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Abstract  

    Let 𝑅 be a ring. A right 𝑅-module 𝑀 is called SAS-𝑁-injective (where 𝑁 is any 

right 𝑅-module) if every right 𝑅-homomorphism from a semiartinian small right 

submodule of 𝑁 into 𝑀 extends to 𝑁. A ring 𝑅 is called right SAS-injective if 𝑅𝑅 is 

SAS-𝑅-injective module. Right SAS-injective rings are studied in this paper. Many 

characterizations and properties of this type of  rings are obtained.  

 

Keywords: SAS-injective ring, finitely generated module, injective ring, semiartinian 
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  الخلاصة 
) حيث    𝑁نسبة الى   SAS- يسمى أغماري من النمط 𝑅على الحلقة     𝑀حلقة. المقاس الايمن    𝑅لتكن         

𝑁   هو مقاس ايمن على الحلقة𝑅  اذا كل تماثل مقاسي ايمن على الحلقة  )𝑅   من مقاس جزئي ايمن شبه ارتيني
اذا كان المقاس    SAS  - تسمى حلقة اغمارية يمنى من النمط  𝑅. الحلقة  𝑁يوسع الى     𝑀الى    𝑁صغير من  

  SAS  -. الحلقات الاغمارية اليمنى من النمط𝑅نسبة الى الحلقة    SAS-هو مقاس اغماري من النمط  𝑅𝑅الايمن  
 قد درست في هذا البحث. تم الحصول على العديد من تشخيصات وخصائص هذا النوع من الحلقات.

   

1. Introduction 

        Throughout this paper, 𝑅 is an associative ring with identity 1 and any module is unitary. 

By a module (resp., homomorphism) we mean a right  𝑅-module (resp. right  𝑅  -

homomorphism), if not otherwise specified. The class of right 𝑅-modules is denoted by Mod-

𝑅. We write 𝐽(𝑀) and soc(𝑀) for the Jacobson radical and the socle of a right 𝑅-module 𝑀, 

respectively. We write 𝑍(𝑅𝑅) for the right singular ideal of a ring 𝑅. A module 𝑀 is called 

semiartinian, if soc(𝑀/𝐾) ≠ 0, for any proper submodule 𝐾 of 𝑀 [1]. For a right 𝑅-module 

𝑀𝑅, we use 𝑆𝑎(𝑀) to denote the sum of all semiartinian submodules of 𝑀. A 

proper submodule 𝐴 of a module 𝑀 is called small, if 𝐴 + 𝐵 = 𝑀 where 𝐵 is a submodule of 𝑀 

implies 𝐵 = 𝑀 [1]. For any 𝑎 ∈ 𝑅, we use 𝑙𝑅(𝑎) (resp. 𝑟𝑅(𝑎)) to denote the left (resp., right) 

annihilator of 𝑎 in 𝑅.   
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       Injective modules play important role in module theory, and extensively many authors are 

studied their generalizations (see, for example, [2-6]). If every 𝑅-homomorphism from a right 

ideal of a ring  𝑅 into 𝑅𝑅 can be extended to 𝑅𝑅 , then 𝑅 is called right self-injective ring [7]. 

Let 𝑁, 𝑀 ∈ Mod-𝑅, then 𝑀 is called an SAS-𝑁-injective, if any right 𝑅-homomorphism from 

a semiartinian small  right submodule of 𝑁 into 𝑀 extends to 𝑁. If a module 𝑀 is an SAS-𝑅-

injective, then 𝑀 is called an SAS-injective. A ring 𝑅 is called a right SAS-injective if the right 

𝑅-module 𝑅𝑅 is an SAS-injective [8]. The SAS-injective rings have been studied in this paper. 

Many characterizations and properties of right SAS-injective rings have been obtained. For 

examples, we prove that a ring 𝑅 is a right SAS-injective if and only if for any 𝑁 ∈ Mod-𝑅 and 

a non-zero 𝑅-monomorphsim 𝑓 from 𝑁 to 𝑅 with 𝑓(𝑁) a semiartinian small  right ideal of 𝑅, 
then 𝐻𝑜𝑚𝑅(𝑅, 𝑁) = 𝑅𝑓. Also, we prove that if 𝑅 is a right SAS-injective ring, then 

𝑙𝑅(𝐴1 ∩ 𝐴2) = 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2), for every semiartinian small  right ideals 𝐴1 and 𝐴2. 
Moreover, we show that if 𝑅𝑏 is a minimal left ideal of a right SAS-injective ring 𝑅, then 

𝐽(𝑏𝑅) ∩ soc(𝑏𝑅) is zero or simple, for any 𝑏 ∈ 𝑅. Condition under which SAS-injectivity 

implies injectivity is given. We get that if 𝑅 is a semiperfect ring, then 𝑅 is a right                        

SAS-injective ring if and only if any 𝑅-homomorphism from a semiartinian right ideal of 𝑅 into 

𝑅 extends to 𝑅. We prove that if 𝑅 is a right  SAS-injective ring, and 𝑎, 𝑏 ∈ 𝑅 with 𝑏 ∈
 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and  𝑎𝑅 ≅ 𝑏𝑅, then  𝑅𝑎 ≅ 𝑅𝑏. Finally, we show that if 𝑅 is a right SAS-

injective ring,  then the set {𝑎 ∈ 𝑅│𝑟𝑅(1 − 𝑠𝑎) = 0  for all 𝑠 ∈ 𝑅} is contained in 𝐷(𝑅𝑅), where 

𝐷(𝑅𝑅) = {𝑎 ∈ 𝑅│𝑟𝑅(𝑎) ∩ 𝑚𝑅 ≠ 0 for each 0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)}. 

 

2. SAS-Injective Rings 

      Let 𝑁, 𝑀 ∈ Mod-𝑅. Then  𝑀 is called SAS-𝑁-injective, if any right 𝑅-homomorphism from 

a semiartinian small  right submodule of 𝑁 into 𝑀 extends to 𝑁. A right 𝑅-module 𝑀 is called  

SAS-injective if 𝑀 is  SAS-𝑅-injective. A ring 𝑅 is called right SAS-injective if the right 𝑅-

module 𝑅𝑅 is SAS-injective [8]. In this section, right  SAS-injective rings are studied 

extensively. Many characterizations and properties of this type of rings are given.   

      If any submodule 𝑁 of a module 𝑀 takes the form 𝑀𝐼, for some ideal 𝐼 of 𝑅, then 𝑀 is 

called  multiplication module [9].  

