

ISSN: 0067-2904 GIF: 0.851

On Goldie lifting modules

Enas M. Kamil*, Bahar H. AL- Bahraany

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq.

Abstract

Let R be an associative ring with identity and let M be a unital left R- module. We introduced the following concept .An R- module M is called a Goldie lifting module (briefly *G*-lifting) if for every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $D \leq_{ce} A+D$ in *M*. The main purpose of this work is to define goldie lifting modules and we give examples and basic properties of *G*-lifting modules. **Keywords:** Goldie lifting modules.

حولمقاسات الرفع من النمط غولدي ايناس مصطفى كامل* ، بهار حمد البحراني قسم الرياضيات ، كلية العلوم ،جامعة بغداد، بغداد ، العراق.

الخلاصة:

لتكن R حلقة تجميعية ذات عنصر محايد و M مقاس احادي ايسر معرف عليها. قدمنا مفهوم مقاس الرفع من النمط $G_{}$ يدعى المقاس M مقاس رفع من النمط $G_{}$ اذا كان لكل مقاس جزئي فعلي A من M يوجد مركبة مجموع مباشر D من M بحيث ان $D \leq_{ce} A + D$ في M . الغرض الرئيسي من هذا البحث هو تعريف مقاس الرفع من النمط $G_{}$ و اعطاء امثله والخواص الاساسيه لهذا النوع من المقاسات.

Introduction:

Recall that a submodule *A* of an *R*- module *M* is called a small submodule of *M* (denoted by $A \ll M$), if for any submodule *B* of *M* such that M = A + B, then M = B, see [1-3].Let *M* be an *R*- module and let *A*, *B* be submodules of *M* such that $A \le B \le M$. Recall that *A* is called a coessential submodule of *B* in *M* (briefly $A \le_{ce} B$ in *M*) if $\frac{B}{4} \ll \frac{M}{4}$, see [1].

 $A \leq_{ce} B \text{ in } M$) if $\frac{B}{A} \ll \frac{M}{A}$, see [1]. Let M be an R- module. Recall that a submodule B of M is called a coclosed submodule of M (notation $B \leq_{cc} M$), if $\frac{B}{A} \ll \frac{M}{A}$ implies that A = B, $\forall A \leq B$, see [1].

Following [4], the following is a relation on a set of submodules of $M.A \beta B$ if $A \cap B \leq_{c} A$ and $A \cap B \leq_{c} B$. An *R*- module *M* is called an *G*-extending module if for every submodule *A* of *M*, there exists a direct summand *D* of *M* such that $(A \beta D)$, see [4].

An *R*- module *M* is called a lifting module if for every submodule *A* of *M*, there exists a submodule *D* of *A* such that $M=D\oplus D'$ and $A\cap D'\ll D'$, see [5].

These observations lead us to introduce the following relations on the set of submodules of *M*. $A \gamma B$ if $B \leq_{ce} A + B$ in *M*.

^{*}Email: nosomus90@yahoo.com

We define *M* to be Goldie lifting module (briefly *G*-lifting) if for every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $A \gamma D$.

This paper consists of two sections

In section one , we introduced the concept of γ with some examples and basic properties.

In section two, we define a goldie lifting modules also we give some characterization of goldie lifting modules and investigate various conditions for a direct sum of G-lifting modules to be G-lifting.

§1: Basic properties of γ

In this section, we define a relation γ on the set of submodules of a module *M* and we will illustrate it by some examples. We also give some basic properties. We start by a definition.

Definition (1.1):Let *M* be an *R*- module and let γ be a relation on the set of submodules of *M* defined as follows: $A\gamma B$ if $B \leq_{ce} A + B$ in *M*.

Remarks and Examples (1.2)

1- In Z as Z- module. Let A=6Z and B=4Z. One can easily show that $B \leq_{ce} A+B=2Z$ in Z.

2- Let *A* and *B* be submodules of an *R*- module *M* such that $B \le A$, then $A \gamma B$ if and only if $B \le_{ce} A$ in *M*. For example Z_8 as *Z*- module. It is easy to see that $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} \gamma \{\overline{0}, \overline{4}\}$, where $\{\overline{0}, \overline{4}\} \le_{ce} \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$

6 $\}$ in Z_{8} .

