

GIF: 0.851

On Goldie lifting modules

Enas M. Kamil*, Bahar H. AL- Bahraany

Department of Mathematics , College of Science , Baghdad University , Baghdad , Iraq.

Abstract

Let R be an associative ring with identity and let M be a unital left R- module. We introduced the following concept .An R- module M is called a Goldie lifting module (briefly G -lifting) if for every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $D \leq_{ce} A+D$ in *M*. The main purpose of this work is to define goldie lifting modules and we give examples and basic properties of G -lifting modules. **Keywords:** Goldie lifting modules.

> **حولمقاسات الرفع من النمط غولدي ایناس مصطفى كامل* ، بهار حمد البحراني** قسم الریاضیات ، كلیة العلوم ،جامعة بغداد، بغداد ، العراق.

الخلاصة: لتكن R حلقة تجمیعیة ذات عنصر محاید و M مقاس احادي ایسر معرف علیھا. قدمنا مفھوم مقاس الرفع من النمط _ G یدعى المقاس $_{\rm M}$ مقاس رفع من النمط _ Gاذا كان لكل مقاس جزئي فعلي A من $_{\rm H}$ یوجد مركبة مجموع مباشر D من M بحیث ان *D+A ce* ≤*D* في M . الغرض الرئیسي من ھذا البحث ھو تعریف مقاس الرفع من النمط $\,G\,$ و اعطاء امثله والخواص الاساسیه لمهذا النوع من المقاسات.

Introduction:

Recall that a submodule*A* of an *R*- module *M* is called a small submodule of *M* (denoted by *A*≪*M*) , if for any submodule *B* of *M* such that $M=A+B$, then $M=B$, see [1-3]. Let *M* be an *R*- module and let *A*, *B* be submodules of *M* such that *A*≤*B*≤*M.* Recall that *A* is called a coessentialsubmodule of *B* in *M* (briefly $A \leq_{ce} B$ in *M*) if $\frac{B}{A} \ll \frac{M}{A}$ $\frac{m}{A}$, see [1].

Let *M* be an *R*- module. Recall that a submodule*B* of *M* is called a coclosedsubmodule of *M* (notation $B \leq_{cc} M$, if $\frac{B}{A} \ll \frac{M}{A}$ $\frac{M}{A}$ implies that $A=B$, $\forall A \leq B$, see [1].

Following [4], the following is a relation on a set of submodules of *M.A* β *B* if $A \cap B \leq_{\alpha} A$ and $A \cap B \leq_{\alpha} B$. An R - module M is called an G -extending module if for every submodule A of M , there exists a direct summand *D* of *M* such that $(A \beta D)$, see [4].

An *R*- module *M* is called a lifting module if for every submodule*A* of *M* , there exists a submodule*D* of *A* such that *M=DD'* and *A*∩*D'*≪*D'*, see [5].

These observations lead us to introduce the following relations on the set of submodules of *M*. $A \gamma B$ if $B \leq_{ce} A+B$ in *M*.

_________________________ *Email: nosomus90@yahoo.com

We define *M* to be Goldie lifting module (briefly $\mathcal{G}\text{-lifting}$) if for every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $A \gamma D$.

This paper consists of two sections

In section one, we introduced the concept of γ with some examples and basic properties.

In section two , we define a goldie lifting modules also we give some characterization of goldie lifting modules and investigate various conditions for a direct sum of G -lifting modules to be G -lifting.

§1: Basic properties of γ

In this section, we define a relation γ on the set of submodules of a module *M* and we will illustrate it by some examples. We also give some basic properties . We start by a definition.

Definition (1.1):Let*M* be an *R*- module and let γ be a relation on the set of submodules of *M* defined as follows: $A\gamma B$ if $B \leq_{ce} A+B$ in *M*.

