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On Goldie lifting modules 
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Abstract 
Let R be an associative ring with identity and let M be a unital left R- module. We 

introduced the following concept .An R- module M is called  a Goldie lifting module 
(briefly ࣡-lifting) if for every proper submoduleA of M, there exists a proper direct 
summand D of M such that D ≤ce A+D in M. The main purpose of this work is to define 
goldie lifting modules and we give examples and basic properties of ࣡-lifting modules. 
Keywords: Goldie lifting modules. 

من النمط غولدي الرفع مقاساتحول  
بهار حمد البحراني، * ایناس مصطفى كامل  

.العراق، بغداد ، جامعة بغداد،العلوم  كلیة، قسم الریاضیات   

  

  :الخلاصة
قدمنا مفھوم مقاس الرفع من . مقاس احادي ایسر معرف علیھا Mحلقة تجمیعیة ذات عنصر محاید و  Rلتكن 

یوجد مركبة   Mمن  Aاذا كان لكل مقاس جزئي فعلي ࣡_ مقاس رفع من النمط  Mیدعى المقاس  ࣡_ النمط 
الغرض الرئیسي من ھذا البحث ھو تعریف مقاس .   Mفي  D ≤ce A+Dبحیث ان   Mمن  Dمجموع مباشر 
  .و اعطاء امثلھ والخواص الاساسیھ لھذا النوع من المقاسات ࣡_  الرفع من النمط 

 
Introduction: 

Recall that a submoduleA of an R- module M is called a small submodule of M (denoted by A≪M) , if 
for any submoduleB of M such that M=A+B, then M=B , see  [1-3].Let M be an R- module and let A, B be 
submodules of M such that A≤B≤M. Recall that A is called a coessentialsubmodule of B in M (briefly 
A≤ce B in M) if  


≪ெ


 , see [1]. 

Let M be an R- module. Recall that a submoduleB of M is called a coclosedsubmodule of M (notation 
B≤ccM), if  


≪ெ


 implies that A=B ,A≤B, see [1]. 

Following [4], the following is a relation on a set of submodules of M.A   B if A∩B≤eA and A∩B≤eB. 
An R- module M is called an ࣡-extending module if for every submoduleA of M , there exists a direct 
summand D of M such that (A  D) , see [4]. 
 An R- module M is called a lifting module if for every submoduleA of M , there exists a submoduleD of A 
such that M=DD' and A∩D'≪D', see [5]. 
These observations lead us to introduce the following relations on the set of submodules of M. 
A B if B ≤ce A+B in M.  
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We define M to be Goldie lifting module (briefly ࣡-lifting) if for every proper submoduleA of M, there 
exists a proper direct summand D of M such that A  D. 
This paper consists of two sections 
In section one , we introduced the concept of   with some examples and basic properties. 
In section two , we define a goldie lifting modules also we give some characterization of goldie lifting 
modules and investigate various conditions for a direct sum of ࣡-lifting modules to be ࣡-lifting. 
 
§1: Basic properties of γ 

In this section , we define a relation   on the set of submodules of a module M and we will illustrate it 
by some examples. We also give some basic properties . We start by a definition. 
 
Definition (1.1):LetM be an R- module and let  be a relation on the set of submodules of M defined as 
follows: AγB if B ≤ce A+B in M. 
 
Remarks and Examples (1.2) 
1-  In Z as Z- module. Let A=6Z and B=4Z. One can easily show that B ≤ce A+B=2Z in Z. 
2- Let A and B be submodules of an R- module M such that B≤A , then A  B  if and only if B≤ceA in M. 

For example Z8as  Z- module.  It is easy to  see that{ 0 , 2 , 4 , 6} { 0 , 4 } , where { 0 , 4 }≤ce { 0 , 2 , 4 ,

6 } in Z8. 
3- Let A be a submodule of an R- module M. One can easily show that A  0 if and only if A≪M. 
4- Let M be an R- module . Clearly that A  M , for every submoduleA of M. 
 
Proposition (1.3):  is reflexive and transitive relation. 
Proof:Clearly that  is reflexive.To show  is transitive , let A , B and C be submodules of a module M 

such that A B and B  C, thenା


 ≪ ெ


andା


≪ெ


. We have to show that A  Ci.e,  ା


≪ ெ


. Let U be 

submodule of M containing C  such that  ெ


= ା


 + 


   , then M=A+B+C+U and hence ெ


 =ା


 +  ା


 + 
ା


 . But ା


 ≪ெ


 , therefore  ெ


=  ା


+ ା


 , hence M = B+C+U. Now ெ


 =


 +ା


 .Since ା


≪ ெ


, then 

ெ


=


 and hence M =U.Thusା


 ≪ெ


. 
 