- 3- Let A be a submodule of an R- module M. One can easily show that $A \gamma 0$ if and only if $A \ll M$.
- 4- Let *M* be an *R* module . Clearly that $A \gamma M$, for every submodule *A* of *M*.

Proposition (1.3): γ is reflexive and transitive relation.

Proof:Clearly that γ is reflexive. To show γ is transitive, let A, B and C be submodules of a module M such that $A \gamma B$ and $B \gamma C$, then $\frac{A+B}{B} \ll \frac{M}{B}$ and $\frac{B+C}{C} \ll \frac{M}{C}$. We have to show that $A \gamma C$ i.e, $\frac{A+C}{C} \ll \frac{M}{C}$. Let U be submodule of M containing C such that $\frac{M}{C} = \frac{A+C}{C} + \frac{U}{C}$, then M = A + B + C + U and hence $\frac{M}{B} = \frac{A+B}{B} + \frac{B+C}{B} + \frac{U+B}{B}$. But $\frac{A+B}{B} \ll \frac{M}{B}$, therefore $\frac{M}{B} = \frac{B+C}{B} + \frac{U+B}{B}$, hence M = B + C + U. Now $\frac{M}{C} = \frac{U}{C} + \frac{B+C}{C}$. Since $\frac{B+C}{C} \ll \frac{M}{C}$, then $\frac{M}{C} = \frac{U}{C}$ and hence M = U. Thus $\frac{A+C}{C} \ll \frac{M}{C}$.

Note: In general, γ is not symmetric. For example, consider Z as Z-module. Clearly $2Z\gamma Z$. But 2Z is not coessential submodule of Z in Z. Thus Z is not related with 2Z by γ .

The following proposition gives a characterization of γ .

Proposition (1.4): Let A and B be submodules of an R- module M. Then $A \gamma B$ if and only if M = A + X implies M = B + X, for each submodule X of M.

Proof: (\Rightarrow) Suppose that $A \gamma B$ and let X be a submodule of M such that M = A + X, then $\frac{M}{B} = \frac{A+B}{B} + \frac{X+B}{B}$. But $A \gamma B$, therefore $\frac{A+B}{B} \ll \frac{M}{B}$ and hence $\frac{M}{B} = \frac{X+B}{B}$. Thus M = B + X. (\Leftarrow) To show $A \gamma B$.Let $\frac{M-A+B}{B} + \frac{U}{B}$, where $\frac{U}{B} \leq \frac{M}{B}$. Then M = A + B + U. By our assumption, we get M = B + U. But $B \leq U$, therefore M = U. Thus $A \gamma B$.

Proposition (1.5):Let *M* be an *R*- module and let *A*, *B* and *C*submodules of *M*. 1- If $A \gamma B$ and $B \ll M$, then $A \ll M$. 2- If $C \ll M$ and $A \leq B + C$. Then $A \gamma B$.

Proof:

- 1- Let U be a submodule of M such that M = A + U = A + B + U = B + U, by prop. (1.4). But $B \ll M$, therefore M = U. Thus $A \ll M$.
- 2- To show $A \gamma B$. Let M = A+X, where $X \leq M$, then M = A+B+C+X = B+C+X, since $A \leq B+C$. But $C \ll M$, therefore M = B+X. Thus $A \gamma B$, by prop.(1.4).

Proposition (1.6): Let *M* be an *R*- module and let *A*, $B \le M$, then $A \gamma B$ if and only if $\frac{A}{L} \gamma \frac{B}{L}$, for every submodule *L* contained in *A* and *B*.

Proof: Let $A \gamma B$ and let $L \leq M$ contained in A and B, then $B \leq_{ce} A + B$ in M. By [1], $\frac{B}{L} \leq_{ce} \frac{A+B}{L} = \frac{A}{L} + \frac{B}{L}$ in $\frac{M}{L}$. Thus $\frac{A}{L} \gamma \frac{B}{L}$.

For the converse, suppose that $\frac{A}{L}\gamma \frac{B}{L}$ for every submodule *L* contained in *A* and *B*, then $\frac{B}{L} \leq_{ce} \frac{A}{L} + \frac{B}{L} = \frac{A+B}{L}$ in $\frac{M}{L}$. By [1], we get $B \leq_{ce} A + B$ in *M*. Thus $A \gamma B$

Proposition (1.7):Let A_1 , A_2 , B_1 and B_2 be submodules of an *R*-module *M* such that $A_1 \gamma B_1$ and $A_2 \gamma B_2$, then $(A_1+A_2)\gamma (B_1+B_2)$.