Remarks and Examples (1.2)

- 1- In *Z* as *Z* module. Let $A=6Z$ and $B=4Z$. One can easily show that $B \leq_{ce} A+B=2Z$ in *Z*.
- 2- Let *A* and *B* be submodules of an *R* module *M* such that $B \leq A$, then $A \gamma B$ if and only if $B \leq_{ce} A$ in *M*. For example Z_8 as Z - module. It is easy to see that $\{0, 2, 4, 6\}$ γ $\{0, 4\}$, where $\{0, 4\}$ \leq_{ce} $\{0, 2, 4, 4\}$ 6 } in Z_8 .
- 3- Let *A* be a submodule of an *R* module *M*. One can easily show that $A \gamma$ 0 if and only if $A \ll M$.
- 4- Let *M* be an *R* module . Clearly that $A \gamma M$, for every submodule A of M.

Proposition (1.3): γ is reflexive and transitive relation.

Proof:Clearly that γ is reflexive. To show γ is transitive, let *A*, *B* and *C* be submodules of a module *M* such that $A \gamma B$ and $B \gamma C$, then $\frac{A+B}{B} \ll \frac{M}{B}$ and $\frac{B+C}{C} \ll \frac{M}{C}$ $\frac{M}{c}$. We have to show that *A* γ *C*i.e, $\frac{A+C}{c} \ll \frac{M}{c}$. Let *U* be submodule of *M* containing *C* such that $\frac{M}{C} = \frac{A+C}{C}$ $\frac{+c}{c}$ + $\frac{u}{c}$, then $M=A+B+C+U$ and hence $\frac{M}{B} = \frac{A+B}{B}$ $\frac{+B}{B} + \frac{B+C}{B} +$ $U + B$ $\frac{+B}{B}$. But $\frac{A+B}{B} \ll \frac{M}{B}$ $\frac{M}{B}$, therefore $\frac{M}{B} = \frac{B+C}{B}$ $\frac{+c}{B} + \frac{U+B}{B}$, hence $M = B+C+U$. Now $\frac{M}{C} = \frac{U}{C}$ $\frac{U}{C} + \frac{B+C}{C}$ $\frac{+c}{c}$. Since $\frac{B+C}{c} \ll \frac{M}{c}$, then \boldsymbol{M} $\frac{M}{C} = \frac{U}{C}$ $\frac{U}{C}$ and hence $M = U$. Thus $\frac{A+C}{C} \ll \frac{M}{C}$ $\frac{m}{C}$

Note: In general , γ is not symmetric. For example , consider *Z* as *Z*- module. Clearly $2Z \gamma Z$. But $2Z$ is not coessential submodule of *Z* in *Z*. Thus *Z* is not related with $2Z$ by γ .

The following proposition gives a characterization of γ .

Proposition (1.4): Let *A* and *B* be submodules of an *R*- module *M*. Then $A \gamma B$ if and only if $M = A + X$ implies $M = B + X$, for each submodule X of M.

Proof: (\Rightarrow) Suppose that *A* γ *B* and let *X* be a submodule of *M* such that *M*= *A*+*X*, then $\frac{M}{B} = \frac{A+B}{B}$ $\frac{+B}{B} + \frac{X+B}{B}$. But *A* γB , therefore $\frac{A+B}{B} \ll \frac{M}{B}$ $\frac{M}{B}$ and hence $\frac{M}{B} = \frac{X+B}{B}$ $\frac{4}{B}$. Thus $M=B+X$. (\Leftarrow) To show $A \gamma B$. Let $\frac{M-A+B}{B-B}$ $\frac{+B}{B} + \frac{U}{B}$ $\frac{U}{B}$, where $\frac{U}{B} \leq \frac{M}{B}$ $\frac{M}{B}$. Then $M = A + B + U$. By our assumption, we get $M =$ $B+U$. But $B \leq U$, therefore $\overline{M} = U$. Thus $\overline{A} \gamma \overline{B}$.

Proposition (1.5):Let*M* be an *R*- module and let *A* , *B* and *C*submodules of *M*. 1- If $A \gamma B$ and $B \ll M$, then $A \ll M$.

2- If $C \ll M$ and $A \leq B + C$. Then $A \gamma B$.