 

      A right 𝑅-module 𝑀 is called projective if for any right 𝑅-epimorphism 𝑓: 𝐴 → 𝐵                   

and for any right 𝑅-homomorphism ℎ: 𝑀 → 𝐵, there is a 𝑔 ∈ 𝐻𝑜𝑚𝑅(𝑀, 𝐴) such that                

ℎ𝑔 = 𝑓 [1, p. 117]. 

 

      We begin this section with the following theorem, which gives some characterizations of  

right SAS-injective rings. 

 

Theorem 2.1. Consider the following statements for a ring 𝑅: 

(1) 𝑅 is a right SAS-injective ring.  

(2) If 𝑃 and 𝐷 are finitely generated projective right 𝑅-modules with 𝐾 is a semiartinian small 

submodule of 𝑃, then any 𝑅-homomorphism 𝑓: 𝐾 ⟶ 𝐷 can be extended to an 𝑅-

homomorphism 𝑔: 𝑃 ⟶ 𝐷. 

(3) If 𝑁 ∈ Mod-𝑅  and 𝑓 is a nonzero 𝑅-monomorphsim from 𝑁 to 𝑅 with 𝑓(𝑁) is a semiartinian 

small right ideal of 𝑅, then 𝐻𝑜𝑚𝑅(𝑁, 𝑅) = 𝑅𝑓. 

Then (2) ⟹ (1) and (1) ⟺ (3). Moreover, if  a module 𝑅𝑅
𝑚  is multiplication for any 𝑚 ∈

 ℤ+, then (1) ⟹ (2). 
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Proof. (2) ⇒ (1) Clear. 

(1) ⇒ (2) Let 𝑅 be a right SAS-injective ring with 𝑅𝑅
𝑚 a multiplication module, for every 𝑚 ∈

ℤ+. Let 𝑃 and 𝐷 be finitely generated projective modules and  𝐾 a semiartinian small 

submodule of 𝑃. Let 𝑓: 𝐾 ⟶ 𝐷 be any 𝑅-homomorphism. Since 𝐷 is finitely generated, there 

exists a right 𝑅-epimorphism 𝛼1: 𝑅𝑛 ⟶ 𝐷 for some 𝑛 ∈ ℤ+. Projectivity of 𝐷 implies that there 

is a right 𝑅-homomorphism 𝛼2: 𝐷 ⟶ 𝑅𝑛 with 𝛼1𝛼2 = 𝐼𝐷, where 𝐼𝐷: 𝐷 ⟶ 𝐷 is the identity 

homomorphism. Thus from right SAS-injectivity of ring 𝑅 and [8] we get that 𝑅𝑛 is a right 

SAS-𝑅𝑚-injective 𝑅-module, for any 𝑚 ∈ ℤ+.  Since 𝑃 is finitely generated projective, 𝑃 is a 

direct summand of 𝑅𝑘, for some 𝑘 ∈ ℤ+.  By [8],  𝑅𝑛 is SAS-𝑃-injective. Then ℎ𝑖 = 𝛼2𝑓, for 

some ℎ ∈ 𝐻𝑜𝑚𝑅(𝑃, 𝑅𝑛). Put 𝑔 = 𝛼1ℎ: 𝑃 ⟶ 𝐷. Then 𝑔𝑖 = (𝛼1ℎ)𝑖 = 𝛼1(ℎ𝑖) = 𝛼1(𝛼2𝑓) =
(𝛼1𝛼2)𝑓 = 𝐼𝐷𝑓 = 𝑓. Therefore,  𝑔𝑖 = 𝑓 for some 𝑅-homomorphism 𝑔: 𝑃 ⟶ 𝐷.          

(1) ⇒ (3) Let 𝑅 be a right SAS-injective ring. Let 𝑁 be any right 𝑅-module and 𝑓: 𝑁 ⟶ 𝑅 be 

a nonzero 𝑅-monomorphism with 𝑓(𝑁) is a semiartinian small right ideal of  𝑅. Define �́�: 𝑁 ⟶

𝑓(𝑁) by �́�(𝑥) = 𝑓(𝑥), for any 𝑥 ∈ 𝑁. It is clear that �́� is an isomorphism. Let 𝑔 ∈ 𝐻𝑜𝑚𝑅(𝑁, 𝑅), 

then we get 𝑔�́�−1: 𝑓(𝑁) ⟶ 𝑅 is an  𝑅-homomorphism. Since 𝑅 is a right SAS-injective ring 

(by hypothesis) and 𝑓(𝑁)  is a semiartinian small right ideal of 𝑅, there is 𝑐 ∈ 𝑅 with 

(𝑔�́�−1)(𝑘) = 𝑐𝑘, for all 𝑘 ∈ 𝑓(𝑁) (by [8, Proposition 2.7]). Let 𝑥 ∈ 𝑁, then 𝑓(𝑥) ∈ 𝑓(𝑁) and 

hence (𝑔�́�−1)(𝑓(𝑥)) = 𝑐𝑓(𝑥). Since (𝑔�́�−1)(𝑓(𝑥)) = 𝑔(𝑥), it follows that 𝑔(𝑥) = 𝑐𝑓(𝑥), for 

any 𝑥 ∈ 𝑁. Thus 𝐻𝑜𝑚𝑅(𝑁, 𝑅) = 𝑅𝑓. 

(3) ⇒ (1) Let 𝐾 be a semiartinian small right ideal of  𝑅, 𝑓: 𝐾 ⟶ 𝑅 a right                                   𝑅-

homomorphism, and 𝑖: 𝐾 ⟶ 𝑅 the inclusion map. Then by hypothesis, we have 𝐻𝑜𝑚𝑅(𝐾, 𝑅) =
𝑅𝑖 and hence 𝑓 = 𝑐𝑖 for some 𝑐 ∈ 𝑅. Thus there exists 𝑐 ∈ 𝑅 such that 𝑓(𝑎) = 𝑐𝑎 for all 𝑎 ∈
𝐾. Then 𝑅 is a right SAS-injective ring,  by [8]. □ 

 

Theorem 2.2. Let 𝑅 be a right SAS-injective ring. Then  the following statements hold:  

(1) 𝑙𝑅𝑟𝑅(𝑚) = 𝑅𝑚,   for all  𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅). 
(2) If  𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛),  where  𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)  and 𝑛 ∈ 𝑅, then 𝑅𝑛 ⊆ 𝑅𝑚. 

