} a & b \ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 \ c & d \end{bmatrix}, \text{ for any } a, b, c, d \in F.
$$

$$
S\begin{pmatrix} \begin{bmatrix} a & b \ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & b \ 0 & d \end{bmatrix}, \text{ for any } a, b, c, d \in F.
$$

It is clear that *T* is a left centralizer and *S* is a right centralizer satisfy the condition

$$
x \alpha T(y) = S(x) \alpha y.
$$

Therefore, (T, S) is a double centralizer.

Remark 3.8

Let *K* be a Γ-ring, and let *T*: $K \rightarrow K$ a centralizer, then it is clear that (T, T) is a double centralizer.

In the following proposition, we shall prove that the existence of additive mappings *T*, *S*: $K \rightarrow$ *K* fulfilling $x \alpha T(x) = S(x) \alpha x$ for any $x \in K \alpha \in \Gamma$, yields that *T*- *S* is inner derivation.

Proposition 3.9

Let *K* be a Γ-ring, with identity and let *T*, *S*: $K \rightarrow K$ be additive mappings fulfilling $x \alpha T(x) = S(x) \alpha x$ for any $x \in K$, $\alpha \in \Gamma$. Then $T - S$ is an inner derivation.

Proof: We have

$$
x \alpha T(x) = S(x) \alpha x \quad \text{for all } x \in \mathbb{K}, \alpha, \beta \in \Gamma \tag{1}
$$

Replacing x by $x + 1$ in (1), we get

$$
x \alpha a + T(x) = S(x) + a \alpha x \quad \text{for all } x \in \mathcal{K}, \alpha \in \Gamma
$$
 (2)

where $T(1) = S(1) = a$.

Then from relation (2), we have

 $(T - s)(x) = a \alpha x - x \alpha a = [a, x]_a$ for all $x \in K, \alpha \in \Gamma$

Hence,

 $T-S$ is inner derivation.

Definition 3.10

Let *K* be a *Γ* -ring, and let $T, S: K \to K$, be additive mappings, then a pair (T, S) is named a double Jordan centralizer, if T is a left Jordan centralizer, S is a right Jordan centralizer, and they satisfy a balanced requirement $x \alpha T(x) = S(x) \alpha x$, for any $x \in K$, $\alpha \in$ *Γ*.

Example 3.11

Let *F* be a field, and $K_2(F)$ be a Γ-ring of all 2 by 2 matrices with usual addition and multiplication of matrices, and $\Gamma = \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$, *n* is integer}.

Define
$$
T
$$
, $S: K_2(F) \to K_2(F)$ by
\n
$$
T\begin{pmatrix} \begin{bmatrix} a & b \ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 \ c & d \end{bmatrix}, \text{ for any } a, b, c, d \in F.
$$
\n
$$
S\begin{pmatrix} \begin{bmatrix} a & b \ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 0 \ 0 & d \end{bmatrix}, \text{ for any } a, b, c, d \in F.
$$

It is clear that *T* is a left Jordan centralizer and *S* is a right Jordan centralizer satisfy the condition

$$
x \alpha T(y) = S(x) \alpha y.
$$

Therefore, (T, S) is a double Jordan centralizer.

Remark 3.12

 Every double centralizer is a double Jordan centralizer, but the opposite in general is need not to be true .

In the following example justifies this remark.

Example 3.13

Let *K*, *Γ* and *T* be as in the Example 2.7 and defined *S*: $K \rightarrow K$ by 0 0 α 0 $\mathcal{C}_{0}^{(n)}$ 0 0 \mathcal{C}_{0} 0 0 α 0 $\mathcal{C}_{0}^{(n)}$ 0 \boldsymbol{b}

$$
S(x) = \begin{bmatrix} 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
, where $x = \begin{bmatrix} 0 & 0 & 0 & c \\ 0 & 0 & 0 & -a \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

It is clear that *T* and *S* are Jordan centralizers but not centralizer*,* and satisfy $x \alpha T(x) = S(x) \alpha x$.

Hence (T, S) is a double Jordan centralizer but it is not double centralizer.