Proof:

- 1- Let *U* be a submodule of *M* such that $M = A + U = A + B + U = B + U$, by prop. (1.4). But $B \ll M$, therefore $M = U$. Thus $A \ll M$.
- 2- To show $A \gamma B$. Let $M = A + X$, where $X \le M$, then $M = A + B + C + X = B + C + X$, since $A \le B + C$. But *C*≪*M*, therefore $M = B+X$. Thus *A* γB , by prop.(1.4).

Proposition (1.6):Let*M* be an *R*- module and let *A*, $B \le M$, then $A \gamma B$ if and only if $\frac{A}{L} \gamma \frac{B}{L}$ $\frac{b}{L}$, for every submodule *L* contained in *A* and *B*.

Proof:Let *A* γ *B* and let *L*≤*M* contained in *A* and *B*, then *B*≤*ce A*+*B* in *M*. By [1], $\frac{B}{l}$ $rac{B}{L} \leq c e^{\frac{A+B}{L}}$ $\frac{+B}{L} = \frac{A}{L}$ $\frac{A}{L} + \frac{B}{L}$ in $\frac{M}{L}$. Thus $\frac{A}{l}\gamma\frac{B}{l}$.

For the converse, suppose that $\frac{A}{L}\gamma \frac{B}{L}$ $\frac{B}{L}$ for every submodule *L* contained in *A* and *B*, then $\frac{B}{L} \leq_{ce} \frac{A}{L}$ $\frac{A}{L} + \frac{B}{L} = \frac{A+B}{L}$ L in $\frac{M}{L}$. By [1], we get $B \leq_{ce} A+B$ in *M*. Thus $A \gamma B$

Proposition (1.7): Let A₁, A₂, B₁ and B₂ be submodules of an R- module M such that $A_1 \gamma B_1$ and $A_2 \gamma B_2$, then $(A_1 + A_2) \gamma (B_1 + B_2)$.

Proof: Assume that $A_1 \gamma B_1$ and $A_2 \gamma B_2$. Then $B_1 \le_{ce} A_1 + B_1$ in M and $B_2 \le_{ce} A_2 + B_2$ in M. So $B_1 + B_2 \le_{ce}$ $A_1 + A_2 + B_1 + B_2$ in *M*, by [1]. Thus $(A_1 + A_2) \gamma (B_1 + B_2)$.

Corollary (1.8):Let*M* be an *R*- module . If $A \gamma B$ and *C* is a submodule of *M*, then $(A+C)\gamma (B+C)$. The converse is true when *C*≪*M*

Proof: Assume that $A \gamma B$. Since $C \gamma C$, then by [1], $(A+C) \gamma (B+C)$. Conversely, assume that $(A+C) \gamma$ $(B+C)$, then $B+C\leq_{ce}A+B+C$ in *M*. Since $C\ll M$, then $B\leq_{ce}A+B$ in *M*, [1]. Thus $A\gamma B$.

Proposition (1.9):Let $f : M \longrightarrow N$ be an *R*-epimorphism and let *A*, *B*submodules of *M*. If $A \gamma B$, then f (A) $\gamma f(B)$.

Proof: Assume that $A \gamma B$, then $B \leq_{ce} A + B$ in *M*. Hence $f(B) \leq_{ce} f(A+B) = f(A)+f(B)$ in *N*, by [1]. Thus $f(A) \gamma f(B)$.

Proposition (1.10):Let $f : M \longrightarrow N$ be an *R*-epimorphism and let *A*, *B*submodules of *M*. If *A* γB , then *f* \cdot $^{1}(A)\gamma f^{-1}(B).$

Proof: Suppose that $A \gamma B$ and let *X* be a submodule of *M* such that $M = f^1(A) + X$. Then $N = A + f(X)$. But *A* γ *B* , therefore $N = B + f(X)$ and hence $M = f^{-1}(B) + X$. Thus $f^{-1}(A) \gamma f^{-1}(B)$.

