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Abstract

Many operators are introduced for the approximation of real functions, but little
for the approximation of complex functions. These studies are for analytic functions.
In this article, we define a new type of Szasz-Mirakjan operator. Then we estimate
the degree of approximation using this modified complex Szasz-Mirakjan operators
to integrable functions on compact disks along with a quantitative estimation. Using
guantitative methods, we also obtain an upper estimate in the simultaneous

approximation by Mﬁ,‘f"’)(ﬂ and exact degrees of approximation estimation for these
operators' Stancu-type generalization.

Keywords: Exact order of approximation, rate of convergence, complex Szasz-
Stancu type operator, Voronovskaja's theorem.
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1. Introduction
Deeba [1], Bohman [2], Gergen et al. [3] and wood [4] investigated the several
approximation properties of the complex Szasz- Mirakjan (SM) operators specified by

lem(D(Z) =e™ ™ a (TnéZ') f(a), z € C.

*Email: mmohamnedhadi@gmail.com

7130


mailto:mmohamnedhadi@gmail.com

Lafta and Bhaya Iragi Journal of Science, 2024, Vol. 65, No. 12, pp: 7130- 7141

In these complex domains. Notice that in the mentioned works, the convergence results
were obtained without the use of any quantitative estimates to the complex (SM) operators.
Gal [5, 6, 7] recently obtained, for complex (SM) operators attached to analytic functions with
different conditions on compact disks.

The order of simultaneous approximation and VVoronovskaja- type results with quantitative
estimate were studied in [5, 6, 7].

The (SM) operators are modified in the real case, and the approximation properties of
these modified operators were studied in [8 -13].

1
Define L,(D) = {f :D = C: Ifll,m = (f, IFIP)° < oo} where 0<p<1 andD =

{z€D:|z|<r1<r<R}
Below we define a modification of the complex Szasz-Mirakjan operators in [9]:

= g
= Z/xm E Z_

where x,,, is convergent sequence.

Everywhere in the paper, f: D — C which integrable in compact disk {z € D,: |z] <r,1 <
r <R}

It is obvious that M, (f)(z) is well defined for all z € C.

Let us define the stancu type generalization of the operator (1) is

i ¢
MV @) = eln ) f (G jni)mxm> oA @
e 14 {x,,

where 0 < & <, 6,y are real numbers independent of m and x,, is convergent sequence
in definition M,,,(f) ().

The goal of this article is to prove approximation results using operators given by (2) for
functions in L, (D).

We first provide the degree of approximation and the voronovskaja type theorems with

quantitative estimates for the operators M, (f) and M,ﬁf"’)(f) to achieve this goal.
These results allow us to identify the precise degree of approximation used by the operators

M (f) in (2).

2. Approximation by the operators M, (f)
We require the subsequent auxiliary lemmas in order to establish the following results.

Lemma 1: For all m,# € NU{0},0 < § <y, z € C, we have

¢
My (@) = Z( 1 ) l(Smxm o Dmxm' ""(6 u Omxm:f z¢ (3)

& xmm+y)) Im+y’ m+y m+y

where the divided difference of the function f on the knots yq,v;, ..., ¥, IS denoted by
[yO'.VD o Vns .f]
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Proof: By performing similar algebraic calculations in [14] yields the formula (3). It should
be noted that Lupas proved such a formula in [12] for classical Szasz operators in the real
case, but the formula is also valid in a complex setting [see also 7].

Lemma 2: Let w,(z) = z°, M( V)(wg)(z) = (‘SV)(z) £,meN and x,, be convergent
sequence. Then the recurrence relation

Hibth @) =2 (300 ) + (—m(Z";;Z)) HP @ @

is satisfied.