Note: In general , is not symmetric. For example , consider Z as Z- module. Clearly 2Z Z. But 2Z is not 
coessential submodule of Z in Z. Thus Z is not related with2Zby  . 
 
    The following proposition gives a characterization of  . 
 
Proposition (1.4): Let A and B be submodules of an R- module M .Then A  B if and only ifM= A+X 
implies M =B+X , for each submoduleX of M. 
Proof: ( ) Suppose  that A B and let X be a submodule of M such  thatM= A+X , then  ெ


= ା


 + ା


. 

But A B , therefore ା


≪ெ


 and henceெ


= ା


. Thus  M=B+X .  

( ) To show A  B.Letெ


=ା


 +


 , where 


≤ ெ


. Then M= A+B+U. By our assumption , we get M = 
B+U. But ܤ ≤ U, therefore M = U. Thus A B. 
 
Proposition (1.5):LetM be an R- module and let A , B and Csubmodules of M. 
1- If A  B and B≪M , then A≪M. 
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2- If C≪MandA≤B+C. Then A B. 
Proof: 
1- Let U be a submodule of M such that M = A+U = A+B+U = B+U , by prop. (1.4). But B≪M , therefore 

M = U. Thus A≪M. 
2-  To show A B. Let M = A+X , where X≤M , then M = A+B+C+X = B+C+X  , since A≤B+C. But 

C≪M , therefore M = B+X. Thus A  B, by prop.(1.4). 
 
Proposition (1.6):LetM be an R- module and let A , B≤M , then  A  Bif and only if   


 


, for every 

submodule L contained in A and B. 
Proof:Let A  B and let L≤M contained in A and B , then B≤ce A+B in M. By [1] ,


≤ce

ା


= 

 + 


  in ெ


. 

Thus

 


. 

For  the  converse ,  suppose that  

 


for every submodule L contained in A and B, then  


≤ce



 + 


 = ା


 

in ெ


. By [1], we get  B≤ce A+B in M. Thus A B 
 
Proposition (1.7):LetA1, A2 ,B1 and B2 be submodules of an R- module M such that A1 B1 and A2 B2 , 
then (A1+A2) (B1+B2).  
Proof: Assume that A1 B1 and A2 B2. Then B1 ≤ce A1+B1 in M and B2≤ce A2+B2 in M. So B1+B2 ≤ce 
A1+A2+B1+B2in M , by [1]. Thus (A1+A2) (B1+B2). 
 
Corollary (1.8):LetM be an R- module . If A  B and C is a submodule of M , then (A+C)  (B+C). The 
converse is true when C≪M 
Proof: Assume that A B. Since C C, then by [1] , (A+C)  ( B+C). Conversely, assume that (A+C)
(B+C) , then B+C≤ce A+B+C in M. Since C≪M , then B≤ceA+BinM, [1]. Thus A B. 
 
Proposition (1.9):Letf : M  N  be an R-epimorphism and let A , Bsubmodules of M. IfA  B, then f 
(A) f (B). 
Proof: Assume that A B , then B≤ce A+B in M. Hence f (B) ≤ce f (A+B) = f (A)+f (B) in N , by [1]. Thus 
f (A) f (B). 
 
Proposition (1.10):Letf : M  N  be an R-epimorphism and let A , Bsubmodules of M. IfA  B, thenf -

1(A) f  -1(B). 
Proof:  Suppose that A B and let X be a submodule of M such thatM = f -1 (A) +X. Then N = A + f(X). But 
A B ,thereforeN = B + f (X)and hence M = f -1(B)+X. Thus f  -1(A)  f  -1(B). 
 
Proposition (1.11): Let M = M1M2 and let A and B be submodules of M1 and M2 respectively. Then A
M1 and B  M2 if and only if (AB) (M1M2). 
Proof: ( ) By prop. (1.7). 
(  ) Let P1 :M  M1 and P2 :M  M2 be the projection homomorphisms on M1and M2 
respectively .Since (A B)  (M1 M2), then A= P1(A B)  P1 (M1 M2) = M1and B = P2(A  B)
P2(M1M2) = M2, by Prop. (1.9). Hence A M1 and B  M2 . 
 
