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Abstract

Let R be an associative ring with identity and let M be a unital left R- module. We
introduced the following concept .An R- module M is called a Goldie lifting module
(briefly G-lifting) if for every proper submoduled of M, there exists a proper direct
summand D of M such that D <. A+D in M. The main purpose of this work is to define
goldie lifting modules and we give examples and basic properties of G-lifting modules.
Keywords: Goldie lifting modules.
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Introduction:

Recall that a submoduled of an R- module M is called a small submodule of M (denoted by AKM) , if
for any submoduleB of M such that M=A4+B, then M=B , see [1-3].Let M be an R- module and let 4, B be
submodules of M such that A<B<M. Recall that 4 is called a coessentialsubmodule of B in M (briefly
A<, Bin M) if 2«2, see [1],

Let M be an R- module. Recall that a submoduleB of M is called a coclosedsubmodule of M (notation
B M), if S« implies that A=B ,V A<B, see [1].

Following [4], the following is a relation on a set of submodules of M.A B B if ANB<A and ANB<B.
An R- module M is called an G-extending module if for every submoduled of M , there exists a direct
summand D of M such that (4 8 D), see [4].

An R- module M is called a lifting module if for every submodule4 of M , there exists a submoduleD of 4
such that M=D @® D'and AND'KD’, see [5].

These observations lead us to introduce the following relations on the set of submodules of M.

AyBif B <. A+BinM.
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We define M to be Goldie lifting module (briefly G-lifting) if for every proper submoduled of M, there
exists a proper direct summand D of M such that 4 y D.

This paper consists of two sections
In section one , we introduced the concept of ¥ with some examples and basic properties.

In section two , we define a goldie lifting modules also we give some characterization of goldie lifting
modules and investigate various conditions for a direct sum of G-lifting modules to be G-lifting.

§1: Basic properties of y
In this section , we define a relation y on the set of submodules of a module M and we will illustrate it
by some examples. We also give some basic properties . We start by a definition.

Definition (1.1):LetM be an R- module and let ¥ be a relation on the set of submodules of M defined as
follows: AyB if B <..A+B in M.

Remarks and Examples (1.2)
1- In Z as Z- module. Let A=6Z and B=4Z. One can easily show that B <. A+B=2Zin Z.
2- Let 4 and B be submodules of an R- module M such that B<A4 , then 4 ¥ B if and only if B<..4 in M.

For example Zgas Z- module. It is easy to see that{0,2,4,6} 7 { 0 4} where {0 4 1< {0,2,4,
6 }in Zg.

3- Let A be a submodule of an R- module M. One can easily show that 4 ¥ 0 if and only if A<KM.

4- Let M be an R- module . Clearly that 4 y M , for every submodule4 of M.

Proposition (1.3): ¥ is reflexive and transitive relation.

Proof:Clearly that y is reflexive.To show;/ is transitive , let 4 , B and C be submodules of a module M
B+C

such that A yB and ByC, then— « —a d—<<— We have to show that 4 ¥ Ci.e, —<< —. Let U be
submodule of M contamrng C such that A—ZC + % then M=A+B+C +U and hence = % + BL%C +
M .B ‘[ﬂ << , therefore % BL%C M , hence M = B+C+U. Now = z E +— Since —<< —, then
v A+C

—=— and hence M U.Thu us—— <<—

Note: In general , ¥ is not symmetric. For example , consider Z as Z- module. Clearly 2Zy Z. But 2Z is not
coessential submodule of Z in Z. Thus Z is not related with2Zby 7.

The following proposition gives a characterization of ¥ .

Proposition (1.4): Let 4 and B be submodules of an R- module M .Then 4 ¥ B if and only ifM= A+X
implies M =B+X , for each submoduleX of M.

Proof: (=) Suppose that 4y B and let X be a submodule of M such thatM= 4+X, then % = % + XL%B.
But 4 y B, therefore ﬂ<<M and henceM = E Th M=B+X.
M ass U

(<) To show A yB.L eto=—-+—, Where = < —. Then M= A+B~+U. By our assumption , we get M =
B+U.ButB < U, therefore M =U. Thus 4 ;/B.

Proposition (1.5):LetM be an R- module and let 4 , B and Csubmodules of M.
1- If A y B and BKM , then AKM.
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2- If C&MandA<B+C. Then Ay B.

Proof:

1- Let Ube a submodule of M such that M = A+U = A+B+U = B+U , by prop. (1.4). But B&KM , therefore
M= U. Thus AKM.

2- To show AyB. Let M = A+X , where X<M , then M = A+B+C+X = B+C+X , since A<B+C. But
C&KM , therefore M = B+X. Thus 4 y B, by prop.(1.4).