Proof: All |z| < r when considering equality (3) and using the divided difference mean value
theorem for f(z) = w,(z) = z* we have
[ @]
Lp(D)

17257 wo) ()|
= dmx,, (6 + 1)mx,, (6 + Omxyy, ¢
;(xm(m+y) “m+y' m+y 7 m+y ”” ”L o(D)
= 1 -1 .-+, ,
zz(xm(m + V)) ’ ¢! ‘ I+ Czc”L p(D)

= ||Z€”pr)2(x (m+V)) ( )— ”Z[”Lp(mz(mx )z( )

1
P 5 1
sz*’||z*’||Lp(D)=2"<L |z"”|pdz> sz*’(L rfndz> IS S

Lp(D)

Using the formula to differentiate with respect to z # 0, we obtain

d -z C £ 3¢
— e /xm E 5 =
dz |© = 0((€+ ymitn) (.xg1
C _Z/xmzf 7 z¢1
_— [xmg =
ZO((“‘”’"’C’") [0( e te e c!(xm)fl'

following which the formula is divided by (m + y)*** and using simple and direct math, we
obtain

mxmz<}[(ay)(z)) H(”)l (z) — (m(axm+z)> }((”)(z)

m+y m,f+ m+y
Thus, we arrive at the recurrence formula proposed by (4).

We provide the recurrence formula for the operator in the special case § = 0 = y in degree
to show the key outcomes from this section (1).

Let M, (Wp)(2) = Hopp(2) With (wy)(2) = z* for this purpose. It is clear that Hme(2)
is a polynomial with degree ¢, where £ =0,1,2, .., and H,,,(z) =1 and H,,,(z) = 3,
respectively, for all z € C. Using (4) and § = 0 = y, we obtain
Hm,e41(2) = X 2Hy, 0(3) + 2Hm,0(2)
£=0,1,2,..,m € Nforall z € C. This allows us to create the following formula
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Hm,o(2) — 2° = xn3[Hme-1(2) — 2°72] + 8[Hime1(8) — 2771 + %, (£ —

Dz, (6)
for all z in the domain D, £,m € N.

Lemma 3 [7]: In the case of classical complex Szasz--Mirakjan operator, we can write

M) = ) @l (2.
£=0

Lemma 4 [15] (Bernstein's inequality): For any trigonometric polynomial #,, ,(z) of order
< ¢,forevery P (1 < P < »), we have

[ [}[m,e(z)]lnp < ct||Hn (), 7)
where c is a positive constant.

Theorem 1: Let Dz = {3 €C: |z| <R,2< R < +oo}and f € L,(D), f: [R, +00) UDg —
C, that is f(z) = X5 a,3° for any 3 € Dg. If 1<r< fR/Z, then for all |z|<r, D=
{zeD:lzl<r1<r<®/,}andmeN

1M, () = flley 0y < Xm B,

where B(f) = r¥32,(c + 1) 2nrr3)r|a,| £(2r)!~t < oo,
Proof: By using definition L, (D), we get

1
1M = Ay = (fp 1M (D — fIPdz )",
equation (6) allows us to write
[#me2) =5,
= || xm2 (3 e (2) = 2] + 5[ -1 (2) — 277

+ X (£ — Dzt ”Lp@)

1_1 11 -1
<?2p l“me[}[m’g_l(Z) -2 ] ||Lp(D) + ”Z[}[m,f—l(z) -3 ]”Lp('D)

+ o= D2

1
=3[ fnelotnen@ -2 e + ([ Jetnestad - 50
D D

+ (J |2t (€ — 1)Z€_1|pdz>p
D

1 1

<25 |xnr ( j [, -1(2) 5] || dZ>p + <f f |[Hom,e-1(2) — Z""lllpd3>p
D D

+xm (8 = 1) (f, |a7dz )"

SIS
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hence

om0 () — 57 S [[#ne-1(2) — 27 |

<
Lp(D) —

Lp(D)

4791 (2) = 25, gy + xm € = 1)||z"‘1||Lp(D)].
We obtain the following from Equation (7) for H,, ,(z) polynomial of the degree £ -1 we
obtain:

(561 == T, < ctlPtmecs = el
P

where c is a positive constant.
Therefore, it follows

1
||7-[m,g(z) - Zt)”Lp(D) <?2r 1 [c{’xmr”}[m,g_l - W{)_l”Lp(D)