Proposition (1.11): Let $M = M_I \oplus M_2$ and let *A* and *B* be submodules of M_I and M_2 respectively. Then $A \gamma$ *M*₁ and *B* γ *M*₂ if and only if $(A \oplus B) \gamma$ $(M_1 \oplus M_2)$. **Proof:** (\Rightarrow) By prop. (1.7). (\Leftarrow) Let $P_1 : M \longrightarrow M_1$ and $P_2 : M \longrightarrow M_2$ be the projection homomorphisms on *M*₁and *M*₂ respectively Since $(A \oplus B) \gamma(M_1 \oplus M_2)$, then $A = P_1(A \oplus B) \gamma P_1(M_1 \oplus M_2) = M_1$ and $B = P_2(A \oplus B) \gamma$ $P_2(M_1 \oplus M_2) = M_2$, by Prop. (1.9). Hence *A* γM_1 and *B* γM_2 .

§2: Goldie lifting modules

In this section , we define a Goldie lifting modules with examples and basic properties.

Definition (2.1)Let*M* be an *R*- module. We say that *M* is a Goldie lifting module (briefly G -lifting) if for every proper submodule*A* of *M*, there exists a proper direct summand *D* of *M* such that $A \gamma D$.

Remark (2.2): Every lifting module is G-lifting.

Proof: Let *M* be a lifting module and let *A* be a proper submodule of *M* , there exists a direct summand *D* of *M* such that *D*≤*A* and $\frac{A}{D}$ ≪ $\frac{M}{D}$ $\frac{M}{D}$. Hence $D \leq_{ce} A$ in *M*. Since $A \neq M$, then $D \neq M$. By (1.2-2), $A \gamma D$. Thus *M* isG -lifting.

The following example show that a G -lifting module need not be a lifting module.

Example (2.3):

Consider the *Z*-module $M = Z_8 \oplus Z_2$. The proper submodules of *M* are: $A_1 = \{(\overline{1}, \overline{0}), (\overline{2}, \overline{0}), (\overline{3}, \overline{0}), (\overline{4}, \overline{0}), (\overline{5}, \overline{0}), (\overline{6}, \overline{0}), (\overline{7}, \overline{0}), (\overline{0}, \overline{0})\}.$ $A_2 = \{(\overline{2}, \overline{0}), (\overline{4}, \overline{0}), (\overline{6}, \overline{0}), (\overline{0}, \overline{0})\}.$ $A_3 = \{(\overline{4}, \overline{0}), (\overline{0}, \overline{0})\}.$ $A_4 = \{(\overline{0}, \overline{1}), (\overline{0}, \overline{0})\}.$ $A_5 = \{(\overline{1},\overline{1}), (\overline{2},\overline{0}), (\overline{3},\overline{1}), (\overline{4},\overline{0}), (\overline{5},\overline{1}), (\overline{6},\overline{0}), (\overline{7},\overline{1}), (\overline{0},\overline{0})\}.$ $A_6 = \{(\overline{2}, \overline{1}), (\overline{4}, \overline{0}), (\overline{6}, \overline{1}), (\overline{0}, \overline{0})\}.$ $A_7 = \{(\overline{4}, \overline{1}), (\overline{0}, \overline{0})\}.$ $A_8 = \{(\overline{2},\overline{0}), (\overline{4},\overline{0}), (\overline{6},\overline{0}), (\overline{2},\overline{1}), (\overline{4},\overline{1}), (\overline{6},\overline{1}), (\overline{0},\overline{1}), (\overline{0},\overline{0})\}.$ $A_9 = \{ (\overline{4}, \overline{0}), (\overline{4}, \overline{1}), (\overline{0}, \overline{1}), (\overline{0}, \overline{0}) \}.$ $A_{10} = \{(\overline{0}, \overline{0})\}.$ Clearly that $M = A_1 \oplus A_4 = A_1 \oplus A_7 = A_4 \oplus A_5$ and the small submodules of *M* are *A*₂ and *A*₃.

It is enough to check that A_6 , A_8 and A_9 satisfy the definition. For A_6 , the only submodule *A* of *M* satisfy A_6 $+A = M$ is A_I . Since A_I is a direct summand of M, then $A_6 \gamma A_4$ and $A_6 \gamma A_7$.