(3) 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)) = 𝑙𝑅(𝑚) + 𝑅𝑎, for all 𝑚, 𝑎 ∈ 𝑅 with 𝑎𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩  𝐽(𝑅𝑅). 

(4) If 𝑓: 𝑎𝑅 ⟶ 𝑅, 𝑎 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅), is a right 𝑅-homomorphism, then  𝑓(𝑎) ∈ 𝑅𝑎. 

 

Proof. (1)  Let  𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and ∈ 𝑙𝑅𝑟𝑅(𝑚). By [10, Proposition  2.15, p. 37], 

𝑟𝑅(𝑚) = 𝑟𝑅𝑙𝑅𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛). Let 𝑓: 𝑚𝑅 ⟶ 𝑅 is given  by  𝑓(𝑚𝑟) = 𝑛𝑟  for any 𝑟 ∈ 𝑅. Then 

𝑓  is a well-defined  right  𝑅-homomorphism. By hypothesis, there is  an endomorphism 𝑔 of 𝑅 

with 𝑔(𝑥) = 𝑓(𝑥), for any 𝑥 ∈ 𝑚𝑅. Therefore, 𝑛 = 𝑛 .1 = 𝑓(𝑚. 1) = 𝑓(𝑚) = 𝑔(𝑚) =
𝑔(1)𝑚 ∈ 𝑅𝑚. Hence 𝑙𝑅𝑟𝑅(𝑚) ⊆ 𝑅𝑚. Conversely, let  𝑟𝑚 ∈ 𝑅𝑚, where  𝑟 ∈ 𝑅. Thus  𝑟𝑚𝑘 =
0  for all  𝑘 ∈ 𝑟𝑅(𝑚) and hence  𝑟𝑚 ∈ 𝑙𝑅𝑟𝑅(𝑚). Therefore,  𝑙𝑅𝑟𝑅(𝑚) = 𝑅𝑚. 

(2)  Let 𝑛 ∈ 𝑅 and 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)  such that  𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛). Thus 𝑛 ∈ 𝑙𝑅𝑟𝑅(𝑛). Since  

𝑟𝑅(𝑚) ⊆ 𝑟𝑅(𝑛)  (by hypothesis), 𝑙𝑅𝑟𝑅(𝑛) ⊆ 𝑙𝑅𝑟𝑅(𝑚) (by [10, Proposition 2.15, p. 37]). So, ∈ 

𝑙𝑅𝑟𝑅(𝑚). By (1),  𝑛 ∈ 𝑅𝑚  and this implies that  𝑅𝑛 ⊆ 𝑅𝑚. 
(3)  Let 𝑎, 𝑚 ∈ 𝑅 such that 𝑎𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅). If 𝑥 ∈ 𝑙𝑅(𝑚) + 𝑅𝑎, then  𝑥 = 𝑥1 + 𝑥2 such 

that  𝑥1𝑚 = 0 and  𝑥2 = 𝑠𝑎 for some 𝑠 ∈ 𝑅. For all  𝑏 ∈ 𝑚𝑅 ∩ 𝑟𝑅(𝑎), we have 𝑏 = 𝑚𝑟 and 

𝑎𝑏 = 0 for some 𝑟 ∈ 𝑅. Since 𝑥1𝑏 = 𝑥1(𝑚𝑟) = (𝑥1𝑚)𝑟 = 0 and 𝑥2𝑏 = (𝑠𝑎)𝑏 = 𝑠(𝑎𝑏) = 0, 
it  follows  that  𝑥 ∈ 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)) and this implies that 𝑙𝑅(𝑚) + 𝑅𝑎 ⊆ 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)). Let  

𝑦 ∈ 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)).  If  𝑟 ∈ 𝑟𝑅(𝑎𝑚), then  (𝑎𝑚)𝑟 = 0  and hence 𝑎(𝑚𝑟) = 0.  Thus  𝑚𝑟 ∈

𝑚𝑅 ∩ 𝑟𝑅(𝑎) and hence (𝑦𝑚)𝑟 = 𝑦(𝑚𝑟) = 0 and so 𝑦𝑚 ∈ 𝑙𝑅(𝑟𝑅(𝑎𝑚)). Thus  

𝑟𝑅𝑙𝑅(𝑟𝑅(𝑎𝑚))  ⊆ 𝑟𝑅(𝑦𝑚). By [10, Proposition  2.15,  p. 37], 𝑟𝑅(𝑎𝑚) ⊆ 𝑟𝑅(𝑦𝑚). By 

hypothesis,  𝑎𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅). By (2),  𝑅𝑦𝑚 ⊆ 𝑅𝑎𝑚.  Thus 𝑦𝑚 = 𝑠𝑎𝑚,  for some  𝑠 ∈ 𝑅 
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and  hence (𝑦 − 𝑠𝑎)𝑚 = 0 and this implies that  𝑦 − 𝑠𝑎 ∈ 𝑙𝑅(𝑚). Thus  𝑦 ∈ 𝑙𝑅(𝑚) + 𝑅𝑎 and 

hence  𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)) = 𝑙𝑅(𝑚) + 𝑅𝑎. 

(4) Let  𝑎 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and  let  𝑓: 𝑎𝑅 ⟶ 𝑅  be a right 𝑅-homomorphism. Put 𝑑 = 𝑓(𝑎), 
then  𝑟𝑅(𝑎) ⊆ 𝑟𝑅(𝑑). By (2), 𝑅𝑑 ⊆ 𝑅𝑎 and hence  𝑓(𝑎) ∈ 𝑅𝑎.  □ 

 

Proposition 2.3. If 𝑅 is a right SAS-injective ring, then 𝑙𝑅(𝐴1 ∩ 𝐴2) = 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2), for 

any  semiartinian small  right  ideals 𝐴1 and  𝐴2 of  𝑅. 
 