[ Hom o = Weall,_ gy + Xm = DIWe sl |

consequently, we get
1

1 p
|Hme(2) — 2° IILp(D) oV ( f |Hpr — w[_1|”dz>
D
1 1
+r (fD | Hom,e-1 — We—1|pdz)p + X (£ —1) (fD |Wf—1|de)p

from (5) we get

”Hm'[(Z) — Zflle(D) < 2%_1 [c{’xmr (2(2r)[_1(7rr2)%)
+r (2(2r)f—1(nr2)%) (£ — 1)rf’—1(nr2)§].
Thus, for any £ > 2, we finally obtain )
|Hm,e(z) — ° ||Lp oy < Xmr(c + D@rrAPe(2r)*. (8)

Now, using Lemma 3 we get

o)

Mp(D@) = ) @i (2)

£=0
which implies

1Mo () = fllL, ) =

(o]

Z ayHom,(z) — 3°

£=0

[ee]

< Z|af|||afm,f(z) kS

Lp(d)  ¢=0

had 1
< xer(c + 1) Q2nrd)plag £2r) Y,
£=2

since fis analytic so
1
1M () = fllL, @) < Xmr Bio(c + 1) (2rr?)Pla,| £(2r)*" < co.
The proof of Theorem 4 will make use of the following VVoronovskaja type result.
Theorem 2: Assume that the hypothesis is same on f and R in the statement of Theorem 1. If
1<r< 73/2 is arbitrarily fixed, then for any |z| < r any z and m € N, we have

|76:.(D @) — &) - 225" (@) |
2 Lp(D)
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< ()P 10re(2mr2)p B2 lahé(e — (€ - 20223 < o,

Proof: Using the recurrence relationship in (6), denoting
Az (2) = M (W) (@) = we(2) = 2 £(8 = 1)z, 9)
we get
At (&) = ZmAp,p-1(8) + 2 11 (2) + 22550200 — (¢ - 2)°.
Hence

, (Xxm)® ,_
|Ame @ . = |[3xmAme—1(2) + ZAm -1 (3) + ——3z"72(€ — 1) (£ — 2)?
Lp(D) 2
P Lp(D)
<27 |tmtin s s, g+ 5mes ], + |25 6= 12 -
— ZXm m,f—1 3 Lp(D) z m,f—1 4 Lp(D) 2
2 2,42 )
=, )
This suggests forany |z| < r,m €N, ¢ > 2:
i , (Xm)? _
lAm,e @I, ) < 27 1r[xm||c/‘lm,€—1(2)||Lp(D) += - D - 2?2 3”Lp@)l
1
+2p lr”dq'm,{’—l (Z)“Lp(‘D)'
Now from the Bernstein inequality we obtain
”c’q;n,f—l(z)”Lp(D) < cl||Am,e-1 (Z)”Lp(p)’
where c is a positive constant.
From (9), we have
, -1 Xm ., oy b2
e @,y < ctlHme-s(@) =2, +et |5 2= DCE - 25 ||Lp@)

< 4x,,c(nr)re(£ — 1) (£ — 2)(2r)* 2.
Hence
1

1
|| A, (z)||Lp@) < 20 r|| Ay (z)||Lp(D) + 5r(x)2curd)ve(¢ — 1)(£ — 2)%(2r)3.

Because it is the case that for £ = 1,2 we obtain A,,, (z) =0, for £ > 3 in the latter
relation, we obtain that by using the same calculations as in [3] page 117, we obtain that

Ame(2) < 10r(xm)zc(2nr2)%€(€ — 1) (£ —2)%(2r)3.
since My, () (2) — f(2) = 22" (2) < L5 arAm,e (2)
[ 0@ ) =L@ =152 ardme @], <

we get the desired outcome by using the above inequality. m

3. Results of approximation by using the operators Mﬁ,‘f”’)(f)
In firstly, we prove an upper estimate in the simultaneous approximation by Mg,‘f"’)(f),

Theorem 3: Assume that the statement of Theorem 1's function f and constant R hypotheses
are true.
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MIf1<sr< R/Z is arbitrary fixed and 0 < § < y, then for any |z| < r and m € N we have

|28 0 - =) ||
1
co . — [ee] m ( ) 6
< TElalr(2nr?)r(2r) -t + T lagl MU (o r2>v<2r)f :
(2) Assume that 1 <r<r; < R/Z and 0 < & <y. Then for any |z| <r and g,m € N we
have

[P @] - @)