For A_8 , since A_1 and A_5 are satisfy $M = A_8 + A_1 = A_8 + A_5$ and both is a direct summand, then $A_8 \gamma A_4$. By the same argument one can see that $A_9 \gamma A_4$. Thus *M* is *G*-lifting.

Claim that *M* is not lifting. To see this, consider the submodule A_6 . The only direct summand of *M* contained in A_6 is $\{(0, 0)\}$. If *M* is lifting, then $A = D \oplus S$, where *D* is a direct summand of *M* and *S≪M*. Hence $A_6 \ll M$ which is a contradiction *.*Thus *M* is not lifting.

Examples (2.4):

- 1- Z_4 as Z module is G -lifting.
- 2- *Z* as *Z* moduleis not *G*-lifting. To show that, consider the submodule $A = 2Z$ of *Z*. If *Z* is *G*-lifting, then there exists a proper direct summand *D* of *Z* such that $A \gamma D$. But *Z* is indecomposable, so $D=0$ and hence *2Z*≪*Z* , by (1.2) which is a contradiction.
- 3- Let *Q* be the set of the rational numbers. It is easy to see that *Q* as *Z* module is not *G*-lifting.

Recall that a non-zero *R*- module *M* is called a hollow module if every proper submodule of *M* is a small submodule of *M*, see [6].

The following proposition gives a condition under which the lifting module and $\mathcal{G}\text{-llting}$ module are equivalent.

Proposition (2.5):Let*M* be an indecomposable module. Then the following statements are equivalent.

1- *M* is lifting.

2- M is G -lifting.

3- *M* is hollow.

Proof: (1) \Rightarrow (2) Remark (2.2).

 $(2) \implies$ (3) Suppose that *M* is *G*-lifting module and let *A* be a proper submodule of *M*. Since *M* is *G*-lifting , then there exists a proper direct summand *D* of *M* such that $A \gamma D$. But *M* is indecomposable, therefore *D*=0, then *A*≪*M*, by remark (1.2). Thus *M* is hollow.

 $(3) \Rightarrow (1)$ Clear.

Proposition (2.6)LetA be a submodule of aG-lifting module M. If $\frac{A+D}{A}$ is a direct summand of $\frac{M}{A}$, for every direct summand *D* of *M*, then $\frac{M}{A}$ is *G*-lifting.

Proof: Assume that *M* is *G*-lifting and let $\frac{B}{A}$ be a proper submodule of $\frac{M}{A}$. Note that $B \neq M$, if $B=M$, then $\frac{B}{A}$ $=\frac{M}{4}$ which is a contradiction. Since *M* is *G*-lifting, then there exists a proper direct summand *D* of *M* such A then is a contradiction: since it is generally, then there exists a proper ancer satisfied that $B \gamma D$. By our assumption $\frac{A+D}{A}$ is a direct summand of $\frac{M}{A}$. Note that $\frac{A+D}{A} \neq \frac{M}{A}$ $\frac{M}{A}$, if $\frac{A+D}{A} = \frac{M}{A}$ $\frac{a}{A}$, then M $A + D = B + D$. But $B \gamma D$, therefore $M = D$ which is a contradiction. To show $\frac{B}{A} \gamma \frac{A + D}{A}$ $\frac{+D}{A}$. Let $\pi : M \longrightarrow \frac{M}{A}$ \overline{A} be the natural epimorphisim. Since $B \gamma D$, then π (*B)* $\gamma \pi$ (*D)*, by Prop. (1.9)*.* Hence $\frac{B}{A} \gamma \frac{A+D}{A}$ $\frac{+D}{A}$. Thus $\frac{M}{A}$ is G -lifting.

Let *M* be an *R*-module and let $A \leq M$. Recall that *A* is fully invariant submodule if $f(A) \leq A$, $\forall f \in End(M)$, see [7].

Proposition (2.7):Let*M* be a *G*-lifting module, then $\frac{M}{A}G$ -lifting, for every fully invariant submodule*A* of *M*.