Proof: Assume that $A_1 \gamma B_1$ and $A_2 \gamma B_2$. Then $B_1 \leq_{ce} A_1 + B_1$ in *M* and $B_2 \leq_{ce} A_2 + B_2$ in *M*. So $B_1 + B_2 \leq_{ce} A_1 + A_2 + B_1 + B_2$ in *M*, by [1]. Thus $(A_1 + A_2) \gamma (B_1 + B_2)$.

Corollary (1.8):Let *M* be an *R*- module . If $A \gamma B$ and *C* is a submodule of *M*, then $(A+C)\gamma(B+C)$. The converse is true when $C \ll M$

Proof: Assume that $A \gamma B$. Since $C \gamma C$, then by [1], $(A+C)\gamma(B+C)$. Conversely, assume that $(A+C)\gamma(B+C)$, then $B+C \leq_{ce} A+B+C$ in M. Since $C \ll M$, then $B \leq_{ce} A+B$ inM, [1]. Thus $A \gamma B$.

Proposition (1.9):Let $f: M \longrightarrow N$ be an *R*-epimorphism and let *A*, *B*submodules of *M*. If $A \gamma B$, then *f* (*A*) $\gamma f(B)$.

Proof: Assume that $A \gamma B$, then $B \leq_{ce} A + B$ in M. Hence $f(B) \leq_{ce} f(A+B) = f(A) + f(B)$ in N, by [1]. Thus $f(A) \gamma f(B)$.

Proposition (1.10):Let $f: M \longrightarrow N$ be an *R*-epimorphism and let *A*, *B*submodules of *M*. If $A \gamma B$, then $f^{-1}(A) \gamma f^{-1}(B)$.

Proof: Suppose that $A \gamma B$ and let X be a submodule of M such that $M = f^{-1}(A) + X$. Then N = A + f(X). But $A \gamma B$, therefore N = B + f(X) and hence $M = f^{-1}(B) + X$. Thus $f^{-1}(A) \gamma f^{-1}(B)$.

Proposition (1.11): Let $M = M_1 \oplus M_2$ and let A and B be submodules of M_1 and M_2 respectively. Then $A\gamma$ M_1 and $B\gamma M_2$ if and only if $(A \oplus B)\gamma (M_1 \oplus M_2)$. **Proof:** (\Rightarrow) By prop. (1.7). (\Leftarrow) Let $P_1 : M \longrightarrow M_1$ and $P_2 : M \longrightarrow M_2$ be the projection homomorphisms on M_1 and M_2 respectively. Since $(A \oplus B)\gamma (M_1 \oplus M_2)$, then $A = P_1(A \oplus B)\gamma P_1 (M_1 \oplus M_2) = M_1$ and $B = P_2(A \oplus B)\gamma$ $P_2(M_1 \oplus M_2) = M_2$, by Prop. (1.9). Hence $A\gamma M_1$ and $B\gamma M_2$.

§2: Goldie lifting modules

In this section, we define a Goldie lifting modules with examples and basic properties.

Definition (2.1)Let *M* be an *R*- module. We say that *M* is a Goldie lifting module (briefly *G*-lifting) if for every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $A \gamma D$.

Remark (2.2): Every lifting module is G-lifting.

Proof: Let *M* be a lifting module and let *A* be a proper submodule of *M*, there exists a direct summand *D* of *M* such that $D \le A$ and $\frac{A}{D} \ll \frac{M}{D}$. Hence $D \le_{ce} A$ in *M*. Since $A \ne M$, then $D \ne M$. By (1.2-2), $A \gamma D$. Thus *M* is *G*-lifting.

The following example show that a *G*-lifting module need not be a lifting module.