§2: Goldie lifting modules 
     In this section , we define a Goldie lifting modules with examples and basic properties. 
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Definition (2.1)LetM be an R- module. We say that M is a Goldie lifting module (briefly ࣡-lifting) if for 
every proper submoduleA of M, there exists a proper direct summand D of M such that A D. 
 
Remark (2.2): Every lifting module is ࣡-lifting.  
Proof:  Let M be a lifting module and let A  be a proper submodule of M  , there exists a direct summand 
D of M such that D≤A and


≪ெ


. Hence D≤ce A in M. Since A≠M, then D ≠ M. By (1.2-2) ,A D. Thus M  

is࣡-lifting. 
    The following example show that a ࣡-lifting module need not be a lifting module. 
 
Example (2.3): 

Consider the Z-module M = Z8Z2 . The proper submodules of M are: 
A1 = {(1, 0 ) , ( 2 ,0 ) , ( 3 , 0 ) , ( 4 , 0 ) , ( 5 ,0 ) , ( 6 , 0 ) , ( 7 ,0 ) , ( 0 ,0 )}. 
A2 = {( 2 , 0 ) , ( 4 ,0 ) , ( 6 , 0 ) , ( 0 , 0 )}. 
A3 = {( 4 ,0 ) , ( 0 ,0 )}. 
A4 = {( 0 ,1) , ( 0 ,0 )}. 
A5 = {(1,1) , ( 2 ,0 ) , ( 3 ,1) , ( 4 , 0 ) , ( 5 ,1) , ( 6 , 0 ) , ( 7 ,1) , ( 0 ,0 )}. 
A6 = {( 2 ,1) , ( 4 ,0 ) , ( 6 ,1) , ( 0 ,0 )}. 
A7 = {( 4 ,1) , ( 0 ,0 )}. 
A8 = {( 2 ,0 ) , ( 4 ,0 ) , ( 6 , 0 ) , ( 2 ,1) , ( 4 ,1) , ( 6 ,1) , ( 0 ,1) , ( 0 , 0 )}. 
A9 = { ( 4 , 0 ) , ( 4 ,1) , ( 0 ,1) ,  ( 0 , 0 )}. 
A10 = {( 0 , 0 )}. 
Clearly that M= A1A4= A1A7= A4A5 and the small submodules of M areA2 and A3.  
It is enough to check that A6 , A8 and A9 satisfy the definition. For A6 , the only submoduleA of M satisfy A6 
+A = M is A1. Since A1 is a direct summand of M , then A6 A4 and A6 A7.  
For A8 , since A1and A5 are satisfy M = A8 + A1 = A8 + A5 and both is a direct summand , then A8 A4. By 
the same argument one can see that A9 A4. Thus M is ࣡-lifting.  
Claim that M is not lifting. To see this , consider the submoduleA6. The only direct summand of M 
contained in A6 is {( 0 , 0 )}. If M is lifting , then A=D S, where D is a direct summand of M and S≪M. 
Hence A6≪M which is a contradiction .Thus M is not lifting. 
 
Examples (2.4): 
1- Z4as Z- module is ࣡-lifting.  
2- Z as Z- moduleis not࣡-lifting.To show that , consider the submoduleA= 2Z of Z. If Z is ࣡-lifting , then 

there exists a proper direct summand D of  Z such that A D. But Z is indecomposable , so D=0 and 
hence 2Z≪Z , by (1.2) which is a contradiction.  

3- Let Q be the set of the rational numbers. It is easy to see that Q as Z- module is not࣡-lifting. 
 
Recall that a non-zero R- module M is called a hollow module if every proper submodule of M is a small 
submodule of M, see [6]. 
 

The following proposition gives a condition under which the lifting module and ࣡-lifting module are 
equivalent. 
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Proposition (2.5):LetM be an indecomposable module. Then the following statements are equivalent. 
1- M is lifting. 
2- M is ࣡-lifting. 
3- M is hollow. 
Proof: (1) (2) Remark (2.2). 
(2) (3) Suppose that M is ࣡-lifting module and let A be a proper submodule of M. Since M is ࣡-lifting , 
then there exists a proper direct summand D of M such that A D.  But M is indecomposable , therefore 
D=0, then A≪M , by remark (1.2). Thus M is hollow. 
 (3) (1) Clear. 
 