Proof: Let *A* be a fully invariant submodule of *M* and let $\frac{B}{A}$ be a proper submodule of $\frac{M}{A}$. Clearly that *B* is a proper submodule of *M*. Since *M* is G-lifting, then there exists a proper direct summand *D* of *M* such that *B* γ *D*. But *A* is fully invariant, therefore $\frac{A+D}{A}$ is a direct summand of $\frac{M}{A}$, by [8, Lemma 5-4]. It is easy to see that $\frac{A+D}{A} \neq \frac{M}{A}$ $\frac{M}{A}$. Let $\pi : M \longrightarrow \frac{M}{A}$ be the natural epimorphisim. Since $B \gamma D$, then $\pi (B) \gamma \pi (D)$, by Prop. (1.9) *.* Hence $\frac{B}{4}$ $\frac{B}{A}\gamma \frac{A+D}{A}$ $\frac{+D}{A}$. Thus $\frac{M}{A}$ is *G*-lifting.

Let *M* be an *R*- module. Recall that *M* is said to be Distributive module if $A \cap (B+C) = (A \cap B)+(A \cap C)$, for all submodules *A,B,C* of *M* , see [9].

Proposition (2.8) :Let *M* be distributive *G*-lifting *R*- module and let *A* be a submodule of *M*. Then $\frac{M}{A}$ is *G*lifting.

Proof: Let $\frac{B}{A}$ be a proper submodule of $\frac{M}{A}$. Since *M* is *G*-lifting and *B* is proper submodule of *M*, then there exists a proper direct summand *D* of *M* such that $B \gamma D$. Let $M = D \oplus D'$, for some submodule *D'* of *M*. Then $\frac{M}{A} = \left(\frac{A+D}{A}\right)$ $\frac{+D}{A}$) + ($\frac{D'+A}{A}$ $\frac{A}{A}$) and $\left(\frac{A+D}{A}\right)$ $\frac{+D}{A}$) ∩ $\left(\frac{D'+A}{A}\right)$ $\binom{A+A}{A} = \frac{(D \cap D') + (D \cap A) + (A \cap D') + A}{A}$ $\frac{(A \cap D') + A}{A} = \frac{0 + A \cap (D + D') + A}{A}$ $\frac{D+D')+A}{A} = \frac{A}{A}$ $\frac{A}{A}$, because *M* is distributive. Hence $\frac{D+A}{A}$ is a proper direct summand of $\frac{M}{A}$. One can easily show that $\frac{B}{A}\gamma$ $A+D$ $\frac{+D}{A}$. Thus $\frac{M}{A}$ G-lifting

Now, we give a various characterization of G -lifting module.

Proposition(2.9):Let *M* be an *R*- module. Then the following statements are equivalent. 1- M is G -lifting.

- 2- For every proper submodule*A* of *M*, there exists a proper direct summand *D* of *M* such that $M = D \oplus D$ *D'* and (*A*+*D*)∩*D'*≪*D'*.
- 3- For every proper submodule*A* of *M* , there exists a proper direct summand *D* of *M* such that *A*+*D* = *D S* , *S*≪*M*.

Proof: (1) \Rightarrow (2) Let *A* be a proper submodule of *M*. Since *M* is *G*-lifting, then there exists a proper direct summand *D* of *M* such that $A \gamma D$. Let $M = D \oplus D'$, $D' \leq M$. To show $(A+D) \cap D' \ll D'$, let *U* be a submodule of *D'* such that $[(A+D)\cap D'] + U=D'$. So $M = D+D' = D + [(A+D)\cap D'] + U$. Now $\frac{M}{D} =$ $D+U$ $[(A+D)\cap D'] + D$ $D+U$ $[(A+D)\cap D'] + D$ is a submodule of $A+D$ and $A+D \times M$ therefore $[(A+D)\cap D'] + D \times D$ $\frac{+U}{D} + \frac{[(A+D)\cap D'}{D} + D}{D}$. But $\frac{[(A+D)\cap D'] + D}{D}$ is a submodule of $\frac{A+D}{D}$ and $\frac{A+D}{D} \ll \frac{M}{D}$, therefore $\frac{[(A+D)\cap D'] + D}{D} \ll \frac{M}{D}$ $\frac{m}{D}$, by [3, Lemma 4.2, P.56]. Hence $M = D + U$. Since $D \cap U \leq D \cap D' = 0$, then $D \cap U = 0$. Hence $M = D \oplus U$. So *U=D'* .Thus (*A+D*)∩*D'*≪*D'.*