Proof. Let 𝐴1 and 𝐴2 be any two semiartinian small right ideals of 𝑅. Let 𝑟 ∈ 𝑙𝑅(𝐴1 ∩ 𝐴2),  
thus 𝑟. (𝐴1 ∩ 𝐴2) = 0.  Consider the mapping 𝑓: 𝐴1 + 𝐴2 ⟶ 𝑅  is  given  by 𝑓(𝑎1 + 𝑎2) =
𝑟. 𝑎1,  for all 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2.  Thus  𝑓 is  a  well-defined right 𝑅-homomorphism, since if 

𝑎1 + 𝑎2 = 𝑏1 + 𝑏2 , where   𝑎1, 𝑏1 ∈ 𝐴1,    𝑎2, 𝑏2 ∈ 𝐴2, then 𝑎1 − 𝑏1 = 𝑏2 − 𝑎2 ∈ 𝐴1 ∩ 𝐴2. 
Since 𝑟(𝐴1 ∩ 𝐴2) = 0, we have  that  𝑟(𝑎1 − 𝑏1) = 0  and hence 𝑟𝑎1 =  𝑟𝑏1, so            

𝑓(𝑎1 + 𝑎2) = 𝑓(𝑏1 + 𝑏2) and this implies that 𝑓 is a well-defined. Also, for every 𝑎1 + 𝑎2 ,

𝑏1 + 𝑏2  ∈ 𝐴1 + 𝐴2, where 𝑎1, 𝑏1 ∈ 𝐴1, 𝑎2, 𝑏2 ∈ 𝐴2 and   𝑡 ∈ 𝑅, we have                       𝑓((𝑎1 +

𝑎2) + (𝑏1 + 𝑏2)) = 𝑓((𝑎1 + 𝑏1) + (𝑎2 + 𝑏2)) =  𝑟(𝑎1 + 𝑏1) = 𝑟𝑎1 + 𝑟𝑏1 = 𝑓((𝑎1 + 𝑏1) +

(𝑎2 + 𝑏2)) and 𝑓((𝑎1 + 𝑎2)𝑡) = 𝑓(𝑎1𝑡 + 𝑎2𝑡) = 𝑟(𝑎1𝑡) = (𝑟𝑎1)𝑡 = (𝑓(𝑎1 + 𝑎2))𝑡. Thus, 𝑓 

is a well-defined  right  𝑅-homomorphism. Since 𝐴1 + 𝐴2 is a semiartinian small  right  ideal 

of 𝑅𝑅, we get from  SAS-injectivity of 𝑅𝑅 that there is a right 𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅 

such that  𝑔(𝑎1 + 𝑎2) = 𝑓(𝑎1 + 𝑎2),  for all 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2. Thus 𝑔(𝑎1 + 𝑎2) = 𝑟𝑎1, so 

𝑟𝑎1 − 𝑔(𝑎1) = 𝑔(𝑎2) = 𝑔(0 + 𝑎2) = 𝑟. 0 = 0 and hence  (𝑟 − 𝑔(1))𝑎1 = 0, for all 𝑎1 ∈ 𝐴1. 

So 𝑟 − 𝑔(1) ∈ 𝑙𝑅(𝐴1). Since 𝑔(1) ∈ 𝑙𝑅(𝐴2) (because 𝑔(1)𝐴2 = 𝑔(𝐴2) = 0), we have that  

𝑟 ∈  𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2) and hence 𝑙𝑅(𝐴1 ∩ 𝐴2) ⊆ 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2). From [10,  Proposition 2.16,  

p. 38], the other inclusion is obtained  .  □ 

        A submodule 𝑁 of a right 𝑅-module 𝑀 is called essential in 𝑀, denoted by 𝑁 ⊆𝑒𝑠𝑠 𝑀, if 

for every submodule 𝐾 of 𝑀 with 𝑁 ∩ 𝐾 = 0, then 𝐾 = 0 [1, p. 106]. 

 

Proposition 2.4. If 𝑅 is a right SAS-injective ring, then 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)  ⊆ 𝑍(𝑅𝑅). 

 

Proof. Let 𝑎 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and  𝑚𝑅 ∩ 𝑟𝑅(𝑎) = 0 for any 𝑚 ∈ 𝑅. Thus from          Theorem 

2.2(3), we have that 𝑙𝑅(𝑚) + 𝑅𝑎 = 𝑙𝑅(𝑚𝑅 ∩ 𝑟𝑅(𝑎)) = 𝑙𝑅(0) = 𝑅. Since              𝑎 ∈ 𝑆𝑎(𝑅𝑅) ∩

𝐽(𝑅𝑅),  we have from [1, Corollary 9.1.3, p.214] that 𝑙𝑅(𝑚) = 𝑅 and hence  𝑚 = 0. So, 

𝑟𝑅(𝑎) ⊆𝑒𝑠𝑠 𝑅 and hence  𝑎 ∈ Z(𝑅𝑅). Therefore, 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) ⊆ 𝑍(𝑅𝑅). □ 

      A ring 𝑅 is called reduced if 𝑅 has no non-zero nilpotent elements [7, p.249], where an 

element 𝑎 ∈ 𝑅 is called nilpotent if 𝑎𝑛 = 0 for some 𝑛 ∈ ℤ+. 
 

Corollary 2.5. If 𝑅 is an SAS-injective reduced ring, then every right 𝑅-module is            SAS-

injective.  

 

Proof. Let 𝑅 be an SAS-injective reduced ring. By [7, Lemma 7.8, p. 249], 𝑍(𝑅𝑅) = 0. By 

Proposition 2.4,  𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) ⊆ 𝑍(𝑅𝑅) and hence 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) = 0. By [8], every right 

𝑅-module is an SAS-injective.       □ 

     If for each sequence  𝑎1, 𝑎2, 𝑎3, …   of elements of a subset 𝐾 of a ring 𝑅, we have 

𝑎𝑛  … 𝑎2𝑎1 = 0, for some 𝑛 ∈ ℕ, then 𝐾 is called  a right 𝑡-nilpotent [11, p.239].  

 

Proposition 2.6. Let 𝑅 be a right SAS-injective ring. If the ascending chain                  𝑟𝑅(𝑎1) ⊆
𝑟𝑅(𝑎2𝑎1) ⊆ ⋯ ⊆ 𝑟𝑅(𝑎𝑛 … 𝑎2𝑎1) ⊆ ⋯ terminates for any sequence 𝑎1, 𝑎2, … in 𝑆𝑎(𝑅𝑅) ∩
𝑍(𝑅𝑅), then 𝑆𝑎(𝑅𝑅) ∩ 𝑍(𝑅𝑅) is a right 𝑡-nilpotent and  𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) = 𝑆𝑎(𝑅𝑅) ∩ 𝑍(𝑅𝑅). 

 



Chyad and Mehdi                                     Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 3967-3974 
 

3971 

Proof. Let  𝑎1, 𝑎2, … be any sequence in 𝑆𝑎(𝑅𝑅) ∩ 𝑍(𝑅𝑅), then we have 𝑟𝑅(𝑎1) ⊆ 𝑟𝑅(𝑎2𝑎1) ⊆
⋯. By hypothesis, there exists 𝑚 ∈ ℕ such that 𝑟𝑅(𝑎𝑚 … 𝑎2𝑎1) = 𝑟𝑅(𝑎𝑚+1𝑎𝑚 … 𝑎2𝑎1). 