Proposition (2.6)LetA be a submodule of  a࣡-lifting module M. If  ା


 is a direct summand of  ெ


 , for 

every direct summand D of M , then ெ


 is ࣡-lifting. 

Proof: Assume that M is ࣡-lifting and let 

 be a proper submodule of  ெ


. Note that B≠M , if B=M , then 


 

= ெ


 which is a contradiction. Since M is ࣡-lifting , then there exists a proper direct summand D of M such 

that B D. By our assumption ,ା


 is  a  direct  summand  of   ெ


 . Note that  ା


≠ ெ


 , if ା


= ெ


 , then M 

= A+D = B+D. But B  D , therefore M=D which is a contradiction. To show 
 

ା


. Let : M  ெ


 

be the natural epimorphisim. Since B D , then   (B)    (D), by Prop. (1.9). Hence    
 

ା


. Thus ெ


 
is ࣡-lifting. 
Let M be an R-module and let A ≤M . Recall that A is fully invariant submodule if f (A) ≤A ,∀f ∈End(M) , 
see [7].          
 
Proposition (2.7):LetM be a ࣡-lifting module , then ெ


࣡-lifting , for every fully invariant submoduleA of 

M. 
Proof:Let A be a fully invariant submodule of M and let 


 be a proper submodule of  ெ


. Clearly that B is a 

proper submodule of M. Since M is࣡-lifting , then there exists a proper direct summand D of M such that 
B D.  But A is fully invariant , therefore ା


 is a direct summand of  ெ


 , by [8, Lemma 5-4]. It is easy to 

see that ା


≠ ெ


 . Let   : M  ெ


 be the natural epimorphisim. Since B  D , then   (B)   (D), 

by Prop. (1.9).Hence 


ା


. Thus ெ


 is ࣡-lifting. 
Let M be an R- module. Recall that  M is said to be Distributive module if A∩(B+C) = (A∩B)+(A∩C) , for 
all submodules A,B,C of  M , see [9]. 
 
Proposition (2.8) :Let M be distributive ࣡-lifting R- module and let A be a submodule of M. Then ெ


is ࣡-

lifting. 
Proof: Let 


 be a proper submodule of ெ


 . Since M is ࣡-lifting and B is proper submodule of M , then 

there exists a proper direct summand D of M such that      B  D . Let M =DD', for some submoduleD' 

of M. Then ெ


 = (ା


)  + ( 
ᇲା


 )  and (ା


) ∩ (ᇲା


)  = ൫∩ᇲ൯ା(∩)ା൫∩ᇲ൯ା


 = ା∩൫ାᇲ൯ା


= 


 , 

because M is distributive. Hence  ା


is  a proper direct  summand of   ெ


 . One can easily show that 
 

ା


. Thus  ெ


࣡-lifting  
Now , we give a various characterization of ࣡-lifting module.  
 
Proposition(2.9):Let M be an R- module. Then the following statements are equivalent. 
1- M is ࣡-lifting. 
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2-  For every proper submoduleA of M , there exists a proper direct summand D of M such that M = D
D' and (A+D)∩D'≪D'. 

3- For every proper submoduleA of M , there exists a proper direct summand D of M such that A+D = D
S , S≪M. 

Proof: (1)  (2) Let A be a proper submodule of M. Since M is ࣡-lifting , then there exists a proper direct 
summand D of M such that A   D. Let M = D  D' ,D'≤M. To show (A+D)∩D'≪D' , let U be a 
submodule of D' such that [(A+D )∩D' ] + U=D' . So M = D+D' = D + [(A+D )∩D' ] + U . Now ,ெ


 = 

ା


 + [(ା )∩ᇱ ]ା


 . But  [(ା )∩ᇱ ]ା


is a submodule of ା


 and  ା


≪ ெ


 , therefore  [(ା )∩ᇱ ]ା


≪ெ


,  
by [3, Lemma 4.2 , P.56]. Hence   M = D+U. Since D∩U≤ D∩D'=0 ,thenD∩U=0. Hence M =DU. So 
U=D' .Thus  (A+D )∩D'≪D'. 
(2)  (3) Let A be a proper submodule of M. By our assumption ,there exists a proper direct summand D 
of M such that M = DD' , D'≤M and (A+D)∩D' ≪D'.Now ,A+D = (A+D)∩M = (A+D)∩(D+D' ) = D
[(A+D)∩D'] , where  D is a direct summand of M and (A+D)∩D'≪ D'. 
(3)  (1) Let A be a proper submodule of M. By our assumption ,there exists a properdirect summand D 
of M such that A+D = DS , S≪M. Claim that ା


≪ெ


 . To see this , let 


≤ ெ


 such that ெ


 = ା


 + 


 , 

then M = A+D+U = D+S+U = D+U = U, hence ା


≪ெ


. Thus M is ࣡-lifting. 
 