Proposition (1.6):LetM be an R- module and let 4 , B<M , then Ay Bif and only if %}/% for every
submodule L contained in 4 and B.

Proof:Let 4 ¥ B and let L<M contained in 4 and B , then B<.. A+B in M. By [1], B _4

B . M
<ce =—-+-1n—.
L L L L

~ | W

A B
ThUSZ }/z
A+B

For the converse, suppose that %;/%for every submodule L contained in 4 and B, then ;

in % By [1], we get B<.A+Bin M. Thus AyB

B A
< 2+
L L

~ | %

Proposition (1.7):Letd;, A, ,B; and B, be submodules of an R- module M such that 4,y B, and 4,y B>,
then (4,+4,) y (B, +B.).

Proof: Assume that 4,y B; and A,y B.. Then B; <., A;+B; in M and B,<. A,+B; in M. So B;+B; <.
A;+A+B;+Bsin M , by [1]. Thus (4,+45) ¥ (B, +B>).

Corollary (1.8):LetM be an R- module . If 4 ¥ B and C is a submodule of M , then (4+C) y (B+C). The
converse is true when CKM
Proof: Assume that 4 ¥ B. Since Cy C, then by [1] , (4+C) y ( B+C). Conversely, assume that (4+C)y

(B+C) , then B+C<., A+B+C in M. Since CKM , then B<..A+BinM, [1]. Thus 4 y B.

Proposition (1.9):Letf - M—> N be an R-epimorphism and let 4 , Bsubmodules of M. If4 y B, then f
(A) yf(B).

Proof: Assume that 4 ¥ B, then B<. A+B in M. Hence f'(B) <..f(4A+B) =f(4)+f(B) in N, by [1]. Thus
JADyfB).

Proposition (1.10):Letf'- M ——> N be an R-epimorphism and let 4 , Bsubmodules of M. If4 ¥ B, thenf~
") yf(®B).

Proof: Suppose that 4y B and let X be a submodule of M such thatM = 1 (4) +X. Then N = 4 + f{X). But
Ay B thereforeN = B + f(X)and hence M = f/(B)+X. Thus f "'(4) 1 '(B).

Proposition (1.11): Let M = M, @® M; and let A and B be submodules of M, and M, respectively. Then 4y
M; and B y M, if and only if (4 ® B) y (M; ® M,).

Proof: (=) By prop. (1.7).

(<) Let P, M ——> M; and P, :M ——> M, be the projection homomorphisms on M;and M,
respectively .Since (4 @ B) y (M; ® M,), then A= P(ADPB) yP; (M;®M,) = Mjand B = P (A®PB)y
Py(M;® M) = M, by Prop. (1.9). Hence A y M; and By M, .

§2: Goldie lifting modules
In this section , we define a Goldie lifting modules with examples and basic properties.
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Definition (2.1)LetM be an R- module. We say that M is a Goldie lifting module (briefly G-lifting) if for
every proper submoduled of M, there exists a proper direct summand D of M such that 4 ¥ D.

Remark (2.2): Every lifting module is G-lifting.
Proof: Let M be a lifting module and let 4 be a proper submodule of M , there exists a direct summand
D of M such that D<A and%«%. Hence D<.. A in M. Since A#M, then D # M. By (1.2-2) ,Ay D. Thus M
isG-lifting.

The following example show that a G-lifting module need not be a lifting module.

Example (2.3):

Consider the Z-module M = Z;® Z, . The proper submodules of M are:
Az—{(l 0) (2 0) (3 0) (4 0) (5.0),(6.0).,(7,0),(0,0)}.
4,=1{(2.0).(4.0).(6.0).(0.0)}.
45=1(4,0),(0,0}.
4=40.D,0.00
As={(1,1),(2,0),(3.1),(4,0),(5.1),(6,0),(7.1),(0,0)}.
4,={(2,1),(4,0),(6,1),(0,0)}.

A= {(0,0)}.

Clearly that M= 4, D A,= A; D A,= A, ® As and the small submodules of M ared, and 4;.

It is enough to check that 44, Agand Ay satisfy the definition. For 44, the only submoduled of M satisfy 4,
+4 = M is A,. Since 4, is a direct summand of M , then A5y A, and A5y 4.

For Ag , since A;and A5 are satisfy M = Ag+ A; = As + As and both is a direct summand , then 45y 4, By
the same argument one can see that A9y 4,. Thus M is G-lifting.