Assume that 𝑎𝑚 … 𝑎2𝑎1 ≠ 0. Since 𝑟𝑅(𝑎𝑚+1) ⊆𝑒𝑠𝑠 𝑅𝑅, then (𝑎𝑚 … 𝑎2𝑎1)𝑅 ∩ 𝑟𝑅(𝑎𝑚+1) ≠ 0 

and hence 0 ≠ 𝑎𝑚 … 𝑎2𝑎1𝑟 ∈ 𝑟𝑅(𝑎𝑚+1) for some 𝑟 ∈ 𝑅. Then 𝑎𝑚+1𝑎𝑚 … 𝑎2𝑎1𝑟 = 0 and this 

means that 𝑎𝑚 … 𝑎2𝑎1𝑟 = 0 and this is a contradiction. Hence  𝑆𝑎(𝑅𝑅) ∩ 𝑍(𝑅𝑅) is a right 𝑡-

nilpotent and so            𝑆𝑎(𝑅𝑅) ∩ 𝑍(𝑅𝑅) ⊆ 𝐽(𝑅𝑅). Since 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) ⊆ 𝑍(𝑅𝑅) (by 

Proposition 2.4), we have  𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) = 𝑆𝑎(𝑅𝑅) ∩ 𝑍(𝑅𝑅). □ 

 

Proposition 2.7. If 𝑅 is a right SAS-injective ring, then  soc(𝑏𝑅) ∩ 𝐽(𝑏𝑅) is zero or simple  for 

any  𝑏 ∈ 𝑅 with 𝑅𝑏 is a  minimal  left  ideal of  𝑅. 
 

Proof. Let 𝑏 ∈ 𝑅 and suppose that soc(𝑏𝑅) ∩ 𝐽(𝑏𝑅) is non-zero. Assume that          soc(𝑏𝑅) ∩
𝐽(𝑏𝑅) is not simple. Thus there exist simple submodules 𝑥1𝑅  and 𝑥2𝑅 of 𝐽(𝑏𝑅) with 𝑥𝑖 ∈
𝑏𝑅 ( 𝑖 = 1,2 ). Thus 𝑥1𝑅 ∩ 𝑥2𝑅 = 0. By Proposition 2.3,  𝑙𝑅(𝑥1) + 𝑙𝑅(𝑥2) = 𝑅. Since 𝑥𝑖 ∈
𝑏𝑅,  it follows that 𝑥𝑖 = 𝑏𝑟𝑖  for some 𝑟𝑖 ∈ 𝑅,  𝑖 = 1,2  that is  𝑙𝑅(𝑏) ⊆ 𝑙𝑅(𝑏𝑟𝑖) = 𝑙𝑅(𝑥𝑖), 𝑖 =
1,2.  Since  𝑅𝑏 is minimal, 𝑙𝑅(𝑏) is a maximal left ideal in 𝑅,  that  is 𝑙𝑅(𝑥1) = 𝑙𝑅(𝑥2) = 𝑙𝑅(𝑏) 

(because  𝑙𝑅(𝑥𝑖) ⊊ 𝑅). Therefore, 𝑙𝑅(𝑏) = 𝑅 and hence  𝑏 = 0 and  this a  contradiction  with  

minimality  of  𝑅𝑏.  Hence  soc(𝑏𝑅) ∩ 𝐽(𝑏𝑅) is a simple right ideal of  𝑅. 
 

Proposition 2.8. Let 𝑅 be a right SAS-injective ring with 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅) is a semisimple right 

ideal of 𝑅. Then  𝑟𝑅𝑙𝑅(𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)) = 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅) if and only if  𝑟𝑅𝑙𝑅(𝑁) = 𝑁 for 

every semiartinian small right ideal 𝑁 of 𝑅. 
 

Proof.  (⇒) Assume  that  𝑟𝑅𝑙𝑅(𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)) = 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and let  𝑁 be a 

semiartinian small right ideal of 𝑅. We obtain 𝑁 ⊆ 𝑟𝑅𝑙𝑅(𝑁)  (by [10, Proposition 2.15 (2), p. 

37]). We will prove  that  𝑁 ⊆𝑒𝑠𝑠 𝑟𝑅𝑙𝑅(𝑁). If 𝑁 ∩ 𝑥𝑅 = 0 for some 𝑥 ∈ 𝑟𝑅𝑙𝑅(𝑁), then by 

Proposition 2.3, 𝑙𝑅(𝑁 ∩ 𝑥𝑅) = 𝑙𝑅(𝑁) + 𝑙𝑅(𝑥𝑅) = 𝑅, since  𝑥 ∈ 𝑟𝑅𝑙𝑅(𝑁) ⊆ 𝑟𝑅𝑙𝑅(𝑆𝑎(𝑅𝑅) ∩
𝐽(𝑅𝑅)) = 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅). If 𝑦 ∈ 𝑙𝑅(𝑁), then  𝑦𝑥 = 0, and hence  𝑦(𝑥𝑟) = 0, for all  𝑟 ∈ 𝑅  

and so 𝑙𝑅(𝑁) ⊆ 𝑙𝑅(𝑥𝑅). Thus 𝑙𝑅(𝑥𝑅) = 𝑅 and hence 𝑥 = 0  and this means 𝑁 ⊆𝑒𝑠𝑠 𝑟𝑅𝑙𝑅(𝑁). 

Since 𝑟𝑅𝑙𝑅(𝑁) ⊆ 𝑟𝑅𝑙𝑅(𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅)) = 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) is semisimple 

(by hypothesis), we have that 𝑟𝑅𝑙𝑅(𝑁) is semisimple and hence  𝑁 = 𝑟𝑅𝑙𝑅(𝑁). 
(⇐)  Suppose that  𝑁 = 𝑟𝑅𝑙𝑅(𝑁)  for all semiartinian small right ideal 𝑁 of 𝑅. Since 𝑆𝑎(𝑅𝑅) ∩

𝐽(𝑅𝑅) is a semiartinian small right ideal of 𝑅, 𝑟𝑅𝑙𝑅(𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)) =          𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) 

(by hypothesis).     □ 

 

Remark 2.9. If 𝑅 is a right SAS-injective ring, then it is not necessary that  𝐽(𝑅𝑅) ⊆ 𝑆𝑎(𝑅𝑅),  

for example, let 𝑅 be the localization ring of ℤ at the prime 𝑝,  that is 𝑅 = ℤ(𝑝) = { 
𝑚

𝑛
:    𝑝 does 

not divide 𝑛}. By [8], we have 𝑆𝑎(𝑅𝑅) = 0 and 𝑅 is a right  SAS-injective ring, but 𝐽(𝑅𝑅) ≠ 0 

and hence 𝐽(𝑅𝑅) ⊈  𝑆𝑎(𝑅𝑅). 
 