Example (2.3):

Consider the Z-module $M = Z_8 \oplus Z_2$. The proper submodules of M are: $A_1 = \{(\bar{1}, \bar{0}), (\bar{2}, \bar{0}), (\bar{3}, \bar{0}), (\bar{4}, \bar{0}), (\bar{5}, \bar{0}), (\bar{6}, \bar{0}), (\bar{7}, \bar{0}), (\bar{0}, \bar{0})\}.$ $A_2 = \{(\bar{2}, \bar{0}), (\bar{4}, \bar{0}), (\bar{6}, \bar{0}), (\bar{0}, \bar{0})\}.$ $A_3 = \{(\bar{4}, \bar{0}), (\bar{0}, \bar{0})\}.$ $A_4 = \{(\bar{0}, \bar{1}), (\bar{0}, \bar{0})\}.$ $A_5 = \{(\bar{1}, \bar{1}), (\bar{2}, \bar{0}), (\bar{3}, \bar{1}), (\bar{4}, \bar{0}), (\bar{5}, \bar{1}), (\bar{6}, \bar{0}), (\bar{7}, \bar{1}), (\bar{0}, \bar{0})\}.$ $A_6 = \{(\bar{2}, \bar{1}), (\bar{4}, \bar{0}), (\bar{6}, \bar{1}), (\bar{0}, \bar{0})\}.$ $A_7 = \{(\bar{4}, \bar{1}), (\bar{0}, \bar{0})\}.$ $A_8 = \{(\bar{2}, \bar{0}), (\bar{4}, \bar{0}), (\bar{6}, \bar{0}), (\bar{2}, \bar{1}), (\bar{4}, \bar{1}), (\bar{6}, \bar{1}), (\bar{0}, \bar{1}), (\bar{0}, \bar{0})\}.$ $A_9 = \{(\bar{4}, \bar{0}), (\bar{4}, \bar{1}), (\bar{0}, \bar{1}), (\bar{0}, \bar{0})\}.$ $A_{10} = \{(\bar{0}, \bar{0})\}.$

Clearly that $M = A_1 \oplus A_4 = A_1 \oplus A_7 = A_4 \oplus A_5$ and the small submodules of M are A_2 and A_3 . It is enough to check that A_6 , A_8 and A_9 satisfy the definition. For A_6 , the only submodule A of M satisfy A_6 +A = M is A_1 . Since A_1 is a direct summand of M, then $A_6 \gamma A_4$ and $A_6 \gamma A_7$.

For A_8 , since A_1 and A_5 are satisfy $M = A_8 + A_1 = A_8 + A_5$ and both is a direct summand, then $A_8 \gamma A_4$. By the same argument one can see that $A_9 \gamma A_4$. Thus M is G-lifting.

Claim that *M* is not lifting. To see this, consider the submodule A_6 . The only direct summand of *M* contained in A_6 is $\{(\overline{0}, \overline{0})\}$. If *M* is lifting, then $A=D \oplus S$, where *D* is a direct summand of *M* and $S \ll M$. Hence $A_6 \ll M$ which is a contradiction. Thus *M* is not lifting.

Examples (2.4):

- 1- Z_4 as Z- module is G-lifting.
- 2- Z as Z- module is not G-lifting. To show that , consider the submodule A = 2Z of Z. If Z is G-lifting , then there exists a proper direct summand D of Z such that $A \gamma D$. But Z is indecomposable , so D=0 and hence $2Z \ll Z$, by (1.2) which is a contradiction.
- 3- Let Q be the set of the rational numbers. It is easy to see that Q as Z- module is not G-lifting.

Recall that a non-zero R- module M is called a hollow module if every proper submodule of M is a small submodule of M, see [6].

The following proposition gives a condition under which the lifting module and G-lifting module are equivalent.

Proposition (2.5):Let*M* be an indecomposable module. Then the following statements are equivalent.

1- M is lifting.

2- M is G-lifting.

3- M is hollow.

Proof: (1) \Rightarrow (2) Remark (2.2).

(2) \Rightarrow (3) Suppose that *M* is *G*-lifting module and let *A* be a proper submodule of *M*. Since *M* is *G*-lifting, then there exists a proper direct summand *D* of *M* such that $A\gamma D$. But *M* is indecomposable, therefore D=0, then $A \ll M$, by remark (1.2). Thus *M* is hollow. (3) \Rightarrow (1) Clear.