Ly (D)

e [Zlaelr(zirﬂ)p(zo" 1+Z| an T oy arye-a |

2(m+vy)

Proof: (1) Clearly, Equation (4) allows us to write
_ MXp3 m(8x,, + z)
}[(5 Y) (z) — zt m ( 7515;/)1 (z )) < m > 75161’)/)1 (z) —

m+ 14 m+y
_ MXp3 ( 5.7) ) m(éx,, + z) 6.9 1] OMXp =¥z,
I — )|, +———z
T m+y -1 (2) m+y [ -1(2) =3 ] m+y o
Forall z € C,¢,m € N.
(5)/)
H, ;) (2
EVEORES T
mxmz( 2067 ) m(6%m +2)\ 1, P B S
= [|—— — ) |K — +— :
‘m+]/ mf— 1() m+y [ m,f— l(Z) z ] m+y 3 L. (D)
p
By (5), we have the following from the above equation and the Bernstein inequality
@) 51 [MXm" @p) <5mxm )
H,, <2r ct || H. +r
lscsp @ -2, <27 [ ce ooy @]+ (e
6.¥) -1 @+ynmxm ||, ¢-1
||j{m£’ 1 (Z) x4 ||Lp(D) + m+y ” ”LP(D) ’
where c is a positive constant.
Hence, we get
1
6.y) ot 71 6y -1
7627 ) - = ||Lp@) <2 'or | HEP, (@) - ”Lp@)
mxmr 67) (6 + yrymxy, -1
€ ||:]-[m{’ 1(Z)|| p(D) m+y ”Z ”Lp(p) '
Now by using deflnltlon L, (D) for any £ > 2, we get
7657 (z) - = || < r@uryp 2 + e @uryp ()1, (10)

For the complex Szasz operators, it is known that

Yn(D(2) = X0 ar¥m(we)(3) = Lilo asHn(z) forall|z| <r,
we can write using the same idea in [7], pages 116-117

o0}

M@ = Y M W)@ = ) aHi" @)
£=0 £=0
Hence by (10) we obtain
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”M,Ef'y)(f)(z) — f(2) ” g Zlagl ”7'[7516‘]/)(2) - Z{)”LP(D)

oo l — 0 m + +6
< Y2, la,lr2rr?yr(2rft + zkzMA%(anz)p(Zr)" '

Since by hypothesis, f(z) = X5, a, 2z is uniformly and absolutely convergent in|z| <
r.forany1<r< 73/2, it is clear that Y22 ,|a,|(2r)f~t < oo.

(2) Implying by K the circle with radius r; > r and its center at zero, forany |z| < rand u €
K we obtain |u — z| = r; — r, and using Cauchy's formula, it follows for all |z| < r

. q a |l m" O - fa)
||WW] G I R e
Lp(D)
Z|a \r(2mr?yP (2 1+Z| RN ICR 2l PPN P
r)q+1 ¢ a 2(m+7y) ’

WhICh proves (2) and the theorem.m
We provide the following: VVoronovsskaja Formula for M,Ef"’)(f).

Theorem 4: Assume that the f and R hypotheses in the proof of Theoreml are true. The
Voronovskaja type result then holds forany |z| < rwith1 <r < R/z and m € N:

e 0@ - sa - Tom T p (e - Tt |

) (an)%Z V@,
{=2

2 1_1 m
< ()2 Vy() + 2P (m !

Lp(D)

where V3 (f) = 10rc(2mr?)e ¥3L,lapl(€ — 1)(£ = 2)?(2n)° < oo,

V) =82 ) el €¢ - DN < o,
£’O=02
V() = 8r ) laglee - (¢ - 22N <o
£=2 o
Ve = (7% +7) ) el 2 = D@2 < o
- £=2
Vs = (rr)? ) lagle(e - Drf? <,
Oof=2
Ve = 8yr ) lage(e = Dr'? < o
=2

Proof: Let's consider for all z € Dy
omx,, —
M (@) ~ () == BT ()~ (@)
(@) — f(z) - =226 (2) + M“”(f)(z) M () (z) — TEBYE 1 (),

m+y
Since f(3) = Y52, apz?, we obtain

mxmz
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& m = m
M (@) = () == BT () = )
- ; ar (MW (@) - 7° - = 0(0 — 1)5"72)
+ 50 (M W) (@) = Moy (W) (2) — o2 701,