       If every 𝑅-homomorphism from a small right ideal of 𝑅 into a module 𝑀 can be extended 

to 𝑅𝑅, then  𝑀 is called small injective [4]. 

 

Proposition  2.10.  If a ring  𝑅 is right SAS-injective with  𝐽(𝑅𝑅) ⊆ 𝑆𝑎(𝑅𝑅), then 𝑅𝑅 is a small 

injective module. 

 

Proof. Let 𝑅 be an SAS-injective ring with 𝐽(𝑅𝑅) ⊆ 𝑆𝑎(𝑅𝑅). Thus  𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) =  𝐽(𝑅𝑅) . 
We will prove that  𝑅𝑅 is a small-injective module. Let 𝐾 be a small right ideal of 𝑅 and 𝑓: 𝐾 →
𝑅 a right 𝑅-homomorphism. By [1, Theorem 9.1.1(a), p.213], 𝐽(𝑅𝑅) is the sum of all small right 
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ideals in 𝑅 and hence 𝐾 ⊆ 𝐽(𝑅𝑅). Thus 𝐾 ⊆ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and  hence 𝐾 is a semiartinian 

small right ideal in 𝑅. By SAS-injectivity of 𝑅, the homomorphism 𝑓 extends to 𝑅 and hence 

𝑅𝑅 is  a small-injective module. □ 

       Let 𝑊 be a right ideal of ring 𝑅. If  𝑅𝑅 = 𝐾𝑅 ⊕ 𝐿𝑅 with 𝐾 is a submodule of 𝑊 and 𝐿 ∩ 𝑊 

is a small right ideal of 𝑅, then 𝑊 is called lies over a summand of 𝑅𝑅 [12]. 

Proposition 2.11. If 𝑅 is a right SAS-injective ring, then every 𝑅-homomorphism from  𝑊 into 

𝑅𝑅 can be  extended to an endomorphism of 𝑅𝑅 , where  𝑊 is a semiartinian  right ideal lies over 

a summand of 𝑅𝑅. 

 

Proof.   Let  𝑓: 𝑊 ⟶ 𝑅  be a  right  𝑅-homomorphism. Since 𝑊 lies over a summand of  𝑅𝑅 

(by hypothesis), it follows from [12] that there exists an idempotent 𝑒2 = 𝑒 ∈ 𝑊 such that 𝑊 =
𝑒𝑅⨁𝐵 for some right ideal 𝐵 ⊆ 𝐽(𝑅).  Since 𝑊 is semiartinian, 𝐵 is a semiartinian small right 

ideal of  𝑅. We need to prove that 𝑊 = 𝑒𝑅⨁(1 − 𝑒)𝐵.  Clearly,  𝑒𝑅 + (1 − 𝑒)𝐵 is direct sum, 

since if  𝑥 ∈ 𝑒𝑅 ∩ (1 − 𝑒)𝐵, then 𝑥 = 𝑒𝑟 and 𝑥 = (1 − 𝑒)𝑏,  for some  𝑏 ∈ 𝐵 and hence 𝑏 =
𝑒𝑟 + 𝑒𝑏 ∈ 𝑒𝑅 ∩ 𝐵 = 0. Thus 𝑏 = 0 and hence 𝑥 = 0, so 𝑒𝑅 ∩ (1 − 𝑒)𝐵 = 0. Let 𝑥 ∈ 𝑊, then  

𝑥 = 𝑎 + 𝑏, for some 𝑎 ∈ 𝑒𝑅, 𝑏 ∈ 𝐵, we can write  𝑥 = 𝑎 + 𝑒𝑏 + (1 − 𝑒)𝑏 and hence  𝑥 ∈
𝑒𝑅⨁(1 − 𝑒)𝐵. Conversely, let 𝑥 ∈  𝑒𝑅⨁(1 − 𝑒)𝐵. Thus, 𝑥 = 𝑎 + (1 − 𝑒)𝑏, for some 𝑎 ∈  𝑒𝑅 

and (1 − 𝑒)𝑏 ∈ (1 − 𝑒)𝐵, we get that    𝑥 = 𝑎 + (1 − 𝑒)𝑏 = 𝑎 − 𝑒𝑏 + 𝑏 ∈ 𝑒𝑅⨁𝐵.  Hence  

𝑊 = 𝑒𝑅⨁(1 − 𝑒)𝐵. It is obvious that (1 − 𝑒)𝐵 is a semiartinian small right ideal of 𝑅. Let 𝑓′ 

: (1 − 𝑒)𝐵 ⟶ 𝑅 be a  right   𝑅-homomorphism  defined   by 𝑓′(𝑥) = 𝑓(𝑥), for all 𝑥 ∈
(1 − 𝑒)𝐵. Since 𝑅 is a right  SAS-injective ring, there exists an 𝑅-homomorphism 𝑔: 𝑅𝑅 ⟶ 𝑅𝑅 

with 𝑔((1 − 𝑒)𝑏) = 𝑓′((1 − 𝑒)𝑏) for all (1 − 𝑒)𝑏 ∈ (1 − 𝑒)𝐵. Define 𝛼: 𝑅𝑅 ⟶ 𝑅𝑅 by 

𝛼(𝑥) = 𝑓(𝑒𝑥) + 𝑔((1 − 𝑒)𝑥),  for each 𝑥 ∈ 𝑅. Then 𝛼 is a well-defined       𝑅-homomorphism. 

If 𝑥 ∈ 𝑊, then 𝑥 = 𝑎 + 𝑏  where 𝑎 ∈ 𝑒𝑅 and 𝑏 ∈ (1 − 𝑒)𝐵 and hence  𝛼(𝑥) = 𝑓(𝑒𝑥) +

𝑔((1 − 𝑒)𝑥) = 𝑓(𝑎) + 𝑔(𝑏) = 𝑓(𝑎) + 𝑓(𝑏) = 𝑓(𝑎 + 𝑏) = 𝑓(𝑥). □ 

           

      A ring 𝑅 is called semiperfect if 𝑅/𝐽(𝑅) is semisimple and the idempotents of 𝑅/𝐽(𝑅) can 

be lifted to 𝑅 [7, p.363]. 