 $(1) \in \operatorname{Idd}$

Proposition (2.6)Let *A* be a submodule of a *G*-lifting module *M*. If $\frac{A+D}{A}$ is a direct summand of $\frac{M}{A}$, for every direct summand *D* of *M*, then $\frac{M}{A}$ is *G*-lifting.

Proof: Assume that *M* is *G*-lifting and let $\frac{B}{A}$ be a proper submodule of $\frac{M}{A}$. Note that $B \neq M$, if B=M, then $\frac{B}{A}$ = $\frac{M}{A}$ which is a contradiction. Since *M* is *G*-lifting, then there exists a proper direct summand *D* of *M* such that $B\gamma D$. By our assumption, $\frac{A+D}{A}$ is a direct summand of $\frac{M}{A}$. Note that $\frac{A+D}{A} \neq \frac{M}{A}$, if $\frac{A+D}{A} = \frac{M}{A}$, then M = A+D = B+D. But $B\gamma D$, therefore M=D which is a contradiction. To show $\frac{B}{A}\gamma \frac{A+D}{A}$. Let $\pi: M \longrightarrow \frac{M}{A}$ be the natural epimorphisim. Since $B\gamma D$, then $\pi(B) \gamma \pi(D)$, by Prop. (1.9). Hence $\frac{B}{A}\gamma \frac{A+D}{A}$. Thus $\frac{M}{A}$ is *G*-lifting.

Let *M* be an *R*-module and let $A \leq M$. Recall that *A* is fully invariant submodule if $f(A) \leq A$, $\forall f \in End(M)$, see [7].

Proposition (2.7): Let *M* be a *G*-lifting module , then $\frac{M}{A}$ *G*-lifting , for every fully invariant submodule *A* of *M*.

Proof: Let *A* be a fully invariant submodule of *M* and let $\frac{B}{A}$ be a proper submodule of $\frac{M}{A}$. Clearly that *B* is a proper submodule of *M*. Since *M* is *G*-lifting, then there exists a proper direct summand *D* of *M* such that $B \gamma D$. But *A* is fully invariant, therefore $\frac{A+D}{A}$ is a direct summand of $\frac{M}{A}$, by [8, Lemma 5-4]. It is easy to see that $\frac{A+D}{A} \neq \frac{M}{A}$. Let $\pi: M \longrightarrow \frac{M}{A}$ be the natural epimorphisim. Since $B \gamma D$, then π (*B*) $\gamma \pi$ (*D*), by Prop. (1.9). Hence $\frac{B}{A} \gamma \frac{A+D}{A}$. Thus $\frac{M}{A}$ is *G*-lifting.

Let *M* be an *R*- module. Recall that *M* is said to be Distributive module if $A \cap (B+C) = (A \cap B) + (A \cap C)$, for all submodules *A*,*B*,*C* of *M*, see [9].

Proposition (2.8) :Let *M* be distributive *G*-lifting *R*- module and let *A* be a submodule of *M*. Then $\frac{M}{A}$ is *G*-lifting.

Proof: Let $\frac{B}{A}$ be a proper submodule of $\frac{M}{A}$. Since M is G-lifting and B is proper submodule of M, then there exists a proper direct summand D of M such that $B \gamma D$. Let $M = D \oplus D'$, for some submodule D' of M. Then $\frac{M}{A} = \left(\frac{A+D}{A}\right) + \left(\frac{D'+A}{A}\right)$ and $\left(\frac{A+D}{A}\right) \cap \left(\frac{D'+A}{A}\right) = \frac{(D\cap D') + (D\cap A) + (A\cap D') + A}{A} = \frac{0 + A \cap (D+D') + A}{A} = \frac{A}{A}$, because M is distributive. Hence $\frac{D+A}{A}$ is a proper direct summand of $\frac{M}{A}$. One can easily show that $\frac{B}{A}\gamma = \frac{A+D}{A}$. Thus $\frac{M}{A}G$ -lifting

Now , we give a various characterization of \mathcal{G} -lifting module.

Proposition(2.9):Let M be an R- module. Then the following statements are equivalent. 1- M is G-lifting.

- 2- For every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $M = D \oplus D'$ and $(A+D) \cap D' \ll D'$.
- 3- For every proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $A+D = D \oplus S$, $S \ll M$.