Claim that M is not lifting. To see this , consider the submoduleds. The only direct summand of M
contained in 44 is {((_) , 0 )}. If M is lifting , then 4=D @ S, where D is a direct summand of M and S<M.
Hence 4,«<M which is a contradiction . Thus M is not lifting.

Examples (2.4):

1- Zas Z- module is G-lifting.

2- Z as Z- moduleis notG-lifting.To show that , consider the submoduled= 2Z of Z. If Z is G-lifting , then
there exists a proper direct summand D of Z such that 4 ¥y D. But Z is indecomposable , so D=0 and
hence 2Z«<Z , by (1.2) which is a contradiction.

3- Let Q be the set of the rational numbers. It is easy to see that O as Z- module is notG-lifting.

Recall that a non-zero R- module M is called a hollow module if every proper submodule of M is a small
submodule of M, see [6].

The following proposition gives a condition under which the lifting module and G-lifting module are
equivalent.
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Proposition (2.5):LetM be an indecomposable module. Then the following statements are equivalent.

1- M is lifting,.

2- Mis G-lifting.

3- Mis hollow.

Proof: (1) = (2) Remark (2.2).

(2)= (3) Suppose that M is G-lifting module and let 4 be a proper submodule of M. Since M is G-lifting ,
then there exists a proper direct summand D of M such that 4 ¥ D. But M is indecomposable , therefore
D=0, then AKM , by remark (1.2). Thus M is hollow.

(3)= (1) Clear.

Proposition (2.6)Let4 be a submodule of aG-lifting module M. If % is a direct summand of %, for
every direct summand D of M , then % is G-lifting.

Proof: Assume that M is G-lifting and let % be a proper submodule of %. Note that B#M , if B=M , then %
= % which is a contradiction. Since M is G-lifting , then there exists a proper direct summand D of M such

M ..A+D M
—,if——=—,then M
A A A

= A+D = B+D. But By D , therefore M=D which is a contradiction. To show%y %. LetT: M —)%

be the natural epimorphisim. Since By D , then T (B) y T (D), by Prop. (1.9). Hence %j/A:fD. Thus 2

A
is G-lifting.
Let M be an R-module and let 4 <M . Recall that 4 is fully invariant submodule if ' (4) <4 ,Vf€End(M) ,
see [7].

that By D. By our assumption ,'4%) is a direct summand of % . Note that % *

Proposition (2.7):LetM be a G-lifting module , then %g—lifting , for every fully invariant submodule4 of
M.

Proof:Let A be a fully invariant submodule of M and let % be a proper submodule of %. Clearly that Bis a
proper submodule of M. Since M isG-lifting , then there exists a proper direct summand D of M such that
ByD. But 4 is fully invariant , therefore % is a direct summand of %, by [8, Lemma 5-4]. It is easy to

see that A‘%D * %. Let T: M —)%be the natural epimorphisim. Since By D , then T (B) y 7T (D),
by Prop. (1.9).Hence %j/ %. Thus % is G-lifting.

Let M be an R- module. Recall that M is said to be Distributive module if AN(B+C) = (ANB)+HANC), for
all submodules 4,B,C of M, see [9].

Proposition (2.8) :Let M be distributive G-lifting R- module and let 4 be a submodule of M. Then %is G-
lifting.
Proof: Let % be a proper submodule of %. Since M is G-lifting and B is proper submodule of M , then

there exists a proper direct summand D of M such that By D .Let M =D @ D’, for some submoduleD’

of M. Then X = (ﬂ) n (D'+A) and (ﬂ) N (D’+A) _ (bnD)+@nA)+(anD')+4 _0+An(D+D)+A _ 4 ’
A A A A A A 2 a

e D+A. . M . B
because M is distributive. Hence %15 a proper direct summand of e One can easily show that e
22 Thus =G-lifting
Now , we give a various characterization of G-lifting module.

Proposition(2.9):Let M be an R- module. Then the following statements are equivalent.
1- Mis G-lifting.
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2- For every proper submoduled of M , there exists a proper direct summand D of M such that M= D @
D'and (A+D)ND'KD".

3- For every proper submoduled of M , there exists a proper direct summand D of M such that A+D = D
DS, SKM.

Proof: (1) = (2) Let A be a proper submodule of M. Since M is G-lifting , then there exists a proper direct

summand D of M such that Ay D. Let M = D@ D' ,D'SM. To show (A+D)ND'KD’ , let U be a

submodule of D' such that [(A+D )ND'] + U=D'. SoM = D+D'" =D + [(A4+D )nD'] + U . Now ,% =

DDLU iy (Gl );D' I+D . But [4+D );D']wis a submodule of% and %« % , therefore w«%,

by [3, Lemma 4.2 , P.56]. Hence M = D+U. Since DNU< DND'=0 ,thenDNU=0. Hence M =D ® U. So
U=D'.Thus (4+D )ND'KD".