First, the VVoronoskaja type result for the M, (f)(z) operetors is applied, which can be
found in Theorem 2. Then the first sum is

[0 - 1@ - 2ar@ ||, < (om)10re(2mr2)0 B2 lahé(e — 1)(E -

2)2(2r)f3,
We now estimate the second sum. Since Jv[,;‘s””)(wf)(z) = }[T(,fj’) (z) and considering that

£\ mé(mxp)?=¢ :
My (W) (@) = T (C ) - ((Trrlr-llj’)z Mo (we) (2) WithMz,” (W) (2) = Moy (W) (2) for
£,m € N U {0} we can write
dmx, —v3
(54’) _ _ m -1
Moy (We) (z) — Moy, (Wg)(z)s iy 0z
MXy — V3 _
= H,&f;,y) (2) — Hipe(2) — —mm+ S L7071

Y

m dmx, — V3
}[m,((Z) + <m - 1) j‘[m'{)(Z) i —

701

({’) mé(dmx,,)t=¢

. () (m+y)

m+y

~
I

< £\ mS (§max,,) ¢ tmtomx,,
N Z (f) (m+y)? Humg(2) + W}[m,t’—1(z) -

-1
omme Smxm — Y3
=2 (o) Ty e~

(t’) mS(6mx,,)t=¢ tmt~1émx,,

o) Ty e Ty

Lzt 1

Y

-2

[}[m,«f—1(z) - Z{)_l] -

~
Il

-2
\ms ()¢ tmt~ly
- Z <€ ) 1 ¢ Tme(@) = o7 P () = 2]

£8mxm, mf-1 _ -1 Ly _ mf~1 ?
+ (m+y) ((m+y)f—1 1) z + (m+y) (1 (m+y)"_1) 3
Considering the condition (2), we obtain

£-2 £-2

_ ¢ )26 _ ¢ - )e-2=¢
2.0 ((,fl"fy)),;_z - ; (7 Ve o y;f-z-f

. (m+6mxm)£_2
- m+y )
Moreover, we have the following inequities:

£

)

m =1
(m+y) m+y

1

3
IA
1~
=
!
3
+|3
N
|
3
+(<
2
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1
and from (5) || Hym,¢(3) || = (2r)¢(mr®)? . And hence, we get

Lp(D
{2 £-2
2\ mS(6mx,,)* ¢ 2\ mS(6mx,) !¢
Z <€> (m+y)t Him(2) = z (() (m +y)? ”}[mf(z)”Lp@)
=0 Loy
(£ —-1) ({’ — 2) mS(§mx,,)t ¢
B =0(€—§)({’—§—1) ¢ (m+y)?t

(6man)?
(m+y)?

1#mc 2

Lp(D)

<P(f-1)——=2r)t?2 (nrz)%

As a result, using (8):

dmx,, — vz
HELP (5) — Hip (@) — — V2 gt
' m+
14 Lp(D)
£-2
1, A\ mS(dmx,,)" ¢ tmt~16mx,,
<2r ( ) H. +—— || H - — gt
=0 ¢/ (m+y) ms (2) (m+y)? [#me2(2) =2 ”Lp(ﬁ)
= Lp(D)
+
< (\mé(r)F¢ mi~ty
— 7 _
(—0< )(m+]/)f ” mt’( )”L (D) m+7) {,llj'[m,f(Z) z ”Lp(D) +
L8mxy ( mfTt -1 2y mf1 P
(m+y) ((mﬂ/)'?‘1 1) ”Z ”Lp(D) + (m+y) (1 (m+y)é- 1) ” ”Lp(D)]
2
< 21fJ [#(f -1) E +m§2 (ﬂrZ)P (2r)t—2
tmt~16mx,, 1
— X (£ = D = 2)(wrH)P(2r)3
(m+);)g xmr (£ —1)( [ z(ﬂf) (2r)
(£ —1)y 1, tmTly L
+W(nr2)l’(2r) +mer{’({’—1)(nr2)l’(2r) 2

(¢ — 1)6ymx,,
(m+y)?