Proof: (1) \Rightarrow (2) Let *A* be a proper submodule of *M*. Since *M* is *G*-lifting, then there exists a proper direct summand *D* of *M* such that $A \gamma D$. Let $M = D \oplus D'$, $D' \leq M$. To show $(A+D) \cap D' \ll D'$, let *U* be a submodule of *D'* such that $[(A+D) \cap D'] + U = D'$. So $M = D + D' = D + [(A+D) \cap D'] + U$. Now, $\frac{M}{D} = \frac{D+U}{D} + \frac{[(A+D) \cap D'] + D}{D}$. But $\frac{[(A+D) \cap D'] + D}{D}$ is a submodule of $\frac{A+D}{D}$ and $\frac{A+D}{D} \ll \frac{M}{D}$, therefore $\frac{[(A+D) \cap D'] + D}{D} \ll \frac{M}{D}$, by [3, Lemma 4.2, P.56]. Hence M = D + U. Since $D \cap U \leq D \cap D' = \theta$, then $D \cap U = \theta$. Hence $M = D \oplus U$. So U = D'. Thus $(A+D) \cap D' \ll D'$.

(2) \Rightarrow (3) Let *A* be a proper submodule of *M*. By our assumption ,there exists a proper direct summand *D* of *M* such that $M = D \oplus D'$, $D' \leq M$ and $(A+D) \cap D' \ll D'$. Now $A+D = (A+D) \cap M = (A+D) \cap (D+D') = D \oplus [(A+D) \cap D']$, where *D* is a direct summand of *M* and $(A+D) \cap D' \ll D'$.

(3) \Rightarrow (1) Let *A* be a proper submodule of *M*. By our assumption ,there exists a properdirect summand *D* of *M* such that $A+D = D \oplus S$, *S*«*M*. Claim that $\frac{A+D}{D} \ll \frac{M}{D}$. To see this , let $\frac{U}{D} \leq \frac{M}{D}$ such that $\frac{M}{D} = \frac{A+D}{D} + \frac{U}{D}$, then M = A+D+U = D+S+U = D+U = U, hence $\frac{A+D}{D} \ll \frac{M}{D}$. Thus *M* is *G*-lifting.

Proposition (2.10):Let *M* be an *R*- module. Then *M* is *G*-lifting if and only if for each proper submodule *A* of *M*, there exists a proper direct summand *D* of *M* and a submodule *B* of *M* such that $A \le B$ and $D \le_{ce} B$ in *M*.

Proof: Suppose that *M* is a *G*-lifting and let *A* be a proper submodule of *M*. Then there exists a proper direct summand *D* of *M* such that $D \leq_{ce} A + D$ in *M*. Let B = A + D. Thus we get the result.

Conversely, let A be a proper submodule of M. By our assumption, there exists a proper direct summand D of M and a submodule B of M such that $A \le B$ and $D \le_{ce} B$ in M. Since $D \le A + D \le B$ and $D \le_{ce} B$ in M, then $D \le_{ce} A + D$ in M. Thus M is G-lifting.

Let M be an R- module. Recall that M is called a supplemented module, if every submodule of M has a supplement in M, see [6].

Proposition (2.11):Let*M*be an amply supplemented module. Then the following statements are equivalent:

1- M is *G*-lifting module.

2- For each coclosed submodule *A* of *M*, there exists a proper direct summand *D* of *M* such that $A\gamma D$. **Proof:** (1) \Rightarrow (2) Clear.

(2) \Rightarrow (1) Let *A* be a proper submodule of *M*. Since *M* is amply supplemented , *A* has a coclosure submodule say *B*, by Prop.(3.1.9). Since *B* is coclosed submodule, there exists a proper direct summand *D* of *M* such that $B \gamma D$, by (2). Now since $D \leq_{ce} B + D \leq_{ce} A + D$ in *M*, then $D \leq_{ce} A + D$ in *M*, hence $A \gamma D$. Thus *M* is *G*-lifting.

Note:

A direct sum of G-lifting modules may not be G-lifting. Now, we give sufficient conditions under which the direct sum of G-lifting modules is G-lifting.

Proposition(2.12):Let $M = M_1 \oplus M_2$ be an *R*- module such that $ann(M_1) + ann(M_2) = R$. If M_1 and M_2 are *G*-lifting modules. Then *M* is *G*-lifting.