Theorem 3.14

Let *K* be a 2-torssion free semiprime Γ -ring, then every double Jordan centralizer is a double centralizer.

Proof: According to Theorem 2.9, we obtain *T* is a left centralizer and *S* is a right centralizer. Let us verify that $x \alpha T(y) = S(x) \alpha y$, for any $x, y \in K$ and $\alpha \in \Gamma$.

That is, by hypothesis,

Now replacing x by
$$
x + y
$$
 in (1), we get
\n
$$
x \alpha T(x) = S(x) \alpha x \text{ for any } x \in K, \alpha \in \Gamma.
$$
\n(1)

 $x\alpha T(y) + y\alpha T(x) = S(x) \alpha y + S(y) \alpha x$, for any $x, y \in K, \alpha \in \Gamma$. (2) Setting $y = y \beta z$ in (2), we arrive at

 $x \alpha T (y \beta z) + y \beta z \alpha T (x) = S(x) \alpha y \beta z + S(y \beta z) \alpha x$

$$
(x \alpha T (y) - S (x) \alpha y) \beta z = y \beta (S (z) \alpha x - z \alpha T(x)), \text{ for any } x, y \in K, \alpha \in \Gamma
$$
 (3)
By replacing x with y in (3), we obtain

$$
y \beta (S(z) \alpha y - z \alpha T(y)) = 0 \text{ for any } y, z \in K, \alpha, \beta \in \Gamma.
$$

Putting z=z \sigma x in (4), we get (4)

$$
y \beta z \sigma (S(x) \alpha y - x \alpha T(y)) = 0 \text{ for any } x, y, z \in K, \alpha, \beta, \sigma \in \Gamma.
$$
 (5)

Yields that,

 $T(y) \beta z \sigma(S(x) \alpha y - x \alpha T(y)) = 0$, for any $x, y \in K$, $\alpha, \beta, \sigma \in \Gamma$. (6) Left multiplication the relation (6) by *x*, give us

 $x \alpha T(y) \beta z \sigma(S(x) \alpha y) - x \alpha T(y) = 0$ for any $x, y \in K, \alpha, \beta, \sigma \in \Gamma$. (7) Also, left multiplication the relation (5) by S (x) , we get

 $S(x) \alpha y \beta z \sigma(S(x) \alpha y - x \alpha T(y)) = 0$ for any *x*, *y*, $z \in K$, α , β , $\sigma \in \Gamma$. (8) Subtracting (7) from (8), we have

 $(S(x) \alpha y - x \alpha T(y)) \beta z \sigma (S(x) \alpha y - x \alpha T(y)) = 0$ for any *x*, *y*, $z \in K$, α , β , $\sigma \in \Gamma$. (9) By the semiprimness of K, we get $S(x) \alpha y = x \alpha T(y)$ for any $x, y \in K$, $\alpha \in \Gamma$.

Let us point out is case *K* has an identity element, Theorem 3.14 can be proved for an arbitrary *Γ* -ring as following:

Theorem 3.15

 Let K be a *Γ* -ring with identity, then every double Jordan centralizer is a double centralizer.

For the proof of the above theorem, we need the following lemma:

Lemma 3.16

 Let *K* be a Γ-ring with identity element. Then, (*T*, *S*) is a double Jordan centralizer if and only if *T* and *S* are of the from $T(x) = a \alpha x$ and $S(x) = x \alpha a$ for some fixed element $a \in$ *K*, α ∈ *Γ*.

Proof:

Let (T, S) be a double Jordan centralizer, then

 $T(x \alpha x) = T(x) \alpha x$ for any $x \in K$, $\alpha \in \Gamma$. (1)

 $S(x \alpha x) = x \alpha S(x)$ for any $x \in K$, $\alpha \in \Gamma$. (2)

$$
x \alpha T(x) = S(x) \alpha x \quad \text{for any } x \in \mathbb{K}, \alpha \in \Gamma. \tag{3}
$$

Replace *x* by $x + 1$ in (1), we get

 $T(x) = a \alpha x$ for any $x \in K$, $\alpha \in \Gamma$, where $a = T(1)$. Also, replace *x* by $x + 1$ in (2), we get $S(x) = x \alpha b$ for any $x \in K$, $\alpha \in \Gamma$, where $b = S(1)$

Now, setting $x=1$ in (3), we get $a = b$.