< [52 (%)2 (Tr?)Pee — 1)(2r)t + 6r<

1 - 2 1
(nr2)prt-1 + 2 Vv P "l

(m+y)? (nr®yer

m’fr’” )2 (Tr?)Pee — 1)(f — 2)(2r)'-3

+(%) (r2YP(ry? + )28 — 1)(2r)f '

this complete the proof of the theorem. m

Now, the result that follows will be helpful in determining the precise degree of
approximation M7 (f).

Theorem 5: Assume that f is not a polynomial of degree < 0 and that the hypotheses on f and
R are the same. Following that, we have for all |z] < rand m € N:

||M7$16'V)(f)(z) — f(Z) ||Lp(D) = Xm VLp(D)(f)'

7139



Lafta and Bhaya Iragi Journal of Science, 2024, Vol. 65, No. 12, pp: 7130- 7141

with that as the constant VLp(D)(f) depends only on fand L, (D).

Proof: We can write forany |[z| < randm € N

1 (6mx,, 12
M@ 1) = 1 | D) 4 25(6) + 5 ()
(MR (=) ~ () =T (2) = Z " (5) — e V(‘S’”’gg+;§)f'<z))].

Using the equality 112, + Z,llu, ) = [1Z:llL,@) = 1Z2llym)| = 121 ll,@) — 122l we
get

> §

i () [0 -y omgep |

|37 O@ 5|, =[G = yudp + 2

Since fis not a polynomial with degree< 0 in Dy, so we get

[Gmxm —ywo)f +27|| > ||omx —ywof +257]| >0

Lp(D) Lp(D)

In fact, assuming the contrary, it follows that for all € Dy (Smx; — yz)f (z) + gf”(z) =
0. By implying g(z) = f(z), staring for g(z) in the form g(z) = ¥22,K,z* and simply
replacing in the previous differential equation, we can use method as in [6] or [7] p.75-76 we

get K, = 0 for all £ =0,1. As a result, we find that f(z) is a constant function, which is a
contradiction.

Using Theorem 4, we get
dmx,, — yw X y(dmx,, — yw;)
8, 1o a4 1
M) = f= = o =l =

112
(ﬂ) m+y 2

142 omx,, — yw X
6.y m 14 m ”
< [ — M‘ _f - Y- = ——Ww
(xm) || m (0~ f m+y f 2 4

fl

Lp(D)

+ lly(6mxy, — ywf L, (o)
Lp(D)

< Z Ve Lo +v(6mxy, —yw)IIf [, @),
=2
there is m; > m, such that for all m > m, we have (only depending on f, 5,y and L,(D))

| @ = yworp + 22|

Lp(D)
1% omx,, — yw X
6.¥) m~ YW1, m o
—xp (—) [ —f—f - w
m(xm> ” m (D =f m+y f 2 4 Ly(D)
l _ 4 Wi enr
> = || Bty — yw)f + 2 ||Lp@),
which implies
S,
[FEREGE || @matm —ywr +
L (’D) Lp(D)
For all m > m,. For m € {my + 1, ...,ml}, we obtain ”M,Ef"’)(f) —f”L (D) ULp(f)
; _ 1 GV rq 6y
with ULD(D)(ﬂ—xm ”Mm ) f”Lp( which implies ”M ) — f”L o 2 Vi) f%m

for all m > m,, with
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. 1 4 W1 oy
VLp(D),f = min {ULp,m0+1(f)' e ULp(I)),m1 (f)»; ” (6mx,, —ywy)f + ?1Jc ||Lp(D)},

this completes the theorem's proof. m
We are now ready to state the exact approximation degree for M,Ef"’)(f).

4. Conclusions
1- Theorems 5 and 3(1) make it clear that if f is not a constant function, then the exact degree

in the operator M,gf"’)(f) approximation is x,,,.
2- The exact degree in the simultaneous approximation by using the operator

(@
[M,Ef"’)(f)(z)] is shown to be x,, by taking into account Theorem 3 (2) and performing

calculations in a manner similar to this one as in [7] p. 119 for the case of classical complex
Szasz-Mirakjian operators.
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