Proof:Let A be a proper submodule of M. By the same argument of the proof of [7, prop. 4.2, CH.1], $A=A_1 \oplus A_2$, where A_1 is a submodule of M_1 and A_2 is a submodule of M_2 . Consider the case when A_1 and A_2 are proper submodules of M_1 and M_2 respectively. Since M_1 and M_2 are *G*-lifting, then there exists a

proper direct summands D_1 of M_1 and D_2 of M_2 such that $A_1 \gamma D_1$ and $A_2 \gamma D_2$. It is easy to show that $D_1 \oplus D_2$ is a proper direct summand of M, then by prop. (1.11), $(A_1 \oplus A_2) \gamma (D_1 \oplus D_2)$. Now, if $A_1 = M_1$, then $A_2 \neq M_2$, there is a proper direct summand D_3 of M_2 such that $A_2 \gamma D_3$. Hence $(A_1 \oplus A_2) \gamma (M_1 \oplus D_3)$, where $(M_1 \oplus D_3)$ is a proper direct summand of M. By the same argument we can get the result when $A_2 = M_2$. Thus M is \mathcal{G} -lifting.

Proposition (2.13):Let $M = M_1 \oplus M_2$ be a duo module such that M_1 and M_2 are *G*-lifting. modules. Then *M* is *G*-lifting.

Proof: Assume that $M = M_1 \oplus M_2$ is a duo module and let A be a proper submodule of M, then ,by our assumption, A is fully invariant, hence $A = (A \cap M_1) \oplus (A \cap M_2)$. Consider the case when $(A \cap M_1)$ and $(A \cap M_2)$ are proper submodules of M_1 and M_2 respectively. Since M_1 and M_2 are G-lifting, then there exists a proper direct summands D_1 of M_1 and D_2 of M_2 such that $(A \cap M_1) \gamma D_1$ and $(A \cap M_2) \gamma D_2$, then $(A \cap M_1) \oplus (A \cap M_2) \gamma (D_1 \oplus D_2)$, by prop. (1.11), where $D_1 \oplus D_2$ is a proper direct summand of M, Now if $(A \cap M_1) = M_1$, then $(A \cap M_2) \neq M_2$, there is a proper direct summand D_3 of M_2 such that $(A \cap M_2) \gamma D_3$. Hence $(A \cap M_1) \oplus (A \cap M_2) \gamma (M_1 \oplus D_3)$, where $(M_1 \oplus D_3)$ is a proper direct summand of M. Similarly, we can get the result when $(A \cap M_2) = M_2$. Thus M is G-lifting.

By the same argument one can prove the following proposition.

Proposition (2.14):Let $M = M_1 \oplus M_2$ be a distributive module such that M_1 and M_2 are *G*-lifting modules. Then M is *G*-lifting.

References:

- 1. Ganesan,L. and Vanaja, N.2002, Modules for which every submodule has a unique coclosuure, *Comm. Algebra*, 30 (5), 2355-2377.
- 2. Inoue, T.1983, Sum of hollow modules, Osaka J. Math. 20, 331-336.
- **3.** Mohamed ,S.H., and Muller, B. J.**1990**, *continuous and discrete Modules*, London Math. Soc. LNS 147 Cambridge University Press, Cambridge.
- 4. Akalan, E., Birkenmeier, G. F. and Tercan, A.2009, Goldie Extending Modules, *Comm. Algebra* 37: 2, 663-683.
- 5. Keskin, D.2000, On lifting modules, Comm. Algebra, 28 (7), 3427-3440.
- 6. Wisbauer, R.1991, Foundation of module and ring theory, Gordon and Breach, Philadelphia.
- 7. Abass, M. S.1991, On fully stable modules, Ph.D. Thesis, University of Baghdad, College of Science, Department of Mathematics, Iraq, Baghdad.
- 8. Orhan, N., Tutuncu, D. K. and Tribak, R.2007, On Hollow-lifting Modules, *Taiwanese J. Math*, 11(2), 545-568.
- 9. Erdogdu, V. 1987, Distributive Modules, Can. Math. Bull 30, (248-254).

Kamil& Al-Bahraany

Iraqi Journal of Science, 2015, Vol 56, No.2A, pp:1140-1146