Therefore, we obtain

 $T(x) = a \alpha x$ and $S(x) = x \alpha a$ for any $x \in K$, $\alpha \in \Gamma$. To show the opposite, assume that: $T(x) = a \alpha x$ and $S(x) = x \alpha a$ for any $x \in K$, $\alpha \in \Gamma$. Since $x \alpha T(x) = x \alpha a \alpha x = S(x) \alpha x$. Therefore, the pair (*T*, *S*) is a double Jordan centralizer.

Proof the Theorem 3.15

For Lemma 3.16, we get $T(x) = a \alpha x$ and $S(x) = x \alpha a$ for any $x \in K$, $\alpha \in \Gamma$. So, T is a left centralizer, *S* is a right centralizer and $x \alpha T(y) = x \alpha a \alpha y = S(x) \alpha y$. Therefore, (*T*, *S*) is a double centralizer.

 Now, we shall prove the following result which involves every double centralizer (*T*, *S*) of *K* induced a derivation *d*, defined by

$$
d(x) = T(x)-S(x).
$$

Remark 3. 17

 Let *K* be a Γ-ring, then every double centralizer (*T*, *S*) of *K* induced a derivation *d* defined by $d(x) = T(x) - S(x)$ for any $x \in K$.

Proof:

We have $d(x) = T(x) - S(x)$ for any $x \in K$. Replace x with x α y in the above relations, we get $d \left(u \propto v \right) = T \left(u \right)$

$$
d (x \alpha y) = T (x) \alpha y - x \alpha S (y)
$$

= $(T (x) \alpha y - S (x) \alpha y + x \alpha T (y) - x \alpha S (y))$
= $d (x) \alpha y + x \alpha d(y)$, for any $x \in K$, $\alpha \in \Gamma$.

Proposition 3.18

Let *K* be a Γ-ring, and let (*T*₁, *S*₁), (*T*₂, *S*₂) be double centralizers of *K*, define *d*, $a: K \to K$ by

$$
d(x) = T_1(x) - S_2(x) \quad \text{for any } x \in K. \tag{1}
$$

$$
g(x) = T_2(x) - S_1(x) \quad \text{for any } x \in K. \tag{2}
$$

Then (*d*, *g*) is a derivation pair.

Proof : We intend to prove the equations

$$
d (x \alpha y \beta x) = d (x) \alpha y \beta x + x \alpha g(y) \beta x + x \alpha y \beta d (x)
$$

for any $x, y \in K$, $\alpha, \beta \in \Gamma$.

$$
g (x \alpha y \beta x) = g (x) \alpha y \beta x + x \alpha d(y) \beta x + x \alpha y \beta g (x)
$$
 (3)

$$
s(x, a, y, p, x) = s(x, a, y, p, x + x, a, y, p, x + x, a, y, p, s, (x))
$$

for any $x, y \in K$, $\alpha, \beta \in \Gamma$. (4)

To prove (3), putting x α y β x for x in (1), we get $d (x \alpha y \beta x) = T_l(x \alpha y \beta x) - S₂(x \alpha y \beta x)$ $=(T_1(x) - S_2(x)) \alpha y \beta x + S_2(x) \alpha y \beta x - S_2(x \alpha y \beta x)$ $= d(x)\alpha \vee \beta x + xT_2(\nu)\alpha \vee \beta x - x \alpha S_1(\nu)\beta x + x\alpha S_1(\nu) \beta x$ $- S_2(x \alpha y \beta x)$ $= d(x) \alpha y \beta x + x \alpha g(y) \beta x + x \alpha y \beta T_1(x) - x \alpha y \beta S_1(x)$ $= d(x) \alpha y \beta x + x \alpha g (y) \beta x + x \alpha y \beta d(x)$ *for any* $x, y \in K$ *,* $\alpha, \beta \in \Gamma$ *.*

Analogously, $g(x \alpha y \beta x) = g(x) \alpha y \beta x + x \alpha d(y) \beta x + x \alpha y \beta g(x)$,

for any x, y, \in *K,* α *,* β \in *Γ.*

Thus**,** the pair (*d*, *g*) is a derivation pair.