Proposition (2.10):LetMbe an R- module. Then M is ࣡-lifting if and only if for each proper submoduleA 
of M , there exists a proper direct summand D of M and a submoduleB of M such thatA≤ B and D≤ce B in 
M. 
Proof:Suppose that M is a ࣡-lifting and let A be a proper submodule of M. Then there exists a proper 
direct summand D of M such that D≤ceA+D in M. LetB=A+D. Thus we get the result. 
Conversely, let A be a proper submodule of M. By our assumption , there exists a proper direct summand 
D of M and a submoduleB of M such thatA≤B and D≤ce B in M. Since D≤ A+D≤ B and D≤ceB in M, then 
D≤ceA+D in M. Thus M is࣡-lifting. 
Let M be an R- module. Recall that M is called a supplemented module, if every submodule of M has a 
supplement in M, see [6]. 
 
Proposition (2.11):LetMbe an amply supplemented module. Then the following statements are 
equivalent: 
1-  M is ࣡-lifting module. 
2- For  eachcoclosedsubmoduleA of M , there exists  a proper direct summand D of  M such that A D. 
Proof: (1) (2) Clear. 
(2)  (1) Let A be a proper submodule of M. Since M is amply supplemented , A has a 
coclosuresubmodule say B , by Prop.(3.1.9). Since B is coclosedsubmodule , there exists a proper direct 
summand D of M such that B D , by (2). Now since D ≤ce  B+D ≤ce A+D in M , then D≤ce  A+D in M , 
hence A  D. Thus M is ࣡-lifting. 
 
Note: 
A direct sum of ࣡-lifting modules may not be ࣡-lifting. Now , we give sufficient conditions under which 
the direct sum of ࣡-lifting modules is࣡-lifting.  
 
Proposition(2.12):Let M= M1M2 be an R- module such that ann(M1)+ ann(M2)= R. If M1and M2 are ࣡-
lifting modules.Then M is࣡-lifting. 
Proof:Let A be a proper submodule of M. By the same argument of the proof of [7 , prop. 4.2 , CH.1],  
A=A1A2, where A1 is a submodule of M1and A2is a submodule of M2. Consider the case when A1 and A2 
are proper submodules of M1 and M2 respectively. Since M1 and M2 are ࣡-lifting , then there exists a 
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proper direct summands D1 of M1 and D2 of M2  such that A1 D1 and A2 D2. It is easy to show that D1
D2 is a proper direct summand of M  , then by prop. (1.11) , (A1A2) (D1D2). Now , if A1= M1 , then 
A2≠M2, there is a proper direct summand D3of M2such that A2  D3. Hence (A1A2) (M1D3) , where 
(M1D3) is a proper direct summand of M. By the same argument we can get the result when A2 = M2. 
Thus M is ࣡-lifting. 
 
Proposition (2.13):LetM=M1M2be a duo module such that M1 and M2 are ࣡-lifting.  modules. Then M 
is࣡-lifting. 
Proof: Assume that M = M1M2 is a duo module and let A be a proper submodule of M, then ,by our 
assumption , A is fully invariant, hence   A=(A∩M1) (A∩M2). Consider the case when (A∩M1) and 
(A∩M2) are proper submodules of M1 and M2 respectively. Since M1and  M2 are ࣡-lifting , then there exists 
a proper direct summands D1 of M1 and D2 of M2  such that (A∩M1) D1 and (A∩M2) D2 ,then(A∩M1)
(A∩M2) (D1D2) , by prop. (1.11) , where D1D2 is a proper direct summand of M  , Now if (A∩M1) = 
M1 , then (A∩M2) ≠M2, there is a proper direct summand D3of M2such that (A∩M2)  D3. Hence (A∩M1)
(A∩M2) (M1D3) , where (M1D3) is a proper direct summand of M. Similarly , we can get the result 
when (A∩M2) = M2. Thus M is ࣡-lifting. 
By the same argument one can prove the following proposition.  
 
Proposition (2.14):LetM= M1M2  be a distributive module such that M1 and M2 are ࣡-lifting modules. 
Then M is࣡-lifting. 
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