 $(2) \implies (3)$ Let *A* be a proper submodule of *M*. By our assumption , there exists a proper direct summand *D* of M such that $M = D \oplus D'$, $D' \leq M$ and $(A+D) \cap D' \ll D'$. Now $A+D = (A+D) \cap M = (A+D) \cap (D+D') = D \oplus D'$ [(*A*+*D*)∩*D'*] , where *D* is a direct summand of *M* and (*A*+*D*)∩*D'*≪ *D'*.

(3) \Rightarrow (1) Let *A* be a proper submodule of *M*. By our assumption , there exists a properdirect summand *D* of *M* such that $A+D = D \oplus S$, $S \ll M$. Claim that $\frac{A+D}{D} \ll \frac{M}{D}$ $\frac{M}{D}$. To see this, let $\frac{U}{D} \leq \frac{M}{D}$ $\frac{M}{D}$ such that $\frac{M}{D} = \frac{A+D}{D}$ $\frac{+D}{D} + \frac{U}{D}$, then $M = A + D + U = D + S + U = D + U = U$, hence $\frac{A + D}{D} \ll \frac{M}{D}$ $\frac{M}{D}$. Thus *M* is *G*-lifting.

Proposition (2.10):Let*M*be an *R*- module. Then *M* is *G*-lifting if and only if for each proper submodule*A* of *M*, there exists a proper direct summand *D* of *M* and a submodule *B* of *M* such that $A \leq B$ and $D \leq_{ce} B$ in *M*.

Proof:Suppose that *M* is a G-lifting and let *A* be a proper submodule of *M*. Then there exists a proper direct summand *D* of *M* such that $D \leq_{ce} A + D$ in *M*. Let $B = A + D$. Thus we get the result.

Conversely, let *A* be a proper submodule of *M*. By our assumption , there exists a proper direct summand *D* of *M* and a submodule *B* of *M* such that $A \leq B$ and $D \leq_{ce} B$ in *M*. Since $D \leq A + D \leq B$ and $D \leq_{ce} B$ in *M*, then $D \leq_{c} A + D$ in *M*. Thus *M* is G-lifting.

Let *M* be an *R*- module. Recall that *M* is called a supplemented module, if every submodule of *M* has a supplement in *M*, see [6].

Proposition (2.11):Let*M*be an amply supplemented module. Then the following statements are equivalent:

1- M is G -lifting module.

2- For eachcoclosedsubmodule*A* of *M*, there exists a proper direct summand *D* of *M* such that $A \gamma D$. **Proof:** (1) \Rightarrow (2) Clear.

 $(2) \Rightarrow (1)$ Let *A* be a proper submodule of *M*. Since *M* is amply supplemented , *A* has a coclosuresubmodule say B , by Prop.(3.1.9). Since B is coclosed submodule, there exists a proper direct summand *D* of *M* such that $B \gamma D$, by (2). Now since $D \leq_{ce} B+D \leq_{ce} A+D$ in *M*, then $D \leq_{ce} A+D$ in *M*, hence $A \gamma D$. Thus *M* is *G*-lifting.

Note:

A direct sum of G -lifting modules may not be G -lifting. Now, we give sufficient conditions under which the direct sum of G -lifting modules is G -lifting.

Proposition(2.12):Let $M = M_1 \oplus M_2$ be an R- module such that $ann(M_1) + ann(M_2) = R$. If M_1 and M_2 are G lifting modules. Then M is G -lifting.