4. **Conclusions**

In this work, we discussed centralizers and double centralizers in semiprime Γ -rings with fulfilling certain identities.

References

- **[1]** W. E. Barnes, "On the Г-rings of Nobusawa", *Pacific J. Math*., vol. 18, pp.411-422, 1966.
- **[2]** N. Nobusawa, "On a generalization of the ring theory", *Osaka J. Math*., vol. 1, pp. 81-89, 1984.
- **[3]** D. Özden, M. A. Özturk and Y. B. Jun, "Permuting tri-derivations in Prime and semi-prime gamma rings", *Kyung Pook Math. J*., vol. 46, pp. 153-167, 2006.
- [4] S. Chakraborty and A. C. Paul, "On Jordan generalized k-derivations of semiprime Γ_{N} -rings", *Bulletin of the Iranian Math. Soc*., vol. 36, no. 1, pp. 41-53, 2010.
- **[5]** S. Kyuno, "Prime ideals in gamma rings", *Pacific J. of Math*., vol. 98, no. 2, pp. 375-379, 1982.
- [6] S. Chakraborty and A. c. Paul, "On Jordan k-derivations of 2-torison free Prime Γ_N -rings", *Punjab University J. of Math*, vol. 40, pp. 97-101, 2008.
- **[7]** A. H. Majeed, S. K. Motashar, "Г-Centralzing mappings of semiprime Г-rings", Iraqi Journal of Science, vol.53, no.3, pp. 657-662, 2012.
- **[8]** M.M.K.RAO, "On *Γ*-semiring with identity" General Algebra and Applications 37(2017)189-207
- **[9]** Y. Ceven and M.A. Öztürk, "On Jordan centralized derivations in gamma Rings", *Hacettepe. J. Math. and statistics*, vol. 33, pp.11-14, 2004.
- **[10]** A.T. Mutlak and A. H. . Majeed, "On Centralizers of 2-torsion Free Semiprime Gamma Rings", *Iraqi Journal of Science*, vol. 62, no. 7, pp. 2351–2356, Jul. 2021.
- [11] A. H. Majeed and S.A. Hamil," γ Orthogonal for K- Derivations and K- Reverse Derivations", *Journal of physics*,1530,2020 p.p.1-6.
- **[12]** A. H. Majeed and S. Ali Hamil, "Derivations in Gamma Rings with γ-Lie and γ-Jordan Structures" 2020 *J. Phys.: Conf. Ser.* **1530** 012049.
- **[13]** A. H. Majeed and S. Ali Hamil, "Derivations and reverse derivations on γ-prime and γ-semiprime gamma semirings" 2020 *J. Phys.: Conf. Ser.* **1530** 012050.
- **[14]** A. K. Kadhim, H. Sulaiman , A. H. Majeed "Γ ∗ -Derivation Acting As An Endomorphism And As An Anti-Endomorphism In Semiprime Γ-Ring M With Involution", *International Journal of Pure and Applied Mathematics*, v. 102, no. 3 pp. 495-501, 2015.
- **[15]** S. Chakraborty , Md. M. Rashid and A. C. Paul "Inner derivations on semiprime gamma rings", *Ganit* J*. Bangladesh Math. Soc*., vol. 39.pp. 101-110, 2019.
- [16] A. K. Kadhim, H.Sulaiman and A. H. Majeed, "Jordan Г^{*} −centralizers and reverse Г^{*}centralizers on Semiprime Г-ring with involution", *International Math. Forum*, vol. l0, no.8, pp. 385-393, 2015.
- **[17]** M.F. Hoque and A.C. Paul. "On centralizers of semiprime Gamma rings". *Int. Math Forum*, vol. 6, no.13, pp. 627-638, 2011.
- **[18]** A. A. Abdulridha, A. H. Majeed, "On Г-n- (Anti) Generalized Strong Commutativity Preserving Maps for Semiprime Γ -Rings", vol. 64, no. 6, pp. 3044-3053, 2023.