(2) = (3) Let 4 be a proper submodule of M. By our assumption ,there exists a proper direct summand D
of M such that M=D @ D', D'<SM and (A+D)ND' KD'Now ,4+D = (A+D)NM = (A+D)N(D+D')=D @
[(4+D)ND'], where D is a direct summand of M and (4+D)ND'K D"

(3) = (1) Let 4 be a proper submodule of M. By our assumption ,there exists a properdirect summand D

of M such that A+D = D® S, SKM. Claim that %«% . To see this , let % < % such that % = % +Z

D b
then M = A+D+U = D+S§+U = D+U= U, hence %«% Thus M is G-lifting.

Proposition (2.10):LetMbe an R- module. Then M is G-lifting if and only if for each proper submodule4
of M , there exists a proper direct summand D of M and a submoduleB of M such that4A< B and D<.. B in
M.

Proof:Suppose that M is a G-lifting and let 4 be a proper submodule of M. Then there exists a proper
direct summand D of M such that D<..A4+D in M. LetB=A+D. Thus we get the result.

Conversely, let 4 be a proper submodule of M. By our assumption , there exists a proper direct summand
D of M and a submoduleB of M such that4<B and D<.. B in M. Since D< A+D< B and D<..B in M, then
D<..A+D in M. Thus M isG-lifting.

Let M be an R- module. Recall that M is called a supplemented module, if every submodule of M has a
supplement in M, see [6].

Proposition (2.11):LetMbe an amply supplemented module. Then the following statements are
equivalent:

1- M is G-lifting module.

2- For eachcoclosedsubmoduled of M , there exists a proper direct summand D of M such that 4y D.
Proof: (1) = (2) Clear.

(2) = (1) Let A be a proper submodule of M. Since M is amply supplemented , 4 has a
coclosuresubmodule say B , by Prop.(3.1.9). Since B is coclosedsubmodule , there exists a proper direct
summand D of M such that By D , by (2). Now since D <., B+D <., A+D in M , then D<.. A+Din M,

hence 4 y D. Thus M is G-lifting.

Note:
A direct sum of G-lifting modules may not be G-lifting. Now , we give sufficient conditions under which
the direct sum of G-lifting modules isG-lifting.

Proposition(2.12):Let M= M; ® M, be an R- module such that ann(M;)+ ann(M,)= R. If M;and M, are G-
lifting modules.Then M isG-lifting.

Proof:Let A be a proper submodule of M. By the same argument of the proof of [7 , prop. 4.2 , CH.1],
A=A, ® A4, where A; is a submodule of M;and A,is a submodule of M,. Consider the case when 4; and 4,
are proper submodules of M; and M, respectively. Since M; and M, are G-lifting , then there exists a
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proper direct summands D; of M; and D, of M, such that 4,y D, and 4,y D,. It is easy to show that D; ®
D; is a proper direct summand of M , then by prop. (1.11) , (4; @ 4,) y (D; ® D). Now , if A= M, , then
Ay#M,, there is a proper direct summand D;of Mysuch that 4,y D;. Hence (4; @ 4,) ¥y (M; @ D;) , where

(M; @ D:;) is a proper direct summand of M. By the same argument we can get the result when 4, = M..
Thus M is G-lifting.

Proposition (2.13):LetM=M,; ® M,be a duo module such that M; and M, are G-lifting. modules. Then M
isG-lifting.

Proof: Assume that M = M; ® M, is a duo module and let 4 be a proper submodule of M, then ,by our
assumption , A4 is fully invariant, hence ~A=(4NM,) ® (ANM>). Consider the case when (4NM;) and
(ANMs) are proper submodules of M; and M, respectively. Since M;and M, are G-lifting , then there exists
a proper direct summands D; of M; and D, of M, such that (ANM;) y D, and (ANM,) y D, ,then(ANM;) ®

(ANM>) y (D; @ D>) , by prop. (1.11) , where D; @ D; is a proper direct summand of M , Now if (ANM,;) =
M, , then (ANM,) #M,, there is a proper direct summand D;of M,such that (ANM,) y D;. Hence (ANM;) ©
(ANM>) ¥y (M; @ D;3) , where (M; @ Dj3) is a proper direct summand of M. Similarly , we can get the result

when (ANM,) = M,. Thus M is G-lifting.
By the same argument one can prove the following proposition.

Proposition (2.14):LetM= M, ® M, be a distributive module such that M; and M, are G-lifting modules.
Then M isG-lifting.
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