 

Corollary 2.12. If 𝑅 is a semiperfect ring, then 𝑅 is a right SAS-injective  ring  if and only if 

any 𝑅-homomorphism from a semiartinian right ideal of 𝑅 into 𝑅 extends to 𝑅. 

 

Proof.  Let 𝑅 be a  semiperfect ring. By [13], every right ideal lies over a summand  of 𝑅. 

(⟹)  Let 𝐼 be a semiartinian  right ideal of a right SAS-injective ring 𝑅 and 𝑓: 𝐼 ⟶ 𝑅 a right 

𝑅-homomorphism. By hypothesis, 𝐼 lies over a summand of 𝑅. By Proposition 2.11, there is an 

𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝑅 such that  𝑔(𝑎) = 𝑓(𝑎), for all 𝑎 ∈ 𝐼.  

(⟸)  It is clear.  □ 

  

Theorem 2.13. Let 𝑅  be a right SAS-injective ring, and let 𝑎, 𝑏 ∈ 𝑅 with                              𝑏 ∈
 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅). 
(1) If 𝑏𝑅 embeds in 𝑎𝑅, then  𝑅𝑏 is an image of 𝑅𝑎. 
(2) If 𝑎𝑅 is an image of 𝑏𝑅, then  𝑅𝑎 embeds in 𝑅𝑏. 
(3) If 𝑏𝑅 ≅ 𝑎𝑅, then  𝑅𝑎 ≅ 𝑅𝑏. 
 

Proof. Assume that 𝑓: 𝑏𝑅 ⟶ 𝑎𝑅 is a right 𝑅-homomorphism. Since  𝑏 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) (by 

hypothesis), it follows from  SAS-injectivity of 𝑅𝑅 that there is an 𝑅-homomorphism 𝑔: 𝑅 ⟶
𝑅  such that   𝑔𝑖1 = 𝑖2𝑓, where 𝑖1: 𝑏𝑅 → 𝑅 and 𝑖2: 𝑎𝑅 → 𝑅  are  the inclusion maps. Thus 

𝑓(𝑏) = 𝑔(𝑏) = 𝑔(1)𝑏 = 𝑣𝑏, where 𝑣 = 𝑔(1). Since 𝑓(𝑏) ∈ 𝑎𝑅, it follows that 𝑣𝑏 ∈ 𝑎𝑅 and 
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hence there is 𝑢 ∈ 𝑅 such that 𝑣𝑏 = 𝑎𝑢.  Define 𝜃: 𝑅𝑎 ⟶ 𝑅𝑏  by  𝜃(𝑟𝑎) = (𝑟𝑎)𝑢 = 𝑟(𝑣𝑏), 
for any 𝑟 ∈ 𝑅. Thus 𝜃 is a well-defined left 𝑅-homomorphism. 

(1)  If 𝑓 is a right monomorphism, we have  𝑟𝑅(𝑣𝑏) ⊆ 𝑟𝑅(𝑏). By Theorem 2.2.(2), 𝑅𝑏 ⊆
𝑅𝑣𝑏. Thus  𝑏 = 𝑟(𝑣𝑏) =  𝜃(𝑟𝑎) (for some 𝑟 ∈ 𝑅 ). Hence  𝜃  is a left  𝑅-epimorphism. 

(2)  If 𝑓 is an epimorphism, then  there is 𝑠 ∈ 𝑅 such that 𝑓(𝑏𝑠) = 𝑎 and hence  𝑎 = 𝑓(𝑏)𝑠 =
𝑣𝑏𝑠.  We will prove  ker(𝜃) = 0.  Let  𝑥 ∈ ker(𝜃), thus  𝜃(𝑥) = 0. Since 𝑥 ∈ 𝑅𝑎, we have  

𝑥 = 𝑟𝑎, for some  𝑟 ∈ 𝑅. Thus 𝜃(𝑟𝑎) = 0 and hence 𝑟(𝑣𝑏) = 0.  So, 𝑥 = 𝑟𝑎 = 𝑟(𝑏𝑣𝑠) =
(𝑟𝑣𝑏)𝑠 = 0 and hence  ker(𝜃) = 0. By [1, Lemma 3.1.8, p.44], 𝜃 is a left 𝑅-monomorphism. 

(3)  If  𝑓  is an isomorphism, then by the proofs of (1) and (2),  we have that 𝜃 is a left            𝑅-

isomorphism. □ 

 

Lemma 2.14.  Let 𝑅 be ring, then 𝐷(𝑅𝑅) = {𝑎 ∈ 𝑅│𝑟𝑅(𝑎) ∩ 𝑚𝑅 ≠ 0 for each 0 ≠ 𝑚 ∈
𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)} is a left ideal of 𝑅. 
 

Proof.  It is obviously that 𝐷(𝑅𝑅) is a non-empty set, since  0 ∈ 𝐷(𝑅𝑅). If 𝑎 ∈ 𝐷(𝑅𝑅) and 0 ≠
𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅), thus  𝑚𝑏 ∈ 𝑟𝑅(𝑎) ∩ 𝑚𝑅, for some 𝑏 ∈ 𝑅 and so 𝑎(𝑚𝑏) = 0. Since 
(−𝑎)(𝑚𝑏) = −(𝑎𝑚𝑏) = 0, then 𝑚𝑏 ∈ 𝑟𝑅(−𝑎) and hence 𝑟𝑅(−𝑎) ∩ 𝑚𝑅 ≠ 0. Thus −𝑎 ∈
𝐷(𝑅𝑅). Now, let 𝑎1, 𝑎2  ∈ 𝐷(𝑅𝑅) and 0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅). We have that 0 ≠ 𝑚𝑏 ∈
𝑟𝑅(𝑎1) ∩ 𝑚𝑅 for some 𝑏 ∈ 𝑅. Since  𝑎2 ∈ 𝐷(𝑅𝑅),  it follows that – 𝑎2 ∈ 𝐷(𝑅𝑅) and hence 0 ≠
𝑚𝑏𝑐 ∈ 𝑟𝑅(−𝑎2) ∩ 𝑚𝑅 for some 𝑐 ∈ 𝑅. Therefore, 0 ≠ 𝑚𝑏𝑐 ∈ 𝑟𝑅(𝑎1) ∩ 𝑟𝑅(−𝑎2) ∩
𝑚𝑅.  Since 𝑟𝑅(𝑎1) ∩ 𝑟𝑅(−𝑎2) = 𝑟𝑅(𝑎1 + (−𝑎2)) = 𝑟𝑅(𝑎1 − 𝑎2) (by [10, Proposition 2.16, p. 