Proof:Let *A* be a proper submodule of *M*. By the same argument of the proof of [7, prop. 4.2, CH.1], $A = A_1 \oplus A_2$, where A_1 is a submodule of M_1 and A_2 is a submodule of M_2 . Consider the case when A_1 and A_2 are proper submodules of M_l and M_l respectively. Since M_l and M_l are G -lifting , then there exists a proper direct summands D_1 of M_1 and D_2 of M_2 such that $A_1 \gamma D_1$ and $A_2 \gamma D_2$. It is easy to show that $D_1 \oplus D_2$ *D*₂ is a proper direct summand of *M*, then by prop. (1.11), $(A_1 \oplus A_2) \gamma (D_1 \oplus D_2)$. Now, if $A_1 = M_1$, then $A_2 \neq M_2$, there is a proper direct summand D₃of M₂such that $A_2 \gamma D_3$. Hence $(A_1 \oplus A_2) \gamma (M_1 \oplus D_3)$, where $(M_1 \oplus D_3)$ is a proper direct summand of *M*. By the same argument we can get the result when $A_2 = M_2$. Thus M is G -lifting.

Proposition (2.13):Let $M = M$ ^{*i*} $\oplus M$ ₂be a duo module such that M ^{*i*} and M ₂ are G -lifting. modules. Then M isG -lifting.

Proof: Assume that $M = M_I \oplus M_2$ is a duo module and let *A* be a proper submodule of *M*, then ,by our assumption , *A* is fully invariant, hence $A=(A \cap M) \oplus (A \cap M)$. Consider the case when $(A \cap M)$ and $(A \cap M_2)$ are proper submodules of M_1 and M_2 respectively. Since M_1 and M_2 are G -lifting, then there exists a proper direct summands D_1 of M_1 and D_2 of M_2 such that $(A \cap M_1) \gamma D_1$ and $(A \cap M_2) \gamma D_2$, then $(A \cap M_1) \oplus$ $(A \cap M_2) \gamma(D_1 \oplus D_2)$, by prop. (1.11), where $D_1 \oplus D_2$ is a proper direct summand of *M*, Now if $(A \cap M_1)$ = M_1 , then $(A \cap M_2) \neq M_2$, there is a proper direct summand D_3 of M_2 such that $(A \cap M_2) \gamma D_3$. Hence $(A \cap M_1) \oplus$ $(A \cap M_2) \gamma(M_1 \oplus D_3)$, where $(M_1 \oplus D_3)$ is a proper direct summand of *M*. Similarly, we can get the result when $(A \cap M_2) = M_2$. Thus *M* is *G*-lifting.

By the same argument one can prove the following proposition.

Proposition (2.14):Let $M = M_I \oplus M_2$ be a distributive module such that M_I and M_2 are G -lifting modules. Then M is G -lifting.

References:

- **1.** Ganesan,L. and Vanaja, N.**2002**, Modules for which every submodule has a unique coclosuure, *Comm. Algebra,* 30 (5), 2355-2377.
- **2.** Inoue, T.**1983**, Sum of hollow modules, *Osaka J. Math.* 20, 331-336.
- **3.** Mohamed ,S.H., and Muller, B. J.**1990**, *continuous and discrete Modules*, London Math. Soc. LNS 147 Cambridge University Press, Cambridge.
- **4.** Akalan, E., Birkenmeier, G. F. and Tercan, A.**2009**, Goldie Extending Modules, *Comm. Algebra* 37: 2, 663-683.
- **5.** Keskin,D.**2000**, On lifting modules, *Comm. Algebra*, 28 (7), 3427-3440.
- **6.** Wisbauer, R.**1991***, Foundation of module and ring theory*, Gordon and Breach, Philadelphia.
- **7.** Abass, M. S.**1991**, On fully stable modules, Ph.D. Thesis, University of Baghdad, College of Science , Department of Mathematics, Iraq, Baghdad.
- **8.** Orhan, N., Tutuncu, D. K. and Tribak, R.**2007**, On Hollow-lifting Modules*, Taiwanese J. Math,* 11(2), 545-568.
- **9.** Erdogdu, V. **1987**, Distributive Modules, *Can. Math. Bull* 30, (248-254).

Kamil& Al-Bahraany Iraqi Journal of Science , 2015, Vol 56, No.2A, pp:1140-1146