38]), we have 𝑟𝑅(𝑎1 − 𝑎2) ∩ 𝑚𝑅 ≠ 0 for all 0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) and hence 𝑎1 − 𝑎2 ∈
 𝐷(𝑅𝑅). Also, let  𝑥 ∈ 𝑅 and 𝑎 ∈ 𝐷(𝑅𝑅). Since 𝑟𝑅(𝑎) ⊆ 𝑟𝑅(𝑥𝑎), it follows that 𝑟𝑅(𝑥𝑎) ∩ 𝑚𝑅 ≠
0 for all  0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅), that is  𝑥𝑎 ∈ 𝐷(𝑅𝑅). Thus 𝐷(𝑅𝑅) is a left ideal of 𝑅. □ 

Proposition 2.15. Let 𝑅 be a right SAS-injective ring. Then  𝑟𝑅(𝑎) ⊊ 𝑟𝑅(𝑎 − 𝑎𝑥𝑎), for all 𝑎 ∉
𝐷(𝑅𝑅) and  for some  𝑥 ∈ 𝑅. 
 

Proof. For all 𝑎 ∉ 𝐷(𝑅𝑅), we can find  0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) such that  𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0. 

Clearly, 𝑟𝑅(𝑎𝑚) = 𝑟𝑅(𝑚), so  𝑅𝑚 = 𝑅𝑎𝑚  by Theorem 2.2(2). Thus 𝑚 = 𝑥𝑎𝑚  for some 𝑥 ∈
𝑅 and this implies that 𝑚 − 𝑥𝑎𝑚 = 0 and hence (1 − 𝑥𝑎)(𝑚) = 0. Thus    𝑎. (1 − 𝑥𝑎)(𝑚) =
𝑎. 0 and so (𝑎 − 𝑎𝑥𝑎)𝑚 = 0. Therefore, 𝑚 ∈ 𝑟𝑅(𝑎 − 𝑎𝑥𝑎), but 𝑚 ∉ 𝑟𝑅(𝑎) because 𝑟𝑅(𝑎) ∩
𝑚𝑅 = 0  and hence the inclusion is strictly.       □ 

 

Proposition  2.16.  If 𝑅 is a right SAS-injective ring, then the set {𝑎 ∈ 𝑅│𝑟𝑅(1 − 𝑠𝑎) = 0  for 

all  𝑠 ∈ 𝑅} is contained in  𝐷(𝑅𝑅). 
 

Proof.  We will prove that by contradiction. Assume that there is an element 𝑎 ∈ 𝑅 such that                 

𝑟𝑅(1 − 𝑠𝑎) = 0 for all  𝑠 ∈ 𝑅  with  𝑎 ∉ 𝐷(𝑅𝑅). Then there exists  0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅) 

with  𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0. If 𝑟 ∈ 𝑟𝑅(𝑎𝑚), then (𝑎𝑚)𝑟 = 0 and hence 𝑎(𝑚𝑟) = 0 and  so  𝑚𝑟 ∈ 

𝑟𝑅(𝑎). Since 𝑟𝑅(𝑎) ∩ 𝑚𝑅 = 0, it follows that 𝑚𝑟 = 0  and so 𝑟 ∈ 𝑟𝑅(𝑚).  Hence 𝑟𝑅(𝑎𝑚) ⊆
𝑟𝑅(𝑚). By Theorem 2.2(2),  𝑅𝑚 ⊆ 𝑅𝑎𝑚. Thus 𝑚 = 𝑠𝑎𝑚, for some 𝑠 ∈ 𝑅. Therefore, 

(1 − 𝑠𝑎)𝑚 = 0  and hence  𝑚 ∈ 𝑟𝑅(1 − 𝑠𝑎) = 0  so 𝑚 = 0  and this is a contradiction. Thus 

the statement is hold.    □ 

 

3. Conclusions 

        The SAS-injective rings have been studied in this paper. Let 𝑁, 𝑀 ∈ Mod-𝑅, then 𝑀 is 

called an SAS-𝑁-injective, if any right 𝑅-homomorphism from a semiartinian small  right 

submodule of 𝑁 into 𝑀 extends to 𝑁. If a module 𝑀 is an SAS-𝑅-injective, then 𝑀 is called an 

SAS-injective. A ring 𝑅 is called a right SAS-injective if the right 𝑅-module 𝑅𝑅 is an SAS-
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injective [8]. Many characterizations and properties of right SAS-injective rings have been 

obtained. For examples, we prove that a ring 𝑅 is a right SAS-injective if and only if for any 

𝑁 ∈ Mod-𝑅 and a non-zero 𝑅-monomorphsim 𝑓 from 𝑁 to 𝑅 with 𝑓(𝑁) a semiartinian small  

right ideal of 𝑅, then 𝐻𝑜𝑚𝑅(𝑅, 𝑁) = 𝑅𝑓. Also, we prove that if 𝑅 is a right  SAS-injective ring, 

then 𝑙𝑅(𝐴1 ∩ 𝐴2) = 𝑙𝑅(𝐴1) + 𝑙𝑅(𝐴2), for every semiartinian small  right ideals 𝐴1 and 𝐴2. 
Condition under which SAS-injectivity implies injectivity is given. We prove that if 𝑅 is a 

semiperfect ring, then 𝑅 is a right SAS-injective ring if and only if any          𝑅-homomorphism 

from a semiartinian right ideal of 𝑅 into 𝑅 extends to 𝑅. Finally, we show that if 𝑅 is a right 

SAS-injective ring,  then the set {𝑎 ∈ 𝑅│𝑟𝑅(1 − 𝑠𝑎) = 0  for all 𝑠 ∈ 𝑅} is contained in 𝐷(𝑅𝑅), 

where 𝐷(𝑅𝑅) = {𝑎 ∈ 𝑅│𝑟𝑅(𝑎) ∩ 𝑚𝑅 ≠ 0 for each 0 ≠ 𝑚 ∈ 𝑆𝑎(𝑅𝑅) ∩ 𝐽(𝑅𝑅